GAUGE THEORY ON A GRAPH

For us, a graph \mathcal{G} is a finite set E of edges, a finite set V of vertices, and maps $s, t: E \rightarrow V$.

\begin{align*}
 & s(e) \quad e \quad t(e) \\
\end{align*}

Fixing a group G, a connection on \mathcal{G} is a map

\[A: E \rightarrow G \]

assigning to each edge e a holonomy $A_e \in G$.

A gauge transformation on \mathcal{G} is a map

\[g: V \rightarrow G \]

Gauge transformations act on connections via:

\[(gA)_e = g_{t(e)} A_{s(e)} g_{s(e)}^{-1} \]
Let
\[\mathcal{A} = \{ \text{connections on } \mathcal{Y} \} = G^E \]
\[\Omega^*_G = \{ \text{gauge transformations on } \mathcal{Y} \} = G^V \]

If \(G \) has a left- and right-invariant measure (Haar measure), \(\mathcal{A} \) gets a \(\Omega^*_G \)-invariant measure, so \(\Omega^*_G \) acts as unitary operators on \(L^2(\mathcal{A}) \).

Via
\[\mathcal{A} \]
\[\downarrow \Omega^*_G \]

the measure on \(\mathcal{A} \) pushes forward to a measure on \(\mathcal{A}/\Omega^*_G \), and:
\[L^2(\mathcal{A}/\Omega^*_G) \cong \{ \psi \in L^2(\mathcal{A}) : g\psi = \psi \} \]
If \(G \) is compact, it has a unique Borel measure \(\mu \) that is left- and right-invariant and has \(\int_G \mu = 1 \) — normalized Haar measure. Then we can describe \(L^2(\mathbb{A}) \) using the Peter-Weyl theorem:

\[
L^2(G) \cong \bigoplus_{\rho \in \text{Irrep}(G)} \rho \otimes \rho^*
\]

so

\[
L^2(\mathbb{A}) \cong L^2(G^E)
\]

\[
\cong \bigotimes_{e \in E} L^2(G)
\]

\[
\cong \bigotimes_{e \in E} \bigoplus_{\rho \in \text{Irrep}(G)} \rho \otimes \rho^*
\]

\[
\cong \bigoplus_{\rho : E \to \text{Irrep}(G)} \bigotimes_{e \in E} \rho_e \otimes \rho_e^*
\]

\[
\cong \bigoplus_{\rho : E \to \text{Irrep}(G)} \bigotimes_{e \in V} \rho_{e:t(e)} \otimes \rho_{e:s(e)}
\]
$G \times G$ acts on $L^2(G^-)$ by left/right translations; Peter-Weyl says how:

$$L^2(G^-) \cong \bigoplus_{\rho \in \text{irrep}(G)} \rho \otimes \rho^*$$

This says how $G^- \times G$ acts on $L^2(G^-)$:

$$L^2(G^-) \cong \bigoplus_{\rho : E \rightarrow \text{irrep}(G)} \bigotimes_{e \in V} \left[\bigotimes_{e : t(e) = v} \rho_e \otimes \bigotimes_{e : s(e) = v} \rho_e^* \right]$$

If $g \in G^- \times G$, g_v acts on this factor in the obvious way! Thus:

$$L^2(G^-)^{G^-} \cong \bigoplus_{\rho : E \rightarrow \text{irrep}(G)} \bigotimes_{e \in V} \text{Inv} \left[\bigotimes_{e : t(e) = v} \rho_e \otimes \bigotimes_{e : s(e) = v} \rho_e^* \right]$$

$$\cong \bigoplus_{\rho : E \rightarrow \text{irrep}(G)} \bigotimes_{e \in V} \text{Hom} \left(\bigotimes_{e : s(e) = v} \rho_e, \bigotimes_{e : t(e) = v} \rho_e \right)$$

intertwiners
SPIN NETWORKS

Theorem — If \mathcal{V} is a graph and G is a compact group, an orthonormal basis for $L^2(\mathcal{V}/G)$ is given by all ways of labelling edges of \mathcal{V} by irreps $\rho_e \in \text{Irrep}(G)$ and vertices by intertwiners $\mathcal{2}_v : \bigotimes_{e} \rho_e \rightarrow \bigotimes_{e} \rho_e$

running over any orthonormal basis of such intertwiners.

$\mathcal{V} = (\mathcal{V}, \rho, \mathcal{2})$ is called a spin network.

Proof —

$L^2(\mathcal{V}/G) = \bigoplus_{\rho : E \rightarrow \text{Irrep}(G)} \bigotimes_{V \in V} \text{Hom}(\bigotimes_{e} \rho_e, \bigotimes_{e} \rho_e)_{\rho(t(e) = v)}$
EXAMPLES:

\[G = U(1) \quad - \quad \text{electromagnetism!} \]

Irrep \((G) \cong \mathbb{Z} \quad - \quad \text{"charges"} \]

All irreps are 1-dimensional: \[\rho_n(e^{i\theta}) = e^{i \theta}, \; n \in \mathbb{Z}. \]

\[\rho_n \otimes \rho_m = \rho_{n+m} \]

\[\rho_n^* \cong \rho_{-n} \]

Space of intertwiners:

\[\text{is 1-dimensional if } n_1 + \cdots + n_k = m_1 + \cdots + m_\ell, \]

0-dimensional otherwise.

\(L^2(G/0) \) has basis of "flux networks":

Faraday's electric field lines! \[\nabla \cdot \vec{E} = 0! \]
\(G = SU(2) \) — weak force, gravity!

Irrep \(\rho(G) \approx \frac{N}{2} \) — "spins" \(j = 0, \frac{1}{2}, 1, \ldots \)

\[\rho_j \otimes \rho_k \cong \rho_{|j-k|} \oplus \cdots \oplus \rho_{j+k} \]

\[\rho_j^* \cong \rho_j \]

Space of intertwiners:

\[j \quad \downarrow \quad \lambda \quad \downarrow \quad k \]

is 1d if \(j + k + \lambda \in \mathbb{N} \) & \(|j-k| \leq \lambda \leq j+k \),

0d otherwise.

Basis of intertwiners given by "virtual trivalent trees" with edges labelled by spins satisfying above constraints.

\(L^2(\Omega G) \) has basis of spin networks:
Given any graph γ with edges real-analytically embedded in M, let

$$\mathcal{D}_\gamma = \{ \text{connections on } \gamma \}$$

$$\mathcal{G}_\gamma = \{ \text{gauge transformations on } \gamma \}$$

defined as before!

$$\mathcal{M}_\gamma = \mathcal{G}_\gamma \text{-invariant measure on } \mathcal{D}_\gamma$$

with $$\int_{\mathcal{D}_\gamma} \mathcal{M}_\gamma = 1$$

If we arbitrarily trivialize P at each point of M, we get onto maps:

$$\begin{array}{ccc}
\mathcal{D}_\gamma & \xrightarrow{\gamma} & \mathcal{G}_\gamma \\
\downarrow & & \downarrow \\
\mathcal{D}_\gamma & & \mathcal{G}_\gamma
\end{array}$$

Idea: form $\overline{\mathcal{G}}_\gamma$, $\overline{\mathcal{G}}_\gamma$ as an inverse limit of these \mathcal{D}_γ, \mathcal{G}_γ.

G-AUGE THEORY ON A
REAL-ANALYTIC MANIFOLD

Let

\(M \) be a real-analytic manifold
\(G \) a compact connected Lie group
\(P \rightarrow M \) a smooth principal \(G \)-bundle
\(\mathcal{A} = \{ \text{smooth connections on } P \} \)
\(\mathcal{G} = \{ \text{smooth gauge transformations of } P \} \)

We want to define \(L^2(\mathcal{A}/\mathcal{G}) \) but there's no good measure. So: define \(L^2(\overline{\mathcal{A}}/\overline{\mathcal{G}}) \)
where

\(\mathcal{A} \xrightarrow{\text{dense}} \overline{\mathcal{A}} \)
\(\mathcal{G} \xrightarrow{\text{dense}} \overline{\mathcal{G}} \)

and \(\overline{\mathcal{A}} \) has a \(\overline{\mathcal{G}} \)-invariant measure.

HOW?
Graphs real-analytically embedded in M form a category:

\[\begin{array}{ccc}
\bullet & \rightarrow & \bullet \\
\boxed{\text{f}} & & \\
\bullet & \rightarrow & \bullet
\end{array} \]

where morphisms are:

- adding new edges & vertices
- subdividing edges with new vertices
- reversing orientation of edges

Any morphism $f : \gamma \rightarrow \gamma'$ induces:

\[f^* : \mathcal{A}_\gamma \rightarrow \mathcal{A}_{\gamma'} \]

\[\text{measure-preserving continuous onto map:} \]

\[f^* \mathcal{M}_{\gamma'} = \mathcal{M}_\gamma \]

\[f^* : \sigma_{\gamma'} \rightarrow \sigma_\gamma \]

\[\text{onto homomorphism of Lie groups} \]

Let

\[\overline{a} = \lim_{\gamma} \mathcal{A}_\gamma \]

\[\overline{\sigma} = \lim_{\gamma} \sigma_\gamma \]

& also for σ'
Theorem - \overline{A} is a compact Hausdorff space; \overline{G} is a compact Hausdorff group acting continuously on \overline{A}. We have inclusions:

$$A \subset_{\text{dense}} \overline{A}$$

$$A \subset_{\text{dense}} \overline{G}$$

\overline{A} has a \overline{G}-invariant Borel measure μ with $\int_{\overline{A}} \mu = 1$. $A \subset \overline{A}$ is contained in a set of measure zero.

Key lemma: given γ, γ' there exists γ'' with

$$f \mapsto f'$$

$\gamma \Rightarrow \gamma''$

Not true in smooth category:

Nonetheless this theorem is true in smooth category.
Corollary: \(L^2(\bar{G} / \bar{G}) \) has an orthonormal basis given by spin networks \(\psi = (\chi, \rho, z) \), where:

- \(\chi \) ranges over graphs analytically embedded in \(M \), without lone vertices:
 - unnecessary vertices:
 - or redundancies:
 - pick one
 - pick one

- \(\rho \) ranges over labellings of edges by nontrivial irreps of \(G \)

- \(z \) ranges over labellings of vertices by intertwiners chosen from an orthonormal basis.