Category Theory: Unifies mathematics, studies the mathematics of mathematics, moves toward higher-dimensional algebra ("homotopyifying" mathematics)

- **Set theory**
 - 0-dimensional

- **Category theory**
 - 1-dimensional

Def: A category \(C \) consists of:
- a class \(\text{Ob}(C) \) of objects
 - (If \(x \in \text{Ob}(C) \) we write simply \(x \in C \))
- Given \(x, y \in C \) there's a set \(\text{hom}(x, y) \), called a homset, whose elements are called morphisms or arrows from \(x \) to \(y \). If \(f \in \text{hom}(x, y) \) we write \(f : x \to y \).
- Given \(f : x \to y \) and \(g : y \to z \) there is a morphism called their composite \(g \circ f : x \to z \)
 - Composition is associative: \((h \circ g) \circ f = h \circ (g \circ f) \) if either side is well-defined.
- For any \(x \in C \), there is an identity morphism \(1_x : x \to x \)
- We have the left and right unit laws:
 - \(1_x \circ f = f \) for any \(f : x' \to x \)
 - \(f \circ 1_x = f \) for any \(f : x \to x' \)

Examples of categories

Categories of mathematical objects

For any kind of mathematical object, there's a category with objects of that kind & morphisms being the structure-preserving maps between objects of that kind.
- Set is the category with sets as objects & functions as morphisms.
- Grp is the category of groups and homomorphisms.
- For \(k \) any field, Vec\(k \) of vector spaces over \(k \) and linear maps.
- Ring is the category of rings & ring homomorphisms.

These are categories of "algebraic" objects, namely:
- a set
 - stuff
- with operations
 - structure
- obeying equations
 - property

with morphisms being functions that preserve the operations.

All this is formalized in "universal algebra", using "algebraic theories".

There are also categories of non-algebraic gadgets:
- Top, the category of topological spaces & continuous maps.
- Met, the category of metric spaces & continuous maps.
- Meas, the category of measurable spaces & measurable maps.

Categories as mathematical objects
- There are lots of small, manageable categories:

Def\[A \text{ monoid is a category with one object } \quad \xrightarrow{f} \]
(Then hom(\(1, x\)) for this object \(x \) is a set
with associative product & init.)

Ex\[\xrightarrow{f} \quad \text{with } \quad 1x \circ f = f \]
\[f \circ 1x = f \]
\[f - f = 1x \quad \text{is usually called } \mathbb{Z}/2 \]

Or we could take \(f \circ f = f \), and this gives another famous monoid:
- \(1_x = \text{TRUE} \)
- \(f = \text{FALSE} \)
- \(\circ = \text{AND} \)
- \(f = \text{TRUE} \)
- \(\circ = \text{OR} \)
Def: A morphism \(f: x \to y \) is an isomorphism if it has an inverse \(g: y \to x \), i.e., a morphism with
\[
\begin{align*}
g \circ f & = 1_x \\
f \circ g & = 1_y
\end{align*}
\]
If there exists an isomorphism between 2 objects \(x, y \in C \), we say they're isomorphic.

Def: A category whose all morphisms are isomorphisms is called a groupoid.

Ex: "the groupoid of finite sets" is obtained by taking FinSet, with finite sets as objects and functions as morphisms, and then throwing out all morphisms except isomorphisms (i.e., bijections), getting a groupoid.

Def: A monoid that is a groupoid is called a group.
(The usual "elements" of a group are now the morphisms.)

Def: A category with only identity morphisms is a discrete category.
So any set is the set of objects of some discrete category in a unique way.
So a discrete category is "essentially the same" as a set.

Def: A preorder is a category with at most one morphism in each hom set.
\[
\begin{align*}
x & \leq y \\
x & \leq y
\end{align*}
\]
If there is a morphism \(f: x \to y \) in a preorder we say "\(x \leq y \)"; if not, we say "\(x \nleq y \)".
For a preorder, the category axioms just say
\[
\begin{align*}
\text{composition: } & x \leq y & \text{ & } y \leq z \implies x \leq z \\
\text{associativity is automatic} \\
\text{identities: } & x \leq x \text{ always} \\
\text{left & right unit laws are automatic.}
\end{align*}
\]
We're not getting antisymmetry:
\[
x \leq y \text{ & } y \leq x \implies x = y
\]
Categories as Mathematical Object, cont.

Def. A preorder is a category \(C \) where for all \(x, y \in C \) there is at most one morphism \(f : x \to y \).

We write "\(x \leq y \)" iff \(\exists f : x \to y \).

We know what \(C \) is if we know this relation on objects (if \(C \) is a preorder), & then the category axioms simply say:

- there's a class of objects
- there's a relation \(\leq \) on objects
- \(x \leq y \) & \(y \leq z \) \(\Rightarrow \) \(x \leq z \) (composition) \(\forall x, y, z \in C \)
- \(x \leq x \) (identities) \(\forall x \in C \)

Def. An equivalence relation is a preorder that's also a groupoid.

Prop. A preorder is a groupoid iff this extra law holds:

\[
x \leq y \Rightarrow y \leq x \quad \forall x, y \in C.
\]

Hence we have transitivity, reflexivity, & symmetry of "\(\leq \), so we usually call this relation "\(= \)".

Prop. A preorder is skeletal, i.e. isomorphic objects are equal, iff this extra law holds:

\[
x \leq y \text{ & } y \leq x \Rightarrow x = y \quad \forall x, y \in C
\]

In this case we say \(C \) is a poset.

Preorder:

\[
\begin{align*}
C & \xrightarrow{c} \ & \ x \xrightarrow{c} \ & \ y \\
C & \xrightarrow{c} \ & \ y \xrightarrow{c} \ & \ z
\end{align*}
\]

This is a groupoid; this part is a poset; but not a poset, but not a groupoid.
Since categories can be seen as mathematical objects, we should define maps between them:

Def. Given categories C & D, a functor \(F : C \to D \) consists of:
- a function called \(F \) from \(\text{Ob}(C) \) to \(\text{Ob}(D) \); if \(x \in C \) then \(F(x) \in D \)
- functions called \(F \) from \(\text{hom}(x, y) \) (\(x, y \in C \)) to \(\text{hom}(F(x), F(y)) \);
 if \(f : x \to y \) then \(F(f) : F(x) \to F(y) \)

such that:
- \(F(g \circ f) = F(g) \circ F(f) \) whenever either side is well-defined
- \(F(1_x) = 1_{F(x)} \) \(\forall x \in C \)

So, a functor looks like this:

![Diagram of a functor between categories C and D]

Ex. There's a category called "1". It looks like this: \(\times 1 \)

What is a functor \(F : 1 \to C \), where \(C \) is any category?

![Diagram of a functor from 1 to C]

The answer is: "an object in \(C \)", since for any \(c \in C \)

\(F : 1 \to C \) s.t. \(F(1) = c \)

Ex. There's a category called "2". (a poset)

![Diagram of a category with two objects a, b and a morphism f]

\(a \xrightarrow{f} b \)
What is a functor $F : C \to C$?
It's just a morphism or arrow in C!
For any morphism $g : c \to c'$ in C, there is a functor $F : 2 \to C$
s.t. $F(f) = g$.

Prop. If $F : C \to D$ and $G : D \to E$ are functors then you can define a

functor $G \circ F : C \to E$, and $(G \circ H) \circ F = H \circ (G \circ F)$.

Also, for any category C there is an identity functor $1_C : C \to C$ with

\[1_C(c) = c \quad \forall c \in C \]
\[1_C(f) = f \quad \forall f : x \to y \text{ in } C \]

and $F \circ 1_C = F$ \quad $1_C \circ H = H$ \quad $\forall H : D \to C$.

Def. Cat is the category whose objects are "small" categories & whose

morphisms are functors.

(A "small" category is one with a set of objects --- so e.g. Set or

Group or Ring is not small, while 1 & 2 are small.)

Doing Mathematics inside a category.

A lot of math is done in Set, the category of sets & functions. Let's try
to generalize all that stuff to other categories: replace Set by a general
category C.

In Set we have "one-to-one" & "onto" functions.

In a category C we generalize these concepts to "epimorphisms" or "epis" &
"monomorphisms" or "monos".

Def. A morphism $f : X \to Y$ is a mono if $\forall g, h : Q \to X$ we have

$f \circ g = f \circ h \implies g = h$

\[Q \xrightarrow{g} X \xrightarrow{f} Y \]

\[Q \xrightarrow{h} X \]

\[h \]
Prop In Set, a morphism is monic iff it's a one-to-one function.

Turning around the arrows in the definition of mono, we get:

Def A morphism \(f: Y \rightarrow X \) is an epi if \(\forall g, h: X \rightarrow Q \) we have
\[
 g \circ f = h \circ f \Rightarrow g = h.
\]

\[
 Y \xrightarrow{f} X \xrightarrow{g} Q
\]

Prop In Set, a morphism is epic iff it's an onto function.