Plane sections of a surface

It is sometimes useful to analyze surfaces by means of *plane sections*, which are given by intersecting the surface with a plane which contains a normal line to a point \(p \) on the surface. The drawing below suggests that such an intersection is a curve, and in fact this is always true, at least near the point where the surface and line meet each other.

![Diagram of plane section](http://www.learner.org/courses/mathilluminated/images/units/8/1832.png)

(Source: http://www.learner.org/courses/mathilluminated/images/units/8/1832.png)

We can use the results of Section III.6 to prove the intersection is locally a curve because the surface and the plane intersect transversely. The latter is true because the plane contains the normal line to the surface at the point \(p \), which means that the normal to the plane is perpendicular to the normal to the surface at \(p \).