Math 209A Homework 3

Edward Burkard

2. **Integration**

2.5. **Product Measures.**

Problem 46. Let $X = Y = [0, 1]$, $\mathcal{M} = \mathcal{N} = B_{[0,1]}$, $\mu =$ Lebesgue measure, and $\nu =$ counting measure. If $D = \{(x, x) | x \in [0,1]\}$ is the diagonal in $X \times Y$, then $\int \int \chi_D \, d\mu \, d\nu$, $\int \int \chi_D \, d\nu \, d\mu$, and $\int \chi_D \, d(\mu \times \nu)$ are all unequal. (To compute $\int \chi_D \, d(\mu \times \nu) = \mu \times \nu(D)$, go back to the definition of $\mu \times \nu$.

Proof. First note that $D_x = \{(x, x)\}$ and $D^y = \{(y, y)\}$. Then:

\[
\int \int \chi_D \, d\mu \, d\nu = \mu(D_x) \, d\nu = \int 0 \, d\nu = 0.
\]

\[
\int \int \chi_D \, d\nu \, d\mu = \nu(D^y) \, d\mu = \int 1 \, d\mu = 1.
\]

Let $\{A_i \times B_i\}$ be a countable covering of D by rectangles in $\mathcal{M} \times \mathcal{N}$. Then given any $x \in [0,1]$, $(x, x) \in A_i \times B_i$ for some i. Thus $x \in A_i \cap B_i$. So we have that $[0,1] \subset \bigcup_{i=1}^{\infty} (A_i \cap B_i)$. Since $\mu([0,1]) = 1 > 0$ we must have that $\mu(A_j \cap B_j) > 0$ for some j. Thus $\mu(A_j) > 0$ and $\mu(B_j) > 0$ which gives that $\nu(B_j) = \infty$ since B_j is an uncountable set. So given any covering of D by rectangles in $\mathcal{M} \times \mathcal{N}$, we necessarily have that $\sum_{i=1}^{\infty} \mu \times \nu(A_i \times B_i) = \infty$. Therefore $\mu \times \nu(D) = \infty$, and in particular:

\[
\int \chi_D \, d(\mu \times \nu) = \mu \times \nu(D) = \infty
\]

\[\square\]

Problem 48. Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \wp(\mathbb{N})$, and $\mu = \nu =$ counting measure. Define

\[
f(m, n) = \begin{cases}
1 & m = n, \\
-1 & m = n + 1, \\
0 & \text{otherwise}.
\end{cases}
\]

Then $\int |f| \, d(\mu \times \nu) = \infty$, and $\int \int f \, d\mu \, d\nu$ and $\int \int f \, d\nu \, d\mu$ exist and are unequal.

Proof. First break down the domain of f into a disjoint union. Let $A = \{(m, m) | m \in \mathbb{N}\}$, $B = \{(m + 1, m) | m \in \mathbb{N}\}$, and $C = \mathbb{N} \times \mathbb{N} \setminus (A \cup B)$ then:

\[D(f) = A \cup B \cup C\]

where $f|_A \equiv 1$, $f|_B \equiv -1$, and $f|_C \equiv 0$. So:

\[
\int |f| \, d(\mu \times \nu) = \int_A |f| \, d(\mu \times \nu) + \int_B |f| \, d(\mu \times \nu) + \int_C |f| \, d(\mu \times \nu)
\]

\[= \mu \times \nu(A) + \mu \times \nu(B) + \mu \times \nu(C)
\]

\[= \infty + \infty + 0 = \infty.
\]
\[\int_{x} \int_{y} f(x,y) \, dx \, dy = \int_{E} \mu(dy) \int_{E} \nu(dx) = \int_{E} \nu(dx) \int_{E} \mu(dy). \]

Clearly these last two integrals are not equal.

\square

Problem 49. Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2.12 together with the following lemmas.

a. If \(E \in \mathcal{M} \times \mathcal{N} \) and \(\mu \times \nu(E) = 0 \), then \(\nu(E_x) = \mu(E_y) = 0 \) for a.e. \(x \) and \(y \).

b. If \(f \) is \(\mathcal{L} \)-measurable and \(f = 0 \) \(\lambda \)-a.e., then \(f_x \) and \(f_y \) are integrable for a.e. \(x \) and \(y \), and \(\int f_x \, \nu = \int f_y \, \mu = 0 \) for a.e. \(x \) and \(y \). (Here the completeness of \(\mu \) and \(\nu \) is needed.)

Proof. Theorem 2.39 - Let \((X, \mathcal{M}, \mu) \) and \((Y, \mathcal{N}, \nu) \) be complete, \(\sigma \)-finite measure spaces, and let \((X \times Y, \mathcal{L}, \lambda)\) be the completion of \((X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)\). If \(f \) is \(\mathcal{L} \)-measurable and either

(i) \(f \geq 0 \), or

(ii) \(f \in L^1(\lambda) \),

then \(f_x \) is \(\mathcal{N} \)-measurable for a.e. \(x \) and \(f_y \) is \(\mathcal{M} \)-measurable for a.e. \(y \), and in case (ii) \(f_x \) and \(f_y \) are also integrable for a.e. \(x \) and \(y \). Moreover \(x \mapsto \int f_x \, \nu \) and \(y \mapsto \int f_y \, \mu \) are measurable, and in case (ii) also integrable, and

\[\int f \, d\lambda = \int f(x,y) \, d\mu(x) \, d\nu(y) = \int f(x,y) \, d\nu(y) \, d\mu(x). \]

a. Let \(E \in \mathcal{M} \times \mathcal{N} \) with \(\mathcal{M} \times \mathcal{N}(E) = 0 \). Then

\[0 = \mu \times \nu(E) = \int \chi_{E} \, d(\mu \times \nu) = \int \chi_{E_x} \, d\nu = \int \chi_{E_y} \, d\mu, \]

which gives that \(\nu(E_x) = \mu(E_y) = 0 \).

b. Let \(f \) be \(\mathcal{L} \)-measurable and \(f = 0 \) \(\lambda \)-a.e. Let \(A = \{(x,y) | f(x,y) \neq 0 \} \). By the assumption on \(f \) we have that \(\lambda(A) = 0 \). Thus we can find a set \(E \in \mathcal{M} \otimes \mathcal{N} \) with \(A \subseteq E \) and \(\mu \times \nu(E) = 0 \). This means that \(\nu(E_x) = \mu(E_y) = 0 \). Since we have that \(A_x \subseteq E_x \) and \(A^y \subseteq E_y \), and the fact that \(\mu \) and \(\nu \) are complete
we get that, \(A_x \) and \(A^y \) are measurable with measure zero. Thus \(f_x \) and \(f^y \) are integrable. So using Fubini’s theorem:

\[
0 = \int f \, d(\mu \times \nu) = \int f_x \, d\nu = \int f^y \, d\mu.
\]

Now to prove Theorem 2.39: Let \(f \) be a \(\mathcal{L} \)-measurable function. Then by Proposition 2.12 there is a \(\mu \times \nu \)-measurable function \(g \) such that \(f = g \cdot \lambda \) a.e. If (i) \(f \geq 0 \), or (ii) \(f \in L^1(\lambda) \), then, by applying lemma (b) to \(f - g \) we have that \(f_x \) is \(\mathcal{N} \)-measurable and \(f^y \) is \(\mathcal{M} \)-measurable for a.e. \(x \) and \(y \), respectively. Then applying Fubini’s theorem we get that the maps \(x \mapsto \int g_x \, d\nu \) and \(y \mapsto \int g^y \, d\mu \) are measurable. Then by lemma (b) we have that \(\int (f_x - g_x) \, d\nu = 0 \), which gives that \(\int (g_x) \, d\nu = \int (f_x) \, d\nu \). Similarly we get that \(\int (g^y) \, d\mu = \int (f^y) \, d\mu \). In particular, if we are in case (ii), applying lemma (b) and Fubini’s theorem to \(f - g \) we have:

\[
\int f \, d\lambda = \iint f(x,y) \, d\mu(x) \, d\nu(y) = \iint f(x,y) \, d\nu(y) \, d\mu(x).
\]

\(\square \)

3. Signed Measures and Differentiation

3.1. Signed Measures.

Problem 1. Prove Proposition 3.1 - Let \(\nu \) be a signed measure on \((X, \mathcal{M}) \). If \(\{E_j\} \) is an increasing sequence in \(\mathcal{M} \), then \(\nu(\bigcup_{i=1}^{\infty} E_j) = \lim_{n \to \infty} \nu(E_j) \). If \(\{E_j\} \) is a decreasing sequence in \(\mathcal{M} \) and \(\nu(E_1) < \infty \), then \(\nu(\bigcap_{j=1}^{\infty} E_j) = \lim_{n \to \infty} \nu(E_j) \).

Proof. Let \(\{E_j\} \) be an increasing sequence in \(\mathcal{M} \). Let \(E_0 = \emptyset \), and define \(F_n = E_n \setminus E_{n-1} \). Then \(\{F_n\} \) is a sequence of disjoint sets with \(\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} E_n \). Applying the additivity of \(\nu \) we have:

\[
\nu\left(\bigcup_{j=1}^{\infty} E_j \right) = \nu\left(\bigcup_{j=1}^{\infty} F_j \right) = \sum_{j=1}^{\infty} \nu(F_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \nu(F_j) = \lim_{n \to \infty} \nu(E_n)
\]

as desired.

Let \(\{G_j\} \) be a decreasing sequence in \(\mathcal{M} \) with \(\nu(G_1) < \infty \). Define \(H_j = G_1 \setminus G_j \), then \(H_1 \subset H_2 \subset H_3 \subset \cdots \), and \(\nu(G_1) = \nu(H_j) + \nu(G_j) \), and \(\bigcup_{j=1}^{\infty} H_j = G_1 \setminus \bigcap_{j=1}^{\infty} G_j \). By the previous proof we get:

\[
\nu(G_1) = \nu\left(\bigcap_{j=1}^{\infty} G_j \right) + \lim_{j \to \infty} \nu(H_j)
\]

\[
= \nu\left(\bigcap_{j=1}^{\infty} G_j \right) + \lim_{j \to \infty} \nu(H_j)
\]

\[
= \nu\left(\bigcap_{j=1}^{\infty} G_j \right) + \lim_{j \to \infty} [\nu(G_1) - \nu(G_j)]
\]

\[
= \nu\left(\bigcap_{j=1}^{\infty} G_j \right) + \nu(G_1) - \lim_{j \to \infty} \nu(G_j).
\]

So subtracting \(\nu(G_1) \) (which is ok since \(\nu(G_1) < \infty \) from both sides and moving the limit to the otherside we get \(\nu(\bigcap_{j=1}^{\infty} G_j) = \lim_{j \to \infty} \nu(G_j) \), as desired. \(\square \)

Problem 2. If \(\nu \) is a signed measure, (a) \(E \) is \(\nu \)-null iff \(|\nu|(E) = 0 \). Also, (b) if \(\nu \) and \(\mu \) are signed measures, (i) \(\nu \perp \mu \) iff (ii) \(|\nu| \perp \mu \) iff (iii) \(\nu^+ \perp \mu \) and \(\nu^- \perp \mu \).

Proof.

a. \((\Rightarrow)\) Suppose that \(E \in \mathcal{M} \) is \(\nu \)-null. Then \(\nu(E) = 0 \). Let \(P, N \in \mathcal{M} \) be the sets given by the Jordan decomposition of \(\nu \). Then \(|\nu|(E) = \nu^+(E) + \nu^-(E) = \nu(E \cap P) - \nu(E \cap N) = 0 - 0 = 0 \).

\((\Leftarrow)\) Suppose that \(|\nu|(E) = 0 \). Then \(|\nu|(E) = \nu^+(E) - \nu^-(E) = 0 \), which forces \(\nu^+(E) = \nu^-(E) = 0 \) since \(\nu^+ \) and \(\nu^- \) are positive measures. Thus \(\nu(E) = \nu^+(E) - \nu^-(E) = 0 - 0 = 0 \). Therefore \(E \) is \(\nu \)-null.
Problem 11. Let $\nu \perp \mu$. Then there are sets $E, F \in \mathcal{M}$ such that $E \cap F = \emptyset$, $E \cup F = X$, $\nu(E) = 0$, and $\mu(F) = 0$. Since ν is a signed measure, by the Jordan Decomposition Theorem we can write $\nu = \nu^+ - \nu^-$ where $\nu^+ \perp \nu^-$ where $P, N \in \mathcal{M}$ are the sets satisfying the conditions that $P \cap N = \emptyset$, $P \cup N = X$, $\nu^+(N) = 0$, and $\nu^-(P) = 0$. Then $\nu^+(E) = \nu(E \cap P) = 0$ and $\nu^-(E) = \nu(E \cap N) = 0$. Therefore $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.

(iii) \Rightarrow (ii) Suppose that $\nu^+ \perp \mu$ and $\nu^- \perp \mu$. Let $E, F \in \mathcal{M}$ be the sets corresponding to $\nu^+ \perp \mu$ and let $G, H \in \mathcal{M}$ be the sets corresponding to $\nu^- \perp \mu$. Consider the sets $A := E \cap G$ and $B := F \cup H$. It can be checked by set theory that $A \cup B = X$ and $A \cap B = \emptyset$. Since $A \subseteq E$ and $A \subseteq G$ and $A \cup B = X$, we get that $\nu^+(A) = \nu^- (A) = 0$ and thus $|\nu|(A) = \nu^+(A) + \nu^- (A) = 0 + 0 = 0$. Therefore $|\nu| \perp \mu$.

(ii) \Rightarrow (i) Suppose that $|\nu| \perp \mu$. Then we have the sets $E, F \in \mathcal{M}$ with $E \cap F = \emptyset$, $E \cup F = X$, $|\nu|(E) = 0$, and $\mu(F) = 0$. From part (a) we have that $|\nu|(E) = 0 \implies \nu(E) = 0$. Thus $\nu \perp \mu$.

\[\square \]

3.2. The Lebesgue-Radon-Nikodym Theorem.

Problem 8. (i) $\nu \ll \mu$ iff (ii) $|\nu| \ll \mu$ iff (iii) $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.

Proof. Let our measure space be (X, \mathcal{M}).

(i) \Rightarrow (ii) Suppose that $\nu \ll \mu$. From Problem 2a, we have that $|\nu|(E) = 0$, $\forall E \in \mathcal{M}$ such that $\nu(E) = 0$ which are all the sets for which $\mu(E) = 0$. Thus $|\nu| \ll \mu$.

(ii) \Rightarrow (iii) Suppose $|\nu| \ll \mu$. Since $|\nu| = \nu^+ + \nu^-$, the sum of two positive measures, for any $E \in \mathcal{M}$ with $\mu(E) = 0$ we must have that $\nu^+(E) = \nu^-(E) = 0$ since $|\nu|(E) = 0$. Thus we have $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.

(iii) \Rightarrow (i) Suppose $\nu^+ \ll \mu$ and $\nu^- \ll \mu$. Then we have that for any $E \in \mathcal{M}$ with $\mu(E) = 0$, $\nu(E) = \nu^+(E) - \nu^-(E) = 0 - 0 = 0$. Therefore $\nu \ll \mu$.

\[\square \]

Problem 10. Theorem 3.5 may fail when ν is not finite. (Consider $d\nu(x) = \frac{dx}{x}$ and $d\mu(x) = dx$ on $(0,1)$, or ν = counting measure and μ = a positive measure on (X, \mathcal{M}). Then $\nu \ll \mu$ iff for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| < \varepsilon$ whenever $\mu(E) < \delta$.

Proof. Let $\nu(E) = \int_E \frac{1}{x} \, dx$ and $\mu(E) = \int_E \, dx$.

\[\square \]

Problem 11. Let μ be a positive measure. A collection of functions $\{f_\alpha\}_{\alpha \in A} \subset L^1(\mu)$ is called uniformly integrable if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\int_E f_\alpha| < \varepsilon$ for all $\alpha \in A$ whenever $\mu(E) < \delta$.

a. Any finite subset of $L^1(\mu)$ is uniformly integrable.

b. If $\{f_\alpha\}$ is a sequence in $L^1(\mu)$ that converges in the L^1 metric to $f \in L^1(\mu)$, then $\{f_\alpha\}$ is uniformly integrable.

Proof.