Comments on the Lifting Criterion

A basic step in the proof of the Lifting Criterion in Section 79 of Munkres is the following observation:

Suppose that \(f : (Y, y_0) \to (B, b_0) \) is a continuous map of arcwise connected, locally arcwise connected spaces, and let \(p : (E, e_0) \to (B, b_0) \) be a base point preserving covering space projection such that \(E \) is also connected and the image of the associated map of fundamental groups \(f_* \) is contained in the image of \(p_* \). Let \(\alpha \) and \(\beta \) be continuous curves joining \(y_0 \) to \(y \in Y \), and let \(\tilde{f}\alpha \) and \(\tilde{f}\beta \) denote the unique liftings of \(f \circ \alpha \) and \(f \circ \beta \) to continuous curves in \(E \) whose values at 0 are \(e_0 \). Then \(\tilde{f}\alpha(1) = \tilde{f}\beta(1) \).

Proof of assertion. Let \(\varphi = \alpha + (-\beta) \), which is a closed curve based at \(y_0 \). Then \(f \circ \varphi \) is a closed curve in \(B \), and the fundamental group condition plus the Covering Homotopy Property show that the unique lifting \(\gamma = \tilde{\varphi} \) of \(\varphi \) to a curve in \(E \) with initial condition \(e_0 \) is also a closed curve. It follows immediately that the curve \(\gamma_1(t) = \gamma(t) \) (for \(t \in [0,1] \)) is a lifting of \(f \circ \alpha \) to \(E \) with initial condition \(e_0 \) and \(\gamma_2(t) = \gamma(1 - \frac{1}{2}t) \) (for \(t \in [0,1] \)) is a lifting of \(f \circ \beta \) to \(E \) with initial condition \(e_0 \). Therefore \(\gamma_1 = \tilde{f}\alpha \) and \(\gamma_2 = \tilde{f}\beta \). By these formulas, the values of these curves at \(t = 1 \) are given by \(\gamma_1(1) = \gamma(\frac{1}{2}) \) and \(\gamma_2(1) = \gamma(\frac{1}{2}) \) respectively, and the conclusion of the assertion follows directly from these equations.