Higher Gauge Theory (II)

John C. Baez

joint work with:
Toby Bartels,
Alissa Crans,
Aaron Lauda,
Urs Schreiber,
Danny Stevenson.

in honor of
Ross Street’s 60th birthday

July 20, 2005

More details at:
http://math.ucr.edu/home/baez/street/
Gauge Theory

Ordinary gauge theory describes how point particles transform as they move along paths in spacetime:

In the simplest setup, a ‘transformation’ is an element of a smooth group G, and ‘spacetime’ is a smooth space M.

(We work in a convenient category of ‘smooth spaces’, including smooth manifolds as a full subcategory, but cartesian closed, with all limits and colimits.)

A **connection** is a g-valued 1-form A on M. This lets us compute a **holonomy** $\text{hol}(\gamma) \in G$ for each path $\gamma : [0, 1] \to M$, as follows. Solve this differential equation:

$$\frac{d}{dt}g(t) = A(\gamma'(t))g(t)$$

with initial value $g(0) = 1$. Then let

$$\text{hol}(\gamma) = g(1).$$
Holonomy as a Functor

The holonomy along a path doesn’t depend on its parametrization. When we compose paths, their holonomies multiply:

When we reverse a path, we get a path with the inverse holonomy:

So, let $\mathcal{P}_1(M)$ be the path groupoid of M:

- objects are points $x \in M$: \bullet_x
- morphisms are thin homotopy classes of smooth paths $\gamma: [0, 1] \to M$ such that $\gamma(t)$ is constant near $t = 0, 1$:

This is a smooth groupoid: it has a smooth space of objects and a smooth space of morphisms, with all groupoid operations being smooth.

Theorem. Given connection on a smooth space M, its holonomies along paths determine a smooth ‘holonomy functor’:

$$\text{hol}: \mathcal{P}_1(M) \to G.$$
Bundles

The story so far is oversimplified. It’s evil to demand that holonomies are group elements – we should only demand that each point in M have a neighborhood in which holonomies can be regarded as group elements.

So, define a bundle over M to be:

- a smooth space P (the total space),
- a smooth space F (the standard fiber),
- a smooth map $p: P \rightarrow M$ (the projection),

such that for each point $x \in M$ there exists an open neighborhood U equipped with a diffeomorphism

$$f: p^{-1}U \rightarrow U \times F,$$

(the local trivialization) such that

commutes.
Principal Bundles

If F is a smooth space, $\text{Aut}(F)$ is a smooth group. Given a bundle $P \to M$ with standard fiber F, the local trivializations over neighborhoods U_i covering M give:

- smooth maps (transition functions)

$$g_{ij}: U_i \cap U_j \to \text{Aut}(F)$$

such that:

- $g_{ij}(x)g_{jk}(x) = g_{ik}(x)$,
- $g_{ii}(x) = 1$.

For any smooth group G, we say a bundle $P \to M$ has G as its structure group when the maps g_{ij} factor through an action $G \to \text{Aut}(F)$.

If furthermore $F = G$ and G acts on F by left multiplication, we say P is a principal G-bundle.
Connections

What’s a connection on a principal G-bundle $P \to M$? In each neighborhood U_i it’s a \mathfrak{g}-valued 1-form A_i, but we demand compatibility:

$$A_i = g_{ij}A_jg^{-1}_{ij} + g_{ij}dg^{-1}_{ij}$$

on the intersections $U_i \cap U_j$.

What is the holonomy of such a connection along a path? There is a smooth groupoid $\text{Trans}(P)$, the transport groupoid, for which:

- objects are the fibers $P_x = p^{-1}(x)$ for $x \in M$, which are G-torsors: right G-spaces isomorphic to G.
- morphisms are G-torsor morphisms $f: P_x \to P_y$.

Theorem. Any connection on a principal G-bundle $P \to M$ gives a smooth ‘holonomy functor’:

$$\text{hol}: \mathcal{P}_1(M) \to \text{Trans}(P).$$
Higher Gauge Theory

Higher gauge theory should describe how strings transform as move them along surfaces in spacetime:

\[
\begin{array}{c}
\bullet \\
\beta \quad \alpha
\end{array}
\]

So, let’s categorify all the above and get a theory of 2-connections on principal 2-bundles!

The crucial trick is ‘internalization’. Given a familiar gadget \(x \) and a category \(K \), we define an ‘\(x \) in \(K \)’ by writing the definition of \(x \) using commutative diagrams and interpreting these in \(K \).

We will need these examples:

- A **smooth group** is a group in \([\text{Smooth Spaces}]\).
- A **smooth groupoid** is a groupoid in \([\text{Smooth Spaces}]\).
- A **smooth category** is a category in \([\text{Smooth Spaces}]\).
- A **smooth 2-group** is a 2-group in \([\text{Smooth Spaces}]\).
- A **smooth 2-groupoid** is a 2-groupoid in \([\text{Smooth Spaces}]\).

Here 2-groups and 2-groupoids come in two flavors: *strict* and *coherent*. In the former all laws hold as equations; in the latter, they hold up to specified isomorphisms which satisfy coherence laws of their own. For details, see my paper with Aaron Lauda and references therein.
2-Bundles

Toby Bartels has developed a theory of 2-bundles, which we roughly sketch here.

We can think of a smooth space M as a smooth category with only identity morphisms. A 2-bundle over M consists of:

- a smooth category P (the total space),
- a smooth category F (the standard fiber),
- a smooth functor $p: P \to M$ (the projection),

such that each point $x \in M$ is equipped with an open neighborhood U and a smooth equivalence:

$$f: p^{-1}U \to U \times F$$

(the local trivialization) such that:

$$\begin{array}{ccc}
p^{-1}U & \xrightarrow{f} & U \times F \\
p|_{p^{-1}U} & \downarrow & \\
U & \end{array}$$

commutes.
Principal 2-Bundles

If F is a smooth category, $\mathcal{G} = \text{Aut}(F)$ is a smooth 2-group. Given a 2-bundle $P \to M$ with standard fiber F, the local trivializations over open sets U_i covering M give:

- smooth maps
 \[g_{ij} : U_i \cap U_j \to \text{Ob}(\mathcal{G}) \]

- smooth maps
 \[h_{ijk} : U_i \cap U_j \cap U_k \to \text{Mor}(\mathcal{G}) \]
 with
 \[h_{ijk}(x) : g_{ij}(x)g_{jk}(x) \to g_{ik}(x) \]

- smooth maps
 \[k_i : U_i \to \text{Mor}(\mathcal{G}) \]
 with
 \[k_i(x) : g_{ii}(x) \to 1 \in \mathcal{G}. \]

Furthermore:

- h satisfies an equation on quadruple intersections $U_i \cap U_j \cap U_k \cap U_l$:

 \[
 h_{ijl} h_{jkl} h_{ikl} = g_{ij} g_{kl} = g_{ij} g_{ik} g_{kl}
 \]

 (the **associative law**)
• k satisfies two equations on double intersections $U_i \cap U_j$:

\[
\begin{align*}
g_{ij} &\ circ k_i \circ 1 \circ g_{ij} \quad = \quad g_{ii} \circ \underbrace{h_{iij}}_{k_i} \circ g_{ij} \\
g_{ij} &\ circ 1 \circ g_{jj} \quad = \quad g_{ij} \circ \underbrace{h_{ijj}}_{k_j} \circ g_{ij}
\end{align*}
\]

(the **left unit law**) and

For any smooth 2-group G, we say a 2-bundle $P \to M$ has G as its **structure 2-group** when g_{ij}, h_{ijk}, and k_i factor through an action $G \to \text{Aut}(F)$.

If furthermore $F = G$ and G acts on F by left multiplication, we say P is a **principal G-2-bundle**.
2-Connections

So far Urs Schreiber and I have only handled 2-connections on principal 2-bundles where the structure 2-group \mathcal{G} is strict.

A smooth strict 2-group \mathcal{G} is determined by:

- the smooth group G consisting of all objects of \mathcal{G},
- the smooth group H consisting of all morphisms of \mathcal{G} with source 1,
- the homomorphism $t: H \to G$ sending each morphism in H to its target,
- the action α of G on H defined using conjugation in the group $\text{Mor}(\mathcal{G})$ via
 \[
 \alpha(g)h = 1_g h 1_g^{-1}
 \]

The system (G, H, t, α) satisfies equations making it a ‘crossed module’. Conversely, any crossed module of smooth groups gives a strict smooth 2-group.
Let \mathcal{G} be a strict smooth 2-group.

Let (G, H, t, α) be its crossed module.

Let $(\mathfrak{g}, \mathfrak{h}, dt, d\alpha)$ be the corresponding ‘differential crossed module’ — the Lie algebra analogue of a crossed module.

If $P \to M$ is a principal 2-bundle with structure 2-group \mathcal{G} and U_i is an open cover of M by neighborhoods equipped with local trivializations of P, we can describe a 2-connection on P in terms of:

- a \mathfrak{g}-valued 1-form A_i on each open set U_i,
- an \mathfrak{h}-valued 2-form B_i on each open set U_i,

together with some extra data and equations for double and triple intersections. The details are in our paper; as we’ll see, these 2-connections are closely related to Breen and Messing’s connections on nonabelian gerbes.

If P is trivial ($P = M \times \mathcal{G}$) all this reduces to:

- a \mathfrak{g}-valued 1-form A on M,
- an \mathfrak{h}-valued 2-form B on M.
Holonomy as a 2-Functor

Let’s consider a 2-connection on a trivial 2-bundle and ponder the existence of a holonomy 2-functor

$$\text{hol}: \mathcal{P}_2(M) \to \mathcal{G}$$

where the path 2-groupoid $\mathcal{P}_2(M)$ is defined so that:

- objects are points of M: \bullet_x
- morphisms are smooth paths $\gamma: [0, 1] \to M$ such that $\gamma(t)$ is constant in a neighborhood of $t = 0$ and $t = 1$:

$$\begin{array}{c}
\bullet_x \\
\gamma \\
\bullet_y
\end{array}$$

- 2-morphisms are thin homotopy classes of smooth maps $f: [0, 1]^2 \to M$ such that $f(s, t)$ is independent of s in a neighborhood of $s = 0$ and $s = 1$, and constant in a neighborhood of $t = 0$ and $t = 1$:

$$\begin{array}{c}
\bullet_x \\
\gamma_1 \\
\parallel f \\
\gamma_2 \\
\bullet_y
\end{array}$$
Recall: G is a strict smooth 2-group with crossed module (G, H, t, α). A 2-connection on a trivial principal G-2-bundle over M consists of:

- a g-valued 1-form A on M,
- an h-valued 2-form B on M.

Theorem. A 2-connection on a trivial principal G-2-bundle determines a smooth ‘holonomy 2-functor’:

$$\text{hol}: \mathcal{P}_2(M) \to G$$

if and only if its **fake curvature** vanishes:

$$F_A - dt(B) = 0,$$

where F_A is the usual curvature of A, namely the g-valued 2-form $F_A = dA + A \wedge A$.

Vanishing fake curvature guarantees that parallel transport along a surface $f: [0, 1]^2 \to M$ is invariant under thin homotopies — in particular, invariant under reparametrizations of $[0, 1]^2$.

All this generalizes to nontrivial principal G-2-bundles using the **transport 2-groupoid** $\text{Trans}(P)$, for which:

- objects are the fibers P_x (which are G-2-torsors),
- morphisms are 2-torsor morphisms $f: P_x \to P_y$,
- 2-morphisms are 2-torsor 2-morphisms $\theta: f \Rightarrow g$.

Theorem. A 2-connection on a principal G-2-bundle $P \to M$ determines a smooth ‘holonomy 2-functor’:

$$\text{hol}: \mathcal{P}_2(M) \to \text{Trans}(P)$$

if and only if the fake curvature vanishes.
2-Bundles, Stacks and Gerbes

Just as a bundle has a sheaf of sections, a 2-bundle has a ‘stack of sections’. This must be defined carefully, using the local trivializations. In certain cases this stack is a gerbe!

Any smooth category X determines a smooth 2-group $\text{Aut}(X)$, in which:

- objects are smooth equivalences $f: X \to X$.
- morphisms are smooth natural isomorphisms $\theta: f \Rightarrow g$.

A smooth group H is a special sort of smooth category, so it gives a smooth 2-group $\text{Aut}(H)$.

Theorem. The stack of sections of a principal $\text{Aut}(H)$-2-bundle $P \to M$ is a nonabelian H-gerbe. A connection on this nonabelian gerbe (in the sense of Breen and Messing) is the same as a 2-connection on P.

Toby Bartels is working on:

Conjecture. The 2-category of principal $\text{Aut}(H)$-2-bundles over M is biequivalent to the 2-category of nonabelian H-gerbes over M.
