Recall that given categories \(C \) & \(D \), a functor \(F: C \to D \) is a map sending objects \(c \in C \) to objects \(F(c) \in D \), morphisms \(f: c \to c' \) in \(C \) to morphisms \(F(f): F(c) \to F(c') \) in \(D \), preserving composition \(F(f \circ g) = F(f) \circ F(g) \) & identities \(F(1_c) = 1_{F(c)} \).

There are many "forgetful functors" going from categories of "funny" mathematical gadgets to categories of less funny ones, forgetting some extra properties, structure, or stuff.

Ex. \(U: \text{Grp} \to \text{Set} \) sends any group \(G \) to its underlying set, and any homomorphism \(f: G \to H \) to its underlying function.

Ex. Given categories \(C \) & \(D \), there's a category \(C \times D \), whose objects are ordered pairs \((c,d) \) with \(c \in C \), \(d \in D \), and morphisms are ordered pairs \((f,g) \) with \(f \) a morphism in \(C \), \(g \) a morphism in \(D \): given \(f: c \to c' \) in \(C \) and \(g: d \to d' \) in \(D \) then \((f,g): (c,d) \to (c',d') \). We define \((f',g') \circ (f,g) = (f' \circ f, g' \circ g) \) and \(1_{(c,d)} = (1_c,1_d) \).

In fact \(C \times D \) is the product of the objects \(C, D \in \mathbf{Cat} \), which is the category with
- (small) categories as objects
- functors as morphisms
Among other things this means we have projections
\[C \times D \]
\[\pi \]
\[C \quad D \]

Set is a large category, but we can still define \(\text{Set}^2 = \text{Set} \times \text{Set} \), with pairs of sets as objects.

In the chart, let \(\pi : \text{Set}^2 \to \text{Set} \) be the projection onto the first component.
\[(S,T) \mapsto S \]

Functions can be nice in two ways: one-to-one & onto.

Functors can be nice in three ways:

Def A functor \(F : C \to D \) is faithful if for any \(c, c' \in C \)
\[F : \text{hom}(c, c') \to \text{hom}(F(c), F(c')) \]
is one-to-one.

Def A functor \(F : C \to D \) is full if for any \(c, c' \in C \)
\[F : \text{hom}(c, c') \to \text{hom}(F(c), F(c')) \]
is onto.

Def A functor \(F : C \to D \) is essentially surjective if for any \(d \in D \), there exists \(c \in C \) such that \(F(c) \simeq d \), meaning there exists an isomorphism \(g : F(c) \to d \) in \(D \).

Ex Compare \(\text{FinVect}_{\mathbb{F}} \) to this category \(C \), with
- \(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3, \ldots \) as objects
- all linear maps between these as morphisms
\[F : C \to \text{FinVect} \]
\[\mathbb{R}^n \to \mathbb{R}^n \]
and similarly for morphisms:
\[f : \mathbb{R} ^n \to \mathbb{R} ^n \]

This is faithful & full, not surjective on objects, but essentially surjective.

Later we'll define "equivalent" categories & see that if \(F : C \to D \) is faithful, full, & essentially surjective then \(C \) & \(D \) are equivalent.
We say:

Def: A functor \(U: C \to D \) forgets nothing if it is faithful, full, and essentially surjective.

- \(U \) forgets (at most) properties if \(U \)'s faithful & full.
- \(U \) forgets (at most) structure if it's faithful.
- In general, we say \(U \) forgets (at most) stuff.

\[U: \text{Grp} \to \text{Set} \] forgets (at most) structure.

It's faithful: given \(f, f': G \to G' \) in Grp, \(U(f) \circ U(f') = f \circ f' \).

It's not full: there are usually functions \(f: U(G) \to U(G') \) that don't come from group homomorphism, e.g., \(f(gh) = f(g)f(h) \) or \(f(1) = 1 \).

\[U_2: \text{AbGrp} \to \text{Grp} \] forgets (at most) properties: the comm. law is forgotten.

This is faithful and also full: if you have any group homomorphism \(f: U_2(A) \to U_2(A') \), then \(U(f) \) for some homomorphism of abelian groups \(f: A \to A' \).

But it's not ess. surjective: if \(G \) is nonabelian, \(G \cong U_2(A) \) for some \(A \in \text{AbGrp} \).

\[U_3: \text{Set}^2 \to \text{Set} \]

forgets stuff: \(U_3(S, S') = S \) if it forgets the second set in the pair.

Technically, it's not faithful:

we can have 2 different morphisms \((f, g), (f', g'): (S, S') \to (T, T') \)

with \(U_3(f, g) = f = U_3(f', g') \).

In our chat, every forgetful functor \(U: C \to D \) has a "left adjoint" \(F: D \to C \) which freely creates the stuff, structure or properties that \(U \) forgets.

\[F: \text{Set} \to \text{Grp} \] takes a set \(S \) and forms the free group on \(S \), \(F(S) \).

\[F_2: \text{Grp} \to \text{AbGrp} \] abelianizes any group \(G \), forming

\[F_2(G) = \frac{G}{\langle xyx^{-1}y^{-1} \rangle} \]

normal subgroup gen. by these elements

\[L_0: \text{Set} \to \text{Set}^2 \]

\[S \mapsto (S, \emptyset) \]
To define adjoint functors (and many other things) we need...

Natural Transformations

Given 2 functors \(F, G : C \to D \) we can define a natural transformation \(\alpha : F \Rightarrow G \)

\[
\begin{array}{ccc}
F(x) & \xrightarrow{F(f)} & F(y) \\
\downarrow{\alpha_x} & & \downarrow{\alpha_y} \\
G(x) & \xrightarrow{G(f)} & G(y)
\end{array}
\]

This square commutes:

\(\alpha \) is a natural transformation.

Definition: Given functors \(F, G : C \to D \) a transformation \(\alpha : F \Rightarrow G \) is a function sending each object \(x \in C \) to a morphism \(\alpha_x : F(x) \to G(x) \). We say \(\alpha \) is a natural transformation if for each morphism \(f : x \to y \) in

\[
\begin{array}{ccc}
F(x) & \xrightarrow{F(f)} & F(y) \\
\downarrow{\alpha_x} & & \downarrow{\alpha_y} \\
G(x) & \xrightarrow{G(f)} & G(y)
\end{array}
\]

Proposition: Given categories \(C \) & \(D \) there's a category, the functor category \(D^C \), with:

- objects being functors \(F : C \to D \)
- morphisms being natural transformations \(\alpha : F \Rightarrow G \)

In \(D^C \) we compose \(\alpha : F \Rightarrow G \), \(\beta : G \Rightarrow H \) to get \(\beta \circ \alpha \) as follows:

\(\beta \circ \alpha : F \Rightarrow H \) given by \((\beta \circ \alpha)_x = \beta_{G(x)} \circ \alpha_x \).

In \(D^C \) the identity \(1_F : F \Rightarrow F \):

\(1_F : F(x) \to F(x) \) \(x \in C \) is

given by \(1_{F(x)} \).

Proof:

Check that the composite \(\beta \circ \alpha \) is natural:

given \(f : x \to y \) in \(C \), want this to commute:

\[
\begin{array}{ccc}
F(x) & \xrightarrow{F(f)} & F(y) \\
\downarrow{(\beta \circ \alpha)_x} & & \downarrow{(\beta \circ \alpha)_y} \\
H(x) & \xrightarrow{H(f)} & H(y)
\end{array}
\]

(continued)
Pl: (continued)

\[\begin{array}{ccc}
F(x) & \xrightarrow{F(f)} & F(y) \\
\downarrow \alpha & \Downarrow \beta & \downarrow \gamma \\
\phi(x) & \xrightarrow{\phi(f)} & \phi(y) \\
\downarrow \beta & \Downarrow \gamma & \downarrow \alpha \\
H(x) & \xrightarrow{H(f)} & H(y)
\end{array} \]

\[\text{\textcircled{2 \text{natural \rightarrow \text{this commute}}} \text{\textcircled{2 \text{natural \rightarrow \text{this commute}}}} \]

So just as given 2 sets \(X, Y \), there's a set \(Y^X \) of all \(f \)s \(f : X \to Y \)

2 categories \(X, Y \), there's a category \(Y^X \) of all functors \(F : X \to Y \)

Given 2 sets \(X \& Y \), they have a product:
\[X \times Y = \{ (x, y) : x \in X, y \in Y \} \]

Notice \(X \times Y \neq Y \times X \)
but \(X \times Y \cong Y \times X \)

And there's a specific "good" isomorphism
\[\alpha : X \times Y \xrightarrow{\cong} Y \times X \]
\[(x, y) \mapsto (y, x) \]

It's "good" because it's natural, in the sense we just defined.

There are 2 functors from \(\text{Set}^2 \) to \(\text{Set} \),
\[F : (X, Y) \mapsto X \times Y \]
\[G : (X, Y) \mapsto Y \times X \]

and \(\alpha \) is a natural transformation from \(F \) to \(G \).

In fact it's a "natural isomorphism":

Def. If \(F, G : C \to D \) are functors and \(\alpha : F \Rightarrow G \) is a nat. tran., we say \(\alpha \) is a natural isomorphism if \(\alpha_x : F(x) \to G(x) \) is an isomorphism \(Y \times x \in C \).

Prop. \(\alpha : F \Rightarrow G \) is a natural isomorphism iff it has an inverse \(\alpha^{-1} : G \Rightarrow F \) in \(D^C \).

Pf.

Key idea: \((\alpha^{-1})_x = (\alpha_x)^{-1} \)
Prop Suppose \(C \) is a category with binary products: any pair of objects \(x, y \in C \) has a product. Then we can choose, for any pair \(x, y \in C \), a specific product:

\[
\begin{align*}
x \times y & \rightarrow x \\
y & \rightarrow x \\
\end{align*}
\]

and then there is a functor \(x : C^2 \rightarrow C \)

\[
(x, y) \mapsto x \times y
\]

In fact there are 2 functors:

\[
\begin{align*}
F : C^2 & \rightarrow C \\
(x, y) & \mapsto x \times y
\end{align*}
\]

\[
\begin{align*}
G : C^2 & \rightarrow C \\
(x, y) & \mapsto y \times x
\end{align*}
\]

and these are naturally isomorphic.

We say "products are commutative up to natural isomorphism."

Also, products are associative up to natural isomorphism:

\[
\alpha_{x,y,z} : (x \times y) \times z \rightarrow x \times (y \times z)
\]

(Just keep using universal property of product.)

Def A cartesian category is a category with binary products and a terminal object. (I.e. it's a category where any finite set of objects has a product — a finite products category)

One can show that in a cartesian category, we have natural isomorphisms:

\[
\begin{align*}
l_x & : 1 \times x \rightarrow x \\
r_x & : x \times 1 \rightarrow x
\end{align*}
\]

All this works similarly in a cat \(W \) with finite coproducts:

\[
\begin{align*}
B_{x,y} & : x + y \rightarrow y + x \\
\alpha_{x,y,z} & : (x + y) + z \rightarrow x + (y + z) \\
l_x & : 0 + x \rightarrow x \\
r_x & : x + 0 \rightarrow x
\end{align*}
\]
In the case $\mathcal{C} = \text{FinSet}$ (finite sets & functions) these give familiar land of arithmetic: \mathbb{N} is the set of isomorphism classes of objects in FinSet.

Another example: A group is a category \mathcal{G} with one object and with all morphisms invertible:

What's a functor $F: \mathcal{G} \to \text{Set}$?

F picks out a set $X = F(\mathbb{1})$ and for each group element f it picks out a function $F(f): X \to X$ s.t. $F(ff') = F(f)F(f')$ & $F(\mathbb{1}) = 1_X$.

So: X is a set acted by the group \mathcal{G}, or a \mathcal{G}-set.

So: a functor $F: \mathcal{G} \to \text{Set}$ is a \mathcal{G}-Set. What's a natural transformation between 2 such functors?