Syllabus. Math 210B. Complex Analysis

- **Analytic functions as mappings. Möbius transformations**
- **Compactness and convergence in the space of analytic functions**
 - Review of the spaces of analytic functions from Math 210A
 - Spaces of meromorphic functions
 - Weierstrass Factorization Theorem
 - Factorization of the sine function
 - The gamma function
 - The Riemann zeta function. The Riemann Hypothesis
- **Runge’s Theorem**
 - Runge’s Theorem
 - Simple connectedness
 - Mittag-Leffler’s Theorem
- **Analytic Continuation and Riemann Surfaces**
 - Schwarz Reflection Principle
 - Analytic continuation along a path
 - Monodromy Theorem
 - The sheaf of germs of analytic functions on an open set
 - Analytic manifolds
 - Covering spaces
- **Harmonic functions**
 - Basic properties of harmonic functions
 - Harmonic functions on a disc
 - Subharmonic and superharmonic functions
 - The Dirichlet Problem
 - Green’s functions
- **Entire Functions**
 - Jensen’s Formula
- The genus and order of an entire function
- Hadamard Factorization Theorem

- **The Range of an analytic function**
 - Bloch’s Theorem
 - The Little Picard Theorem
 - Schottky’s Theorem
 - The Great Picard Theorem