APPENDIX B

THE JOIN IN AFFINE GEOMETRY

In Section II.5 we defined a notion of join for geometrical incidence spaces; specifically, if P and Q are geometrical subspaces of an incidence space S, then the join $P \star Q$ is the unique smallest geometrical subspace which contains them both. From an intuitive viewpoint, the name “join” is meant to suggest that $P \star Q$ consists of all points on lines of the form xy, where $x \in P$ and $y \in Q$. If S is a projective n-space over some appropriate scalars \mathbb{F}, this is shown in Exercise 16 for Section III.4, and the purpose of this Appendix is to prove a similar result for an affine n-space over some \mathbb{F}.

Formally, we begin with a generalization of the idea described above.

Definition. Let (S, Π, d) be an abstract geometrical incidence n-space, and let $X \subset S$. Define $J(X)$ to be the set

$$X \cup \{ y \in S \mid y \in uv \text{ for some } u, v \in X \}.$$

Thus $J(X)$ is X together with all points on lines joining two points of X. Note that the construction of $J(X)$ from X can be iterated to yield a chain of subsets $X \subset J(X) \subset J(J(X)) \cdots$.

The preceding discussion and definition lead naturally to the following:

Question. If S is a geometrical incidence n-space and P and Q are geometrical subspaces of S, what is the relationship between $P \star Q$ and $J(P \cup Q)$? In particular, are they equal, at least if S satisfies some standard additional conditions?

The exercise from Section III.4 shows that the two sets are equal if S is a standard projective n-space. In general, the next result implies that the two subsets need not be equal, but one is always contained in the other.

Theorem B.1. In the setting above, we have $J(P \cup Q) \subset P \star Q$. However, for each $n \geq 2$ there is an example of a regular geometrical incidence spaces such that, for some choices of P and Q, the set $J(P \cup Q)$ is strictly contained in $P \star Q$.

Proof. The inclusion relationship follows from $\textbf{G}(-2)$ and the fact that $P \star Q$ is a geometrical subspace of S. On the other hand, if we take the affine incidence space structure associated to \mathbb{Z}_2^n for $n \geq 2$, then for every subset $X \subset \mathbb{Z}_2^n$ we automatically have $J(X) = X$ because every line consists of exactly two points. Thus if W and U are vector subspaces of \mathbb{Z}_2^n such that neither contains the other, then $J(W \cup U)$ is not a vector subspace. Since $0 \in W \cap U$, we know that $W \star U$ is the vector subspace $W + U$ by Theorem II.36, and it follows in this case that $J(W \cup U)$ is strictly contained in $W \star U$.

Note that the examples constructed in the proof are in fact affine incidence spaces. The main objective of this appendix is to prove that $J(P \cup Q) = P \star Q$ if V is a vector space of dimension ≥ 2 over a field \mathbb{F} which is not (isomorphic to) \mathbb{Z}_2.

191
Theorem B.2. Let V be a vector space of dimension ≥ 2 over a field \mathbb{F} which is not (isomorphic to) \mathbb{Z}_2, and suppose that $P = a + U$ and $Q = b + W$ are geometrical subspaces of V. Then the following hold:

(i) The join $P \ast Q$ is the affine span of $P \cup Q$.
(ii) $P \ast Q = J(P \cup Q)$.

Proof. **FIRST STATEMENT.** If R is the affine span of P and Q, then R is an affine subspace containing P and Q by Theorem II.19, Theorem II.16 and Exercise 1 for Section II.2 (this is where we use the assumption that \mathbb{F} is not isomorphic to \mathbb{Z}_2). Therefore it follows that R also contains $P \ast Q$. On the other hand, if R' is a geometrical subspace containing P and Q, then by Theorem II.18 it contains all affine combinations of points in $P \cup Q$, and hence R' must contain R. Combining these observations, we conclude that R must be equal to $P \ast Q$.

SECOND STATEMENT. By the previous theorem we know that $J(P \cup Q) \subset P \ast Q$, so it suffices to show that we also have the converse inclusion $P \ast Q \subset J(P \cup Q)$.

Let $x \in P \ast Q$, and let $\{d_0, \cdots, d_p\}$ and $\{c_0, \cdots, c_q\}$ be affine bases for P and Q respectively. Then by the conclusion of the first part of the theorem we may write

$$x = \sum_{i=0}^{p} r_i d_i + \sum_{j=0}^{p} s_j c_j$$

where $\sum r_i = \sum s_j = 1$. Let $t = \sum r_i$, so that $\sum s_j = 1 - t$. There are now two cases, depending upon whether either or neither of the numbers t and $1 - t$ is equal to zero. If $t = 0$ or $1 - t = 0$ (hence $t = 1$), then we have $x \in P \cup Q$. Suppose now that both t and $1 - t$ are nonzero. If we set

$$\alpha = \sum_{i=0}^{p} \frac{r_i}{t} d_i, \quad \beta = \sum_{j=0}^{q} \frac{s_j}{1 - t} c_j,$$

then $\alpha \in P$, $\beta \in Q$, and $x = t \alpha + (1 - t) \beta$; therefore it follows that $x \in J(P \cup Q)$. \blacksquare