1. The velocity of a body moving along the x-axis is $v = 2t^2 - 7t + 6$. When is the body moving forward?

We need to determine when $v > 0$. This will tell us when the body is moving forward. Note, $v = 2t^2 - 7t + 6$ factors as $(2t - 3)(t - 2)$. Hence, the critical values of s are $t = \frac{3}{2}$ and $t = 2$. If we test v on $[0, \frac{3}{2})$ we see $v > 0$. Testing v on $(\frac{3}{2}, 2)$ we see that $v < 0$. Testing v on $(2, \infty)$ we see that $v > 0$. Hence, the body is moving forward when $t < \frac{3}{2}$ and when $t > 2$.

2. Suppose for functions f and g, we know $f(1) = 5, g(1) = -1.5, f'(1) = 11, g'(1) = -8, f(2) = 3, g(2) = -1, f'(2) = .3, g'(2) = -5$. Find the derivative of

(a) $f(x + g(x))$ at $x = 2$

(b) $g(f(x) + 2g(x))$ at $x = 1$.

(a) If $h(x) = f(x + g(x))$, then $h'(x) = f'(x + g(x))(1 + g'(x))$. Hence,

$$h'(2) = f'(2 + g(2))(1 + g'(2)) = f'(1)(1 - 5) = 11(-4) = -44.$$

(b) If $h(x) = g(f(x) + 2g(x))$, then $h'(x) = g'(f(x) + 2g(x))(f'(x) + 2g'(x))$. Hence,

$$h'(1) = g'(f(1) + 2g(1))(f'(1) + 2g'(1)) = g'(5 + 2(-1.5))(11 + 2(-8)) = -5(-5) = 25.$$

3. Find the tangent line to the parametric curve defined by $x = \tan(2t), y = \sec^2(t)$ when $t = -\frac{\pi}{6}$.

First we need to find $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$. We have $\frac{dy}{dt} = 2 \sec t \tan t \sec t = 2 \sec^2 t$ and $\frac{dx}{dt} = 2 \sec^2(2t)$. So $\frac{dy}{dx} = \frac{\sec^2 t \tan t}{2 \sec^2(2t)}$. The slope of the tangent line at $t = -\frac{\pi}{6}$ is $\frac{dy}{dx}(-\frac{\pi}{6}) = \frac{\frac{4}{3} - \frac{1}{\sqrt{3}}}{4} = -\frac{1}{3\sqrt{3}}$.

Therefore, the tangent line is $y - \frac{4}{3} = -\frac{1}{3\sqrt{3}}(x + \sqrt{3})$ or $y = -\frac{1}{3\sqrt{3}}x + 1$.

\[1\]
4. If \(x^2 + y^3 = 5 \), find \(\frac{d^2x}{dy^2} \) at the point \((-2, 1)\).

First we need to find \(\frac{dx}{dy} \). Note, this is taking the derivative of everything with respect to \(y \).
\[
2x \frac{dx}{dy} + 3y^2 = 0. \text{ Hence, } \frac{dx}{dy} = -\frac{3y^2}{2x}.
\]

Now we take the derivative of \(\frac{dx}{dy} \) with respect to \(y \) again to get
\[
\frac{d^2x}{dy^2} = \frac{-12xy + 6y^2 \frac{dx}{dy}}{4x^2} = -\frac{12xy}{4x^2} - \frac{9y^4}{x}. \]

Now plug in the point \((-2, 1)\) to get
\[
\frac{d^2x}{dy^2}(-2, 1) = \frac{57}{32}.
\]

5. Two planes are flying at 35,000 feet along straight line courses that intersect at right angles. Plane A is approaching the intersection at a speed of 300 miles per hour and plane B is approaching the intersection at a speed of 400 miles per hour. At what rate is the distance between the planes changing when A is 50 miles from the intersection point and B is 120 miles from the intersection point?

Draw a right triangle ABC, where the right angle is at vertex C. Label side AC as \(x \), BC as \(y \) and AB as \(z \).

Note we have the relation \(x^2 + y^2 = z^2 \).

As the planes fly toward the intersection point C, all of the sides of the triangle are decreasing.

Take the derivative of the expression above with respect to \(t \) to get
\[
2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2z \frac{dz}{dt}.
\]

We know that \(\frac{dx}{dt} = -300 \text{ mph, } \frac{dy}{dt} = -400 \text{ mph, } x = 50 \text{ and } y = 120 \). 50, 120, 130 is a pythagorean triple so \(z = 130 \).

Plugging in all the known quantities we see that
\[
\frac{dz}{dt} = \frac{-15,000 - 48,000}{130} = -485 \text{ mph.}
\]

Hence, the distance between the planes is decreasing at a rate of 485 mph.

6. The edge of a cube is measured as 2 inches with an error of 1%. The cube’s volume is to be computed from this measurement. Estimate the percentage error in the volume computation.

The volume of a cube is given by \(V = s^3 \). The percentage error is given by \(\frac{dV}{V} \cdot 100\% \). \(dV = 3s^2 ds \) and \(\frac{dV}{V} = 3 \frac{ds}{s} \). But \(\frac{ds}{s} = .01 \). Hence, \(\frac{dV}{V} \cdot 100\% = 3\% \)

7. Find the absolute extrema of \(f(x) = 1 - 2\sqrt[3]{x^2} \) on the interval \([-8, 1]\).

The extrema can occur at the endpoints or at the critical values. The critical values are found by taking the derivative and setting it to 0 or finding where it is undefined.

\(f'(x) = \frac{-4x}{3\sqrt[3]{x^2}} \). \(f' \) is never 0 but 0 is a critical value as \(f'(0) \) is undefined. Now compare \(f(-8) = -7, f(0) = 1 \) and \(f(1) = -1 \). We see that the maximum is 1 and the minimum is -7.
8. Use Rolle’s Theorem to show that \(f(x) = \sqrt{x(4-x)} \) has a horizontal tangent line on the interval \([0, 4]\). Then find the \(x \) value where \(f \) has a horizontal tangent line.

Note that the domain of \(f \) is \([0, 4]\) and \(f \) is continuous on the whole domain and differentiable on \((0, 4)\), as \(f'(x) = \frac{2-x}{\sqrt{x(4-x)}} \), which is not defined at 0 or 4. \(f(0) = f(4) = 0 \). As we have all of the hypotheses of Rolle’s Theorem, we can conclude that \(f'(c) = 0 \) for some \(c \in (0, 4) \). Observing the derivative above, we see that \(c = 2 \).

9. Find the intervals where \(f(x) = x^3 - 2x^2 + 4 \) is increasing.

\(f'(x) = 3x^2 - 4x = x(3x - 4) \). Hence the critical values of \(f \) are \(x = 0 \) and \(x = \frac{4}{3} \). We break the number line into the following three intervals to test where the derivative is positive or negative.

\[
\begin{array}{ccc}
(-\infty, 0) & (0, \frac{4}{3}) & (\frac{4}{3}, \infty) \\
\begin{array}{c}
f'(-1) = 7 \\
f'(0) = -1 \\
f'(2) = 4 \\
f'(3) = 176
\end{array}
\end{array}
\]

Looking at the table we see that \(f \) is increasing on the intervals \((-\infty, 0] \) and \([\frac{4}{3}, \infty) \).

10. Find the \(x \) values where \(f(x) = (x+1)^3(x-2)^2 \) has critical points. Using the first derivative test, identify the critical values as either having a local maximum, a local minimum or neither.

\(f'(x) = 2(x+1)^3(x-2)+3(x+1)^2(x-2)^2 = (x+1)^2(x-2)[2(x+1)+3(x-2)] = (x+1)^2(x-2)(5x-4) \).

We see the critical values of \(f \) are \(x = -1, x = \frac{4}{5}, x = 2 \). We break the number line into the following four intervals to test where the derivative is positive or negative.

\[
\begin{array}{cccc}
(-\infty, -1) & (-1, \frac{4}{5}) & (\frac{4}{5}, 2) & (2, \infty) \\
\begin{array}{c}
f'(-2) = 56 \\
f'(0) = 8 \\
f'(1) = -4 \\
f'(3) = 176
\end{array}
\end{array}
\]

As there is no sign change at \(x = -1 \), \(f \) has neither a local maximum nor a local minimum at \(x = -1 \). As the sign changes from positive to negative at \(x = \frac{4}{5} \), \(f \) has a local maximum at \(x = \frac{4}{5} \). As the sign changes from negative to positive at \(x = 2 \), \(f \) has a local minimum at \(x = 2 \).

11. Find the intervals where \(f(x) = 6x^2 - x^4 \) is concave down.

Concavity is determined by the second derivative. \(f'(x) = 12x - 4x^3 \) and \(f''(x) = 12 - 12x^2 \). The \(x \) values where the concavity may change are \(x = -1, 1 \). We break the number line into the following three intervals to test where the second derivative is positive or negative.

\[
\begin{array}{ccc}
(-\infty, -1) & (-1, 1) & (1, \infty) \\
\begin{array}{c}
f''(-2) = -36 \\
f''(0) = 12 \\
f''(2) = -36
\end{array}
\end{array}
\]

Hence, \(f \) is concave down on the intervals \((-\infty, -1] \) and \([1, \infty) \).