Last time we saw that if C has products, the functor $x: C^2 \to C$

is a right adjoint to the
diagonal functor $\Delta: C \to C^2$

$\Delta(c) = (c, c)$

& similarly $\otimes: C^2 \to C$, if C has coproducts, is a left adjoint to Δ.

(Thus $\otimes: \text{Vect}_k \to \text{Vect}_k$ is both left & right adjoint to $\Delta: \text{Vect}_k \to \text{Vect}_k^2$.)

In fact if a category has limits, these limits give a right adjoint to some functor:

"limits are right adjoints". Similarly "colimits are left adjoints".

We often think about the limit of a diagram in a category C. What's a

"diagram in C", really?

\[\begin{array}{ccc} & c' & \\
\downarrow & & \downarrow \\
c & c'' & \\
\end{array} \]

Namely, it's a collection of objects & morphisms between them.

We can make it into a category:

\[\begin{array}{ccc} & c' & \\
\downarrow & & \downarrow \\
c & c'' & \\
\end{array} \]

Now it's a subcategory of C.

We're often interested in diagrams of some shape, like pullbacks

These "shapes" can be interpreted as categories:
Let D be any category, we'll take this as our "diagram shape". What is a D-shaped diagram in some category C?

It's a functor $F: D \to C$:

```
\begin{tikzpicture}
  \node (A) at (0,0) {$D$};
  \node (B) at (1,1) {$\bullet$};
  \node (C) at (2,2) {$\bullet$};
  \node (D) at (3,3) {$\bullet$};
  \node (E) at (4,4) {$\bullet$};
  \node (F) at (5,5) {$\bullet$};
  \node (G) at (6,6) {$\bullet$};
  \node (H) at (7,7) {$\bullet$};
  \node (I) at (8,8) {$\bullet$};
  \draw[->] (A) -- (B);
  \draw[->] (B) -- (C);
  \draw[->] (C) -- (D);
  \draw[->] (D) -- (E);
  \draw[->] (E) -- (F);
  \draw[->] (F) -- (G);
  \draw[->] (G) -- (H);
  \draw[->] (H) -- (I);
  \draw[->] (I) -- (A);
  \node at (1.5,1.5) {$F$};
\end{tikzpicture}
```

When we take the limit of this diagram, we get an object (defined up to isomorphism) $\operatorname{lim} F \in C$.

What's the process that takes us from $F: D \to C$ to $\operatorname{lim} F \in C$?

The key: there's a category C^D with:

- objects being functors $F: D \to C$
- morphisms being natural transformations $D \xrightarrow{\eta} C$

These morphisms look like:

```
\begin{tikzpicture}
  \node (A) at (0,0) {$D$};
  \node (B) at (1,1) {$\bullet$};
  \node (C) at (2,2) {$\bullet$};
  \node (D) at (3,3) {$\bullet$};
  \node (E) at (4,4) {$\bullet$};
  \node (F) at (5,5) {$\bullet$};
  \node (G) at (6,6) {$\bullet$};
  \node (H) at (7,7) {$\bullet$};
  \node (I) at (8,8) {$\bullet$};
  \draw[->] (A) -- (B);
  \draw[->] (B) -- (C);
  \draw[->] (C) -- (D);
  \draw[->] (D) -- (E);
  \draw[->] (E) -- (F);
  \draw[->] (F) -- (G);
  \draw[->] (G) -- (H);
  \draw[->] (H) -- (I);
  \draw[->] (I) -- (A);
  \node at (1.5,1.5) {$G$};
  \node at (3.5,3.5) {$H$};
  \node at (5.5,5.5) {$I$};
\end{tikzpicture}
```

Where all the squares commute.

When we take a limit of $F: C \to D$, we study cones over F:

```
\begin{tikzpicture}
  \node (A) at (0,0) {$\bullet$};
  \node (B) at (1,1) {$\bullet$};
  \node (C) at (2,2) {$\bullet$};
  \node (D) at (3,3) {$\bullet$};
  \node (E) at (4,4) {$\bullet$};
  \node (F) at (5,5) {$\bullet$};
  \node (G) at (6,6) {$\bullet$};
  \node (H) at (7,7) {$\bullet$};
  \node (I) at (8,8) {$\bullet$};
  \draw[->] (A) -- (B);
  \draw[->] (B) -- (C);
  \draw[->] (C) -- (D);
  \draw[->] (D) -- (E);
  \draw[->] (E) -- (F);
  \draw[->] (F) -- (G);
  \draw[->] (G) -- (H);
  \draw[->] (H) -- (I);
  \draw[->] (I) -- (A);
  \node at (1.5,1.5) {$\alpha$};
\end{tikzpicture}
```

A cone over F is a natural transformation $\alpha: G \Rightarrow F$ where G sends every object of D to some object of C & G sends every morphism of D to the identity morphism of that object.
So this recipe should be a functor $\Delta_b : C \to C^0$.

$\Delta_b(a)$ is the diagram

$\Delta_b(a)$ is the diagram

$\Delta_b(a)$ is the diagram

Here $b = \Delta_b(a)$.

So: a cone over F with apex $q \in C$ is a natural transformation $\alpha : \Delta_b(a) \to F$.

What's the limit of a diagram? If $F \in C^0$

It's a universal cone over that diagram.

Remember U is the right adjoint of F if:

$\text{hom}(Fx, y) \cong \text{hom}(x, Uy)$

So adjoint functors are about converting one kind of morphism into another in a bijective way, & that's what we're doing when we're stating the universal property:

- morphisms $Y : q \to \text{lim } F$ in C
- cones over F with apex q, i.e. natural transformations $\alpha : \Delta_b(a) \to F$ morphisms α from $\Delta_b(a)$ to F in C^0.

So: $\text{hom}(\Delta_b(a), F) \cong \text{hom}(q, \text{lim } F)$
So it looks like we have
\[\lim: C^D \to C \]
which is right adjoint to
\[\Delta_D: C \to C^D \]

This is true - you need to check that
\[\text{hom}(\Delta_D(q), F) \cong \text{hom}(q, \lim F) \]
is a natural bijection to finish the proof of:

Thm. If \(C \) has all limits for \(D \)-shaped diagrams, then we have a functor
\[\lim: C^D \to C \]
\[F \mapsto \lim F \]
which is right adjoint to \(\Delta_D: C \to C^D \).

The converse is true too: if \(\Delta_D: C \to C^D \) has a right adjoint, then this gives limits of \(D \)-shaped diagrams in \(C \).

What choice of \(D \) gives the case of binary products (a special case of limits)?

Here \(D \) has 2 objects & only identity morphisms, so we could call it \(2 \),
so \(C^D = C^2 \) & \(x: C^2 \to C \) is right adjoint to \(\Delta_2 = \Delta: C \to C^2 \).

Similarly,

Thm. If a category \(C \) has colimits of all \(D \)-shaped diagrams, there's a functor
\[\text{colim}: C^D \to C \]
left adjoint to \(\Delta_D: C \to C^D \) & conversely.
So \(\text{hom}((\text{colim} F), q) \cong \text{hom}(F, \Delta_D q) \).
Note

$\alpha \in \text{hom}(F, D_{\mathfrak{q}})$ is a cone.
Theorem: Left adjoints preserve colimits; right adjoints preserve limits.

Pf: (sketch)

Let's show that if \(F: C \to D \) is a left adjoint to \(U: D \to C \), then \(F \) preserves colimits.

For concreteness, let's show \(F \) preserves pushouts — general case is analogous.

So suppose we have a pushout in \(C \):

\[
\begin{array}{ccc}
\bullet & \xleftarrow{f} & \bullet \\
\downarrow{g} & & \downarrow{h} \\
\bullet & \xrightarrow{i} & \bullet
\end{array}
\]

Here \(x \) is the apex of a cocone on the diagram we're taking a colimit of, & the universal property holds.

The claim is that applying \(F \) to this universal cocone gives a universal cocone in \(D \):

\[
\begin{array}{ccc}
\bullet & \xleftarrow{F(g)} & \bullet \\
\downarrow{F(f)} & & \downarrow{F(h)} \\
\bullet & \xrightarrow{F(i)} & \bullet
\end{array}
\]

Choose a competitor cocone with apex \(Q \). Need to show \(\exists! \Psi: F(x) \to Q \) making the newly formed triangle commute.

We can look at \(U(Q) \in C \)

Note \(\text{hom}(F(x), Q) \cong \text{hom}(x, U(Q)) \)

So to get \(\Psi: F(x) \to Q \), let's find \(\Psi: x \to U(Q) \).

\(U(Q) \) becomes a competitor due to the adjointness of \(F \) & \(U \), e.g. \(\text{hom}(F(x), Q) \cong \text{hom}(x, U(Q)) \)

For some reason, the triangles involving \(U(Q) \) commute since those involving \(Q \) commute.

So \(U(Q) \) is a competitor.

Thus \(\exists! \Psi: x \to U(Q) \) making the newly formed triangles commute.

This gives us \(\Psi: F(x) \to Q \), check it makes its newly formed triangle commute & is unique (since \(\Psi \) is).
Ex: $F: \text{Set} \to \text{Grp}$ preserves colimits, e.g. coproducts, so

$$F(S + T) \cong F(S) + F(T)$$

Here, $S + T$ is the disjoint union of S and T. $F(S + T)$ is the free group with elements of $S + T$ as generators, and $F(S) + F(T) = F(S) * F(T)$ is the "free product" of $F(S)$ and $F(T)$.

Ex: $U: \text{Grp} \to \text{Set}$ preserves limits, e.g. products:

$$U(a \times H) \cong U(a) \times U(H)$$

where $a \times H$ is the usual product of groups a and H.

Thin: The composite of left adjoints is a left adjoint. The composite of right adjoints is a right adjoint.

Pf: Suppose we have functors $C \xrightarrow{F} D \xrightarrow{F'} E$ and F and F' are left adjoints of functors U, U'. Then $\text{Colim}_C F \cong \text{Lim}_D F'$. We'll show that $F' \circ F: C \to E$ is the left adjoint of $U \circ U': E \to C$.

Want a natural isomorphism $\text{hom}(F' \circ F(c), e) \cong \text{hom}(c, U' \circ U(e))$.

Here's how we get it:

$$\text{hom}(F' \circ F(c), e) \cong \text{hom}(F(c), U'(e))$$

since F' is left adjoint to U'

$$\cong \text{hom}(c, U \circ U'(e))$$

since F is left adjoint to U.

Ex: $\text{Ring} \xrightarrow{F} \text{Ab}$

$F' \circ F$ is left adjoint to the forgetful functor $U \circ U'$ from Ring to Set.

Starting from \emptyset (the initial set) we get $F(\emptyset) = \{0\}$ (the trivial abelian group, which is the initial abelian group) and then $F'(F(\emptyset)) = \mathbb{Z}$ (the ring of integers, which is the initial ring).

Starting from a one-element set $\{x\}$, we get

$$F(\{x\}) = \{\ldots, -x, 0, x, x + x, \ldots\} \cong \mathbb{Z}$$

and then $F'(F(\{x\})) = \mathbb{Z}[x]$ the ring of polynomials in x with integer coefficients.
Units and counits of adjunctions (= pair of adjoint functors)
Suppose we have \(F(D) \rightleftharpoons C \) with \(F \) left adjoint to \(U \).

\[\text{hom}(F(c), d) \cong \text{hom}(c, Ud) \quad \forall \ c \in C, \forall d \in D \]

We can apply this bijection to an identity morphism & get something interesting. We can do this if \(d = Fc \).

\[\psi \]

\[\psi(Fc) \]

\(\psi(Fc) \) is called the unit, \(\eta_c : c \to UFc \)

We can also apply \(\psi^{-1} \) to an identity if \(d = Ud \).

\[\text{hom}(F Ud, d) \overset{\psi^{-1}}{\sim} \text{hom}(Ud, Ud) \]

\[\psi^{-1}(Ud) \]

\(\psi^{-1}(Ud) \) is called the counit, \(\varepsilon_d : \varepsilon_d : F Ud \to d \)

These give various famous morphisms.

Ex:

\(F : \text{Set} \to \text{Grp} \)

\(U : \text{Grp} \to \text{Set} \)

Given any set \(S \), we get a unit: \(\varepsilon_S : S \to UF S \)

This is the "inclusion of the generators": elements of \(S \) are generators of \(FS \).

*Given a group \(G \), get: \(\varepsilon_a : FUG \to G \)

\[\begin{align*}
 g_1 \cdot g_2 \cdot \ldots \cdot g_n &\mapsto g_1 g_2 \ldots g_n \in G \\
 \text{"formal product"} &\quad \text{"actual product"} \\
 \end{align*} \]

The counits "convert" formal expressions into actual ones."