1. Define $f : \mathbb{R} \to \mathbb{R}$ by
 \[\forall x \in \mathbb{R} \ (f(x) = \sin x) \]
 where x is measured in radians.
 Give
 i) $\text{dom } f$
 ii) $\text{im } f$
 iii) $\text{range } f$
 iv) $f([0, 1])$
 v) $f^{-1}([0])$
 vi) $f^{-1}([0, 1])$
 vii) $f^{-1}(f([0, 1]))$

2. Let $f : A \to B$. Prove that
 i) f is injective iff $f(a) = f(a') \implies a = a'$
 ii) f is surjective iff $\text{im } f = B$

3. Let $f : A \to B$. Suppose $\exists g : B \to A$ such that both
 \[g \circ f = \iota_A \]
 and
 \[f \circ g = \iota_B \]
 Prove that f is bijective and $f^{-1} = g$.

4. (Extra credit–you need not hand in) Let $f : A \to B$ and define $f^{-1} : \mathcal{P}(B) \to \mathcal{P}(A)$ as usual. Then this f^{-1} preserves inclusions, unions, intersections and set differences. Of these four properties, the function $f : \mathcal{P}(A) \to \mathcal{P}(B)$ preserves inclusions and unions only.