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Abstract. We consider the surface quasi-geostrophic equation in two spatial dimensions,
with subcritical diffusion (i.e. with fractional diffusion of order 2α for α > 1

2
.) We

establish existence of solutions without assuming either decay at spatial infinity or spatial
periodicity. One obstacle is that for L∞ data, the constitutive law may not be applicable,
as Riesz transforms are unbounded. However, for L∞ initial data for which the constitutive
law does converge, we demonstrate that there exists a unique solution locally in time, and
that the constitutive law continues to hold at positive times. In the case that α ∈ ( 1

2
, 1]

and that the initial data has some smoothness (specifically, if the data is in C2), we
demonstrate a maximum principle and show that this unique solution is actually classical
and global in time. Then, a density argument allows us to show that mild solutions with
only L∞ data are also global in time, and also possess this maximum principle. Finally,
we introduce a related problem in which we replace the usual constitutive law for the
surface quasi-geostrophic equation with a generalization of Sertfati type, and prove the
same results for this relaxed model.
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1. Introduction

The two-dimensional dissipative surface quasi-geostrophic equations (SQG) can be writ-

ten, for ν > 0, α > 0, and Λ = (−∆)1/2, in strong form as,
∂tθ + u · ∇θ + νΛ2αθ = 0 in [0, T ]× R2,

u = −∇⊥Λ−1θ in [0, T ]× R2,

θ|t=0 = θ0 in R2.

(SQG)

Without dissipation, this system was introduced by Constantin, Majda, and Tabak to model
atmospheric fluid flows and as a two-dimensional analogy for the three-dimensional Euler
equations [8]. In the non-dissipative case, the existence of a smooth global solution (or
singularity formation) remains an open question in general. We consider the question of
local and global existence of solutions to the dissipative system (SQG), in the case that
the data is non-decaying. (We mention that authors differ on the choice of sign in the
constitutive law, using ±∇⊥Λθ, but our choice agrees with that of [8].)

The dissipative SQG system can be subcritical, critical, or supercritical depending on the
value of α.We consider the subcritical case, in which α > 1

2 . Other results for the subcritical
case are [9], [19], [20], [28], in which various local and global existence theorems are proved
on the torus or for decaying solutions in R2. Without attempting to provide an exhaustive
list of references, we mention that local and global existence results have also been proved
in the critical (α = 1

2) case [1], [13], and in the supercritical case (0 < α < 1
2) [6], [7], [11].

None of these works focused on the question considered here, which is existence theory in
non-decaying function spaces such as L∞.

We can write the constitutive law, (SQG)2, as (see Section 2.3 for more details)

u(t, x) = p. v.K ∗ θ := lim
ε→0
R→∞

∫
ε<|x−y|<R

K(x− y)θ(t, y) dy, (1.1)

where

K(x) := − 1

2π

x⊥

|x|3
= ∇⊥ψ(x), ψ(x) := − 1

2π|x|
. (1.2)

(For ease of notation, we will often abbreviate the principle value integral in (1.1), writing
K ∗ θ, only writing out the principal value integral when it is necessary to consider it
carefully.) We will be studying solutions θ ∈ L∞(R2), whereas SQG is more commonly
studied in L2(R2) or similar function spaces. A space such as L2(R2) has the advantage
that u is then clearly defined; that is, the Riesz transforms in (1.1) are well-defined for
θ ∈ L2(R2), and return u ∈ (L2(R2))2. A fundamental difficulty to overcome in our setting
is that Riesz transforms are unbounded on L∞, as is well-known.

The closest works in the literature to the present are the papers [15], [16]. In these
works, Lazar studied dissipative SQG in the critical case α = 1/2, proving existence of local
and global weak solutions. The Lazar solutions start from data in the space L∞(R2) ∩
Λs(Ḣs

ul(R2)), i.e., the data is in L∞ but is also the sth derivative of a function with s
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derivatives in the uniformly local L2 space. This additional assumption on the data is made
to induce oscillations, which allow the Riesz transforms to converge.

We take two alternative approaches to make sense of the constitutive law for non-decaying
solutions. First, while convolution with K does not converge for many elements of L∞, we
proceed for those elements of L∞ for which the convolution does make sense. That is, in
our first approach, we take initial data θ0 ∈ L∞(R2) for which convolution with K yields a
result that is also in L∞(R2). (We in fact need slightly more than this, in that we also ask
that the convolution converge uniformly, in a sense to be made precise in Section 2 below.)
We give several examples of such θ0 in Section 2. Our second approach will be to introduce
a relaxation of the constitutive law.

We define a new notion of mild solution for (SQG) which allows us to solve for θ and
u simultaneously, and in a sense, no longer requires us to reconstruct u from θ at every
instant. Our starting point in making this mild formulation is the work of Marchand [17]
and Marchand and Lemarié-Rieusset [18], who write a mild formulation of (SQG) with a
single integral equation,

θ(t, x) = (Gα(t) θ0)(x) −
∫ t

0
∇Gα(t− s) ·

(
θ (K ∗ θ)

)
(s, x) ds,

where Gα(t) is the fractional heat semigroup defined in (2.5). We replace K ∗ θ with u and
couple this equation to a second integral relation for u, as in the next definition.

Definition 1.1. Let T ∈ (0,∞) and let (θ0, u0) ∈ (L∞(R2))3. A pair

(θ, u) ∈ L∞([0, T ]× R2
)
×
(
L∞([0, T ]× R2)

)2
is called a mild solution to (SQG) on [0, T ] if for each t ∈ (0, T ] one has

θ(t, x) = (Gα(t) θ0)(x) −
∫ t

0
∇Gα(t− s) ·

(
θu
)
(s, x) ds,

u(t, x) = (Gα(t)u0)(x) −
∫ t

0
(K ∗ ∇Gα(t− s)) ·

(
θu
)
(s, x) ds.

(1.3)

Through Definition 1.1 we have circumvented the question of whether we can convolve
the kernel K with an L∞ function. Given bounded θ0 and u0, we will show that there exists
T > 0 and θ and u such that (1.3) holds. This definition does not enforce any relationship
between θ0 and u0, allowing us to utilize both of our approaches to this question without
changing the definition of a mild solution. As we have said, our first approach is to consider
θ0 for which there is a u0 such that u0 = K ∗ θ0, with an additional assumption of uniform
convergence. For the resulting solutions (θ, u), we can then show that u = K ∗ θ at positive
times, as one would desire. The following is this local existence theorem.

Theorem 1.2. Let θ0 ∈ L∞(R2), u0 ∈ (L∞(R2))2, and fix α > 1
2 . For some T > 0

there exists a unique mild solution (θ, u) ∈ (C((0, T ];L∞(R2))3 of (SQG) with θ|t=0 = θ0
and u|t=0 = u0. Moreover, if u0 = p. v.K ∗ θ0 with the principal value integral converging
uniformly in the sense of (2.8), the solution (θ, u) satisfies (SQG)2.

Proof. See Section 4. □

We also study solutions with higher regularity. For notational clarity, we introduce three
classical spaces. Let k ∈ N and denote by Ck the space of k times differentiable func-
tions. Let Ck

b (R2) denote the Banach space of k-times continuously differentiable bounded
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functions with norm
∥f∥Ck

b
:=

∑
β∈N2,|β|≤k

∥Dβf∥L∞ <∞.

For k = 0, C0
b (R2) denotes the space of bounded continuous functions. For 0 < γ < 1, we

denote the γ-Hölder continuous functions Cγ(R2) as the subspace of L∞(R2) bounded by
the norm

∥f∥Cγ := ∥f∥L∞ + sup
x ̸=y

|f(x)− f(y)|
|x− y|γ

.

We are able to show that if the initial data is in the Ck
b spaces for k ≥ 1, then the mild

solutions preserve this regularity.

Theorem 1.3. Let α > 1
2 and k ≥ 1. Select θ0 ∈ Ck

b (R2), u0 ∈ Ck
b (R2))2 satisfying

u0 = K ∗ θ0. Let (θ, u) be the mild solution given by Theorem 1.2 which exists up to time
T . For all t < T , we have Dβθ(t) ∈ L∞(R2) and Dβu(t) ∈ (L∞(R2))2 for any multi-index
β ∈ N2 such that |β| ≤ k.

Proof. See Section 5. □

Our main results, however, are the following two global existence theorems. The first of
these theorems states that if the initial data is at least twice continuously differentiable,
the solution can be extended for all time. We now restrict to α ∈

(
1
2 , 1
]
so that we can use

maximum principles.

Theorem 1.4. Let α ∈
(
1
2 , 1
]
be given. Suppose k ≥ 2 and (θ0, u0) ∈ (Ck

b (R2))3. If one
has u0 = p. v.K ∗ θ0, then for all T > 0, there exists a classical solution (i.e., pointwise
solution) to (SQG) on [0, T ] with (θ(t), u(t)) ∈ (C2

b (R2))3 for all t ∈ [0, T ]. Further, θ is
uniformly bounded by its initial data, i.e. ∥θ∥L∞

t,x
≤ ∥θ0∥L∞

x
.

Proof. See Section 6.2. □

Exploiting the Ck
b solutions of Theorem 1.4 and a density argument, we then obtain our

second main result, the extension of the solutions with L∞ data to an arbitrary time.

Theorem 1.5. Let α ∈
(
1
2 , 1
]
be given. Suppose that (θ0, u0) ∈ (L∞(R2))3. If one has

u0 = p. v.K ∗ θ0, then for arbitrary time T > 0, there exists a mild solution (θ, u) ∈
(L∞([0, T ]× R2))3 to (SQG) on [0, T ]. Further, θ is uniformly bounded by its initial data,
i.e. ∥θ∥L∞

t,x
≤ ∥θ0∥L∞

x
.

Proof. See Section 6.2. □

Finally, we describe our second approach to making sense of the constitutive law for non-
decaying solutions, which is to introduce a version of (SQG) in which the constitutive law
is relaxed; we call this a Serfati-type constitutive law. For the two-dimensional Euler equa-
tions, Serfati proved the existence and uniqueness of solutions with velocity and vorticity
in L∞(R2) [24] (see also [3] for further exposition on Serfati’s work). With vorticity in L∞,
the constitutive law (which, for the Euler equations, is the Biot-Savart law) cannot be used
to obtain the velocity from vorticity; in its place, Serfati used an integral identity relating
the velocity and vorticity for a solution to the Euler equations that applies in the case of
bounded vorticity. Three of the present authors and Erickson have used an analogue of the
Serfati identity for inviscid SQG [2] to prove local existence of solutions of SQG in uniformly
local Sobolev spaces and Hölder spaces. In addition to this analogue of the Serfati integral
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identity for SQG, the work [2] also uses a related relaxation of the constitutive law involving

the Littlewood-Paley operators ∆̇j (see Section 2 below for details on the Littlewood-Paley
blocks). In the present work, we use the Littlewood-Paley relaxation of the constitutive
law. In the dissipative case, the new system is

∂tθ + u · ∇θ + ν Λ2αθ = 0 in [0, T ]× R2,

∆̇ju = (∆̇jK) ∗ θ in [0, T ]× R2, ∀ j ∈ Z,
θ|t=0 = θ0 in R2,

∆̇ju0 = (∆̇jK) ∗ θ0 ∀ j ∈ Z,
div u0 = 0 in R2.

(SSQG)

If the initial data (θ0, u0) satisfies (SSQG)4, then a pair (θ, u) satisfying (1.3) is called a
mild solution to the Serfati-type surface quasi-geostrophic system (SSQG). Of course, this
relaxation allows additional data θ0 ∈ L∞(R2) to be treated. That is, if θ0 ∈ L∞(R2) is
such that there exists u0 ∈ (L∞(R2))2 for which (SSQG)2 holds, then we can prove the
same results as for (SQG). This is the content of the next theorem, which is treated only
briefly in the remaining text, as the proof follows immediately from the proofs of the above
theorems.

Theorem 1.6. Let θ0 ∈ L∞(R2) and u0 ∈ (L∞(R2))2 satisfy the initial data condition

∆̇ju0 = (∆̇jK) ∗ θ0 for all j ∈ Z. Then the conclusions of Theorem 1.2, Theorem 1.3,
Theorem 1.4, and Theorem 1.5 hold true for (SSQG).

Proof. See Section 6.2. □

The organization of the paper is as follows. In Section 2, we give various definitions and
estimates related to the fractional Laplacian Λ2α, the fractional heat kernel, and the kernel
K. In Section 3, we establish various a priori continuity and differentiability properties of
mild solutions of (SQG) and (SSQG). In Section 4, we prove the existence of a finite-in-
time mild solution with L∞ data; this is the proof of Theorem 1.2. In Section 5, we prove
that Ck-regularity of the initial data is propagated in time by the mild solution; this is
the proof of Theorem 1.3. In Section 6, we prove that given C2 initial data, the solution
can be shown to exist for all time and corresponds to a classical solution; this is the proof
of Theorem 1.4. After proving the existence of global-in-time solutions with regular data,
we conclude the section by extending solutions with L∞ initial data to be global in time,
proving Theorem 1.5. Finally, in Appendix A, we prove a technical property of the fractional
Laplacian.

2. L1(R2) estimates for various operators

2.1. Littlewood-Paley operators. We begin with an overview of the Littlewood-Paley
operators and some of their properties. There exist two functions χ, φ ∈ S(Rd) with supp
χ̂ ⊂ {ξ ∈ Rd : |ξ| ≤ 1} and supp φ̂ ⊂ {ξ ∈ Rd : 1

2 ≤ |ξ| ≤ 3
2}, such that, setting

φj(x) = 2jdφ(2jx) for all j ∈ Z,

χ̂+
∑
j≥0

φ̂j = χ̂+
∑
j≥0

φ̂(2−j ·) ≡ 1.
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For n ∈ Z, define χn ∈ S(Rd) in terms of its Fourier transform χ̂n, where χ̂n satisfies

χ̂n(ξ) = χ̂(ξ) +

n∑
j=0

φ̂j(ξ)

for all ξ ∈ Rd. For f ∈ S ′(Rd), define the operator Sn by

Snf = χn ∗ f.
Finally, for f ∈ S ′(Rd) and j ∈ Z, define the inhomogeneous Littlewood-Paley operators
∆j by

∆jf =

 0, j < −1
χ ∗ f, j = −1
φj ∗ f, j ≥ 0,

and, for all j ∈ Z, define the homogeneous Littlewood-Paley operators ∆̇j by

∆̇jf = φj ∗ f.

Note that ∆̇jf = ∆jf when j ≥ 0.

2.2. Kernels for the fractional heat equation. We first introduce the fractional Lapla-
cian, Λ2α, defined in S ′(R2) via its Fourier transform as follows:

F(Λ2αf)(ξ) = −|ξ|αFf(ξ). (2.1)

In most of this work, we will use the operator Λ2α with the above representation. In Section
6, however, we apply an alternative definition of the fractional Laplacian. Specifically, we
let Λ2α

I f(x) denote the singular integral operator defined formally by

Λ2α
I f(x) := cα lim

ε→0+

∫
|x−y|>ε

f(x)− f(y)

|x− y|2+2α
dy, (2.2)

where cα > 0 is a normalization constant,

cα =
4αΓ(1 + α)

π|Γ(−α)|
.

We define the domain Dom(Λ2α
I , L∞) to be the set of functions f ∈ L∞(R2) for which the

above limit exists and is finite for almost every x ∈ R2. As a consequence of Lemma A.1,
the definitions of Λ2α and Λ2α

I coincide on C2
b (R2).

We now recall that the fractional heat kernel gα(t, x) is the solution to

(∂t + νΛ2α)gα = 0 (2.3)

on R2 subject to the initial condition gα(0, x) = δ(x). It is easily seen that the Fourier
transform of gα(t, x) is given by

ĝα(t, ξ) =

∫
R2

gα(t, x)e
−iξ·x dx = e−ν|ξ|2αt. (2.4)

Often in what follows, we omit the spatial argument for notational convenience and write
gα(t) := gα(t, ·). We denote the fractional heat semigroup acting on f ∈ L∞(R2) by

Gα(t)f = gα(t) ∗ f. (2.5)
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While it is known that gα(t, x) cannot be written in terms of an elementary function, for
α ∈ [0, 1] and t > 0, gα(t, x) is a nonnegative and non-increasing radially-symmetric smooth
function which satisfies the dilation relation

gα(t, x) = (νt)−
1
α gα

(
1, x(νt)−

1
2α

)
. (2.6)

2.3. The constitutive law. For θ ∈ L∞(R2), K ∗ θ is not well-defined as a convolution.
Hence, we cannot obtain a constitutive law in the form u = K ∗θ. To evade this restriction,
we consider two modifications of the constitutive law, which we now describe.

For the first modification, we let Aε,R(0) denote the annulus centered at the origin with
inner radius ε and outer radius R.

Given θ ∈ L∞(R2), by (1.1) we mean, more precisely,

p. v.K ∗ θ(x) := lim
(ε,R)→(0,∞)

(1Aε,R(0)K) ∗ θ(x)

= lim
(ε,R)→(0,∞)

∫
ε<|x−y|<R

K(x− y)θ(y) dy
(2.7)

for any x ∈ R2.

Definition 2.1. We say that p. v.K ∗ θ(x) converges uniformly over annuli if

sup
(r,R)∈(0,∞)2

∥∥∥(1Ar,R(0)K) ∗ f
∥∥∥
L∞

<∞. (2.8)

To motivate the well-definedness of the above constitutive law, we provide a few classes
of initial data as examples.

Remark 2.2. Define the homogeneous Besov space Ḃs
p,q(R2) as in Definition 2.15 of [4].

One has Ḃ0
∞,1(R2) ⊂ L∞(R2) (see Proposition 2.39 of [4]). Moreover, as a consequence of

the proof of Theorem 1.3 of [22] applied to Ḃ0
∞,1(R2), one can show that ∥Riθ0∥Ḃ0

∞,1(R2) ≤
∥θ0∥Ḃ0

∞,1(R2) for θ0 ∈ Ḃ0
∞,1(R2). A simple application of Lemma 2.18 below to the Littlewood

Paley expansion of θ0 reveals that the convergence is uniform over annuli. Hence, defining
u0 = p. v.K ∗ θ0, the pair (θ0, u0) satisfies the constitutive law.

Remark 2.3. If f(x) ∈ C∞
c (R2) is any bump function, then the function

θ0(x) =
∞∑
j=1

∞∑
i=1

f(x1 − 2i, x2 − 2j)

has a bounded Riesz transform which converges uniformly over annuli. Hence, setting
u0 = p. v.K ∗ θ0, the pair (θ0, u0) satisfies the constitutive law. Any variation of this
function involving a sufficiently sparse sum of uniformly bounded compactly supported
functions also suffices.

Remark 2.4. For r > 0 a non-integer, let ψ ∈ Cr+1
0 (R2) (that is, the space of functions

with r+1 bounded derivatives vanishing at infinity) and set u0 = ∇⊥ψ and θ0 = Λψ. Then
(θ, u) will be a pair satisfying the constitutive law.

In Lemma 2.5, we show that K and gα commute, but only if we assume a kind of uniform
convergence over annuli of the principal value integral.
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Lemma 2.5. Let f ∈ L∞(R2) and suppose that p. v.K ∗ f exists, converges uniformly over
annuli (see Definition 2.1), and lies in L∞(R2). Then

gα(t) ∗ (p. v.K ∗ f)(x) = p. v.K ∗ (gα(t) ∗ f)(x). (2.9)

Proof. Fix x ∈ R2 and write limr,R for the limit in (2.7). Then,

gα(t)∗(p. v.K ∗ f)(x) =
∫
R2

[
gα(t, x− y) lim

r,R
((1Ar,R(0)K) ∗ f(y))

]
dy

=

∫
R2

lim
r,R

[
gα(t, x− y)((1Ar,R(0)K) ∗ f)(y)

]
dy

= lim
r,R

∫
R2

[
gα(t, x− y)((1Ar,R(0)K) ∗ f)(y)

]
dy

= lim
r,R

(gα(t) ∗ ((1Ar,R(0)K) ∗ f))(x)

= lim
r,R

((1Ar,R(0)K) ∗ (gα(t) ∗ f))(x)

= p. v.K ∗ (gα(t) ∗ f).

Above, we used (2.8) with gα(t) ∈ L1(R2) to take the limit outside of the integral via
the Dominated Convergence Theorem. We were able to commute the order of convolution
before taking the limit, using that gα(t) and 1r,R(0)K are in L1 while f ∈ L∞. □

In Theorem 1.6, we take a different approach to the constitutive law that avoids using
the principal value integral of K. We consider, instead, a constitutive law in the form
∆̇ju = (∆̇jK) ∗ θ, taking advantage of the following simple lemma:

Lemma 2.6. For all j ∈ Z, ∆̇jK ∈ S(R2).

Proof. Taking the Fourier transform,

F(∆̇jK)(ξ) = F(φj ∗K)(ξ) = φ̂j(ξ)K̂(ξ) = −iφ̂j(ξ)
ξ⊥

|ξ|
.

Because φ̂j is in C∞(R2) and supported in an annulus, F(∆̇jK) belongs to S(R2), and

hence so does ∆̇jK. □

2.4. Convolution bounds. We will use Lemma 2.9 below to bound the integrands ap-
pearing in our formulation of the mild solution to (SQG). The proof of Lemma 2.9 relies
on the following lemma from [26]:

Lemma 2.7 ([26]). Fix ε ∈ [0, 1) and an integer N ≥ 1, and assume f is a differentiable
function on Rd which satisfies

(1) |f(x)| ≤ C(1 + |x|)−d−N+ε,

(2) |Dβf(x)| ≤ C(1 + |x|)−d−N−1+ε for all |β| = 1,

(3)
∫
xβf(x) dx = 0 for all |β| < N .

Then for each i, 1 ≤ i ≤ d,∣∣∣∣p. v.∫
R2

Ki(x− y)f(y) dy

∣∣∣∣ ≤ C(1 + |x|)−d−N+ε+δ

for every δ satisfying 0 < δ < 1− ε. If, in addition, f ∈ S(R2) then the same bound applies
to K ∗ f .
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Proof. This follows from Theorem 3.2 of [26]. □

We will utilize estimates on the fractional heat kernel to bound the mild solution to
(SQG). In order to derive estimates on ∇Gα as in (1.3), we first examine the derivatives
of gα at t = 1.

Lemma 2.8. Let α > 0 then the kth-order derivatives of the fractional heat kernel are in
L1
x(R2) for all k ∈ N. Specifically,

∥∇kgα(1, x)∥L1
x
<∞ and ∥x · ∇2gα(1, x)∥L1

x
<∞.

Proof. Using the Bochner’s Relation (see Corollary on page 72 of [25]), we have

∂

∂xj
gdα(1, x) = − xj

2π
gd+2
α (1, x̃), (2.10)

where gdα(t, x) is the heat kernel in d dimensions and x̃ = (x1, x2, . . . , xd, 0, 0). We also take
note of the well-known estimate (see [5]),

gdα(1, x) ≲ min{1, |x|−d−2α}. (2.11)

It then follows,∣∣∣∇kgα(1, x)
∣∣∣ ≤ |x|k

2π
gd+2k
α (1, x̃) ≲ |x|k min{1, |x|−d−2k−2α} = min{|x|k, |x|−d−k−2α}, (2.12)

which is clearly integrable. By the same argument, the second estimate follows easily. □

We are now in a position to show that the L1
x-norms of spatial derivatives of gα decay in

time, and that convolution with K preserves this decay.

Lemma 2.9. For α > 0 and β a multi-index with k := |β| and j = 1, 2, we have{∥∥Dβgα(t)
∥∥
L1 ≤ C(k, ν, α)t−k/(2α) for all β,∥∥Kj ∗Dβgα(t)

∥∥
L1 ≤ C(k, ν, α)t−k/(2α) for all k odd.

Proof. We will use the dilation relation (2.6) to manipulate the norm of Dβgα(t) and apply
the chain rule (see also Lemma 6 of [23] for an alternate proof). We write∥∥∥Dβgα(t)

∥∥∥
L1
x

=

∫
R2

∣∣∣Dβgα(t, x)
∣∣∣ dx =

∫
R2

∣∣∣Dβ
(
t−1/αgα

(
1, xt−

1
2α

))∣∣∣ dx
=

∫
R2

∣∣∣t−( 1
α
+ k

2α)(Dβgα)(1, xt
− 1

2α )
∣∣∣ dx.

Finally, the substitution u = xt−
1
2α yields∥∥∥Dβgα(t)
∥∥∥
L1
x

= t−k/(2α)∥Dβgα(1)∥L1
x
.

Invoking Lemma 2.8, we have Dβgα(1) ∈ L1
x(R2). To prove the second bound in Lemma

2.9, we use the dilation relation (2.6) to write

Kj ∗Dβgα(t, x) = Kj ∗Dβ
(
t−1/αgα(1, xt

− 1
2α )
)

= t−(
1
α
+ k

2α) p. v.

∫
R2

Kj(z)(Dβgα(1))
(
t−

1
2α (x− z)

)
dz

= t−(
1
α
+ k

2α)(Kj ∗Dβgα(1))
(
xt−

1
2α

)
.

(2.13)
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To get the last equality, we used the scaling property K(z) = b2K(bz) for any b > 0 and

the integral substitution u = t−
1
2α z. Applying the substitution u = t−

1
2αx again then gives∥∥∥Kj ∗Dβgα(t)

∥∥∥
L1
x

= t−k/(2α)
∥∥∥Kj ∗Dβgα(1)

∥∥∥
L1
x

. (2.14)

By symmetry of gα and the fact that symmetry is preserved under the Fourier transform,
when k = |β| is odd, we see that Dβgα(1) satisfies the hypotheses of Lemma 2.7, including
the critical moment condition in (3) for N = 1, i.e.,∫

R2

Dβgα(1) dx = 0. (2.15)

The bound for Kj ∗Dβgα(t) follows. □

Remark 2.10. Notice that for Λgα(t, x), the above argument holds to produce the bound

∥Λgα(t, x)∥L1
x
≤ C(ν, α)t−

1
2α .

Remark 2.11. In fact, the estimate (2.9) holds for Kj ∗ Dβgα(t) for even k := |β| as a
result of Corollary 3.6.

When invoking the fractional heat equation property (2.3), it will also be necessary to
have estimates available for the fractional Laplacian applied to gα.

Lemma 2.12. For α > 0, there exists a constant C(ν, α) > 0 such that{
∥Λ2α∇gα(t)∥L1

x
≤ C(ν, α)t−(1+

1
2α),

∥K ∗ Λ2α∇gα(t)∥L1
x
≤ C(ν, α)t−(1+

1
2α).

Proof. First, we devise a dilation law for the tensor of kth-derivatives. Observe for k ∈ N,

∇kgα(t, x) = ∇k
[
t−1/αgα(1, xt

− 1
2α )
]
= t−1/α∇kgα(1, xt

− 1
2α )

= t−
2+k
2α (∇kgα)(1, xt

− 1
2α ).

(2.16)

We evaluate the norm of Λ2α∇gα(t) using the fractional heat property (2.3) and the dilation
relation (2.16) for k = 1. We write

Λ2α∇gα(t, x) = −1

ν

∂

∂t
∇gα(t, x) = −1

ν

∂

∂t

[
t−

3
2α (∇gα)(1, xt−

1
2α )
]

= −1

ν

[
− 3

2α
t−(

3
2α

+1)(∇gα)(1, xt−
1
2α )− 1

2α
t−(

3
2α

+ 1
2α

+1)x · (∇2gα)(1, xt
− 1

2α )

]
.

(2.17)

We use (2.17) to compute the L1
x-norm of Λ2α∇gα(t), giving∫

R2

∣∣Λ2α∇gα(t, x)
∣∣ dx

=
1

ν

∫
R2

∣∣∣∣∣−3t−(
3
2α

+1)

2α
∇gα(1, xt−

1
2α )− t−(

3
2α

+ 1
2α

+1)

2α
x · (∇2gα)(1, xt

− 1
2α )

∣∣∣∣∣ dx
≤ 3

2αν
t−1

∫
R2

|∇gα(t, x)| dx+
1

2αν
t−(

3
2α

+ 1
2α

+1)
∫
R2

∣∣∣x · (∇2gα)(1, xt
− 1

2α )
∣∣∣ dx.

(2.18)
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We apply the integral substitution u = xt−
1
2α to the second term of (2.18), which yields

1

2αν
t−(

3
2α

+ 1
2α

+1)
∫
R2

∣∣∣x · (∇2gα)(1, xt
− 1

2α )
∣∣∣ dx

=
1

2αν
t−(

1
2α

+1)
∫
R2

∣∣x · (∇2gα)(1, x)
∣∣ dx. (2.19)

The integral in (2.19) is bounded by Lemma 2.8. Using Lemma 2.9, we can further simplify
the first term of (2.17). Indeed,

3

2αν
t−1

∫
R2

|∇gα(t, x)| dx ≤ 3

2αν
Ct−(

1
2α

+1). (2.20)

One can then combine (2.19) and (2.20) to conclude that∫
R2

∣∣Λ2α∇gα(t, x)
∣∣ dx ≤ C(ν, α)t−(1+

1
2α).

We now prove the second inequality of Lemma 2.12. For j = 1, 2, we expand Kj ∗Λ2α∇gα(t)
using (2.6). We write

Kj ∗ Λ2α∇gα(t, x) = −1

ν
Kj ∗

[
− 3

2α
t−(

3
2α

+1)∇gα(1, xt−
1
2α )

− 1

2α
t−(

3
2α

+ 1
2α

+1)x · (∇2gα)(1, xt
− 1

2α )

]
.

Therefore,

∥Kj ∗ Λ2α∇gα(t, x)∥L1
x
≤ 3

2αν
t−(

3
2α

+1)
∥∥∥∥Kj ∗ ∇gα(1, xt−

1
2α )︸ ︷︷ ︸

=:[I]

∥∥∥∥
L1
x

+
1

2αν
t−(

3
2α

+ 1
2α

+1)
∥∥∥∥Kj ∗

(
x · (∇2gα)(1, xt

− 1
2α )
)

︸ ︷︷ ︸
=:[II]

∥∥∥∥
L1
x

.
(2.21)

For the first integral of (2.21), using K(x) = b2K(bx) for b > 0 and the integral substitution

u = zt−
1
2α , we have

[I] = p. v.

∫
R2

Kj(z)∇gα
(
1, (x− z)t−

1
2α

)
dz

= t−1/α p. v.

∫
R2

Kj(zt−1/(α))∇gα
(
1, (x− z)t−

1
2α

)
dz

= p. v.

∫
R2

Kj(z)∇gα
(
1, xt−

1
2α − z

)
dz

=
(
Kj ∗ ∇gα(1)

)
(xt−

1
2α )

Using the integral substitution u = xt−
1
2α , we arrive at

3

2αν
t−(

3
2α

+1) ∥[I]∥L1
x
=

3

2αν
t−(

3
2α

+1)
∥∥∥(Kj ∗ ∇gα(1)

)
(xt−

1
2α )
∥∥∥
L1
x

≤ 3

2αν
t−(

1
2α

+1) ∥K ∗ ∇gα(1, x)∥L1
x
.

(2.22)

By Lemma 2.9, ∥[I](x)∥L1
x
is bounded.



12 DAVID M. AMBROSE, RYAN ASCHOFF, ELAINE COZZI, AND JAMES P. KELLIHER

For [II], as in the proof of Lemma 2.9, we use the scaling property K(x) = b2K(bx) for

b = t−
1
2α and the integral substitution u = zt−

1
2α to write

[II] = p. v.

∫
R2

Kj(z)
[
(x− z) · (∇2gα)

(
1, (x− z)t−

1
2α

)]
dz

= t−
1
2α p. v.

∫
R2

Kj(t−
1
2α )
[
t−

1
2α · (∇2gα)

(
1, (x− z)t−

1
2α

)]
dz

= t
1
2α p. v.

∫
R2

Kj(z)
[
(xt−

1
2α − z) · (∇2gα)

(
1, (xt−

1
2α − z)

)]
dz

= t
1
2αKj ∗

(
x · ∇2gα(1)

)
(t−

1
2αx).

Observe that x · (∇2gα) is an odd function via a standard symmetric argument involving
the Fourier transform, and thus satisfies the conditions of Lemma 2.7. Hence,

∥[II]∥L1
x
= t

1
2α

∥∥∥Kj ∗
(
x · ∇2gα(1)

)
(t−

1
2αx)

∥∥∥
L1
x

= t
3
2α

∥∥Kj ∗
(
x · ∇2gα(1)

)
(x)
∥∥
L1
x
<∞.

(2.23)

In the final line above, we use the L1
x boundedness ofKj ∗

(
x · ∇2gα(1)

)
(x) from Lemma 2.7.

Thus, we can substitute the terms (2.23) and (2.22) into (2.21). We conclude

∥Kj ∗ Λ2α∇gα(t, x)∥L1
x
≤ C(α, ν)t−(1+

1
2α)
(
∥[I]∥L1

x
+ ∥[II]∥L1

x

)
<∞,

as desired. □

Having proven that the expression K ∗ ∇Gα is well-defined, we are now in a position to
clarify the interpretation of the mild formulation of a solution. Recalling (1.3), we defined
a mild solution as a pair of functions (θ, u) which satisfy the coupled equations:

θ(t, x) = Gα(t)θ0(x)−
∫ t

0
∇Gα(t− s) · (θu)(s, x) ds,

u(t, x) = Gα(t)u0(x)−
∫ t

0
(K ∗ ∇Gα(t− s)) · (θu)(s, x) ds.

(2.24)

Definition 2.13. We interpret the integrand in (2.24)2 as follows. For any t > 0 and vector
function p : R2 → R2, define

(K ∗ ∇Gα(t)) · p := (K ∗ ∇gα(t)) ∗· p,
where K ∗ ∇gα(t) is the 2-tensor, or 2× 2 matrix,[

K1 ∗ ∂x1gα(t) K2 ∗ ∂x1gα(t)
K1 ∗ ∂x2gα(t) K2 ∗ ∂x2gα(t)

]
, (2.25)

and the ∗· product is given by

(K ∗ ∇gα(t)) ∗· p(s) =
[
K1 ∗ ∂x1gα(t) ∗ p1 +K2 ∗ ∂x1gα(t) ∗ p2
K1 ∗ ∂x2gα(t) ∗ p1 +K2 ∗ ∂x2gα(t) ∗ p2

]
.

Each component of the matrix in (2.25), by Lemma 2.9, lies in L1(R2). For any φ ∈
(L∞(R2))2, we then define (K ∗ ∇gα(t)) ∗·φ(x) as the convolution of an L1 matrix-field
with an L∞-vector field, resulting in an L∞-vector field, whose ith component, i = 1, 2, is
given by

∑
j=1,2(K

j ∗ ∂igα(t)) ∗ φj .
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It will be necessary to compute the time derivative of K ∗ ∇Gα(t) to prove properties
about the time-regularity of solutions to (SQG), as we do in Lemma 2.14.

Lemma 2.14. Let α > 0. K and ∂t commute, in the sense that, for all t > 0,

∂

∂t
(K ∗ ∇gα(t)) = −νK ∗ Λ2α∇gα(t) ∈ L1(R2).

First, we prove a lemma, which we will use in the proof of Lemma 2.14.

Lemma 2.15. Let f,∇f ∈ C∞(R2) ∩ L1(R2) ∩ L∞(R2). Then, with ψ as in (1.2),

p. v.K ∗ f = ψ ∗ ∇⊥f,

F (p. v.K ∗ f) = K̂f̂ .
(2.26)

Proof. First observe that ψ is locally integrable. By the assumption on f , we have ψ ∗ ∂jf
exists, j = 1, 2, because

ψ ∗ ∂jf = (1B1(0)ψ) ∗ ∂jf + (1B1(0)Cψ) ∗ ∂jf, (2.27)

and the first term is an L1 function convolved with an L∞ function, while the second part
is an L∞ function convolved with an L1 function. Hence,

ψ ∗ ∂jf(x) = lim
ε→0

Iε(x), Iε(x) :=

∫
Bε(x)C

ψ(x− y)∂jf(y) dy.

Integrating by parts, using that ∂yjψ(x−y) = −∂jψ(x−y), and considering the orientation
of the boundary,

Iε(x) =

∫
Bε(x)C

∂jψ(x− y)f(y) dy −
∫
∂Bε(x)

f(y)ψ(x− y)niy ds(y) =: I1(x) + I2(x).

On the boundary, ψ(x− y) = −(1/2π)ε−1, so

I2(x) =
1

2πε

∫
∂Bε(x)

((f(y)− f(x))niy ds(y) +
1

2πε
f(x)

∫
∂Bε(x)

niy ds(y).

The second term integrates to zero, so

|I2(x)| ≤
1

2πε
2πε sup

y∈∂Bε(x)
|f(x)− f(y)| → 0 as ε→ 0,

because f is continuous. Hence, Iε → p. v. ∂jψ ∗ f as ε→ 0, giving (2.26)1.

From (2.26)1 with (2.27), K = (−∂2ψ, ∂1ψ) = ∇⊥ψ, and using the linearity of the Fourier
transform,

F (p. v.K ∗ f) = ψ̂∇̂⊥f = iξ⊥ψ̂f̂ = ∇̂⊥ψf̂ = K̂f̂ ,

giving (2.26)2. □

Remark 2.16. We can also write the first conclusion of Lemma 2.15 as p. v.Kj ∗ f =
(−1)jψ ∗ ∂3−jψ ∗ f .

Proof of Lemma 2.14. Write ⟨·, ·⟩ for the pairing between D′((0, T )×R2) and D((0, T )×
R2). Then 〈

∂

∂t
(K ∗ ∇gα), φ

〉
= −

〈
K ∗ ∇gα,

∂

∂t
φ

〉
.
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By Lemma 2.9, K ∗ ∇gα ∈ L1(R2). Also, gα,∇gα ∈ C∞(R2) ∩ L1(R2) ∩ L∞(R2), since the
Fourier transform of gα has spatial exponential decay (see (2.4)). Thus the pairing above
is an actual integral of continuous functions, and we have, using (2.3) and Lemma 2.15,〈
∂

∂t
(K ∗ ∇gα), φ

〉
= −

∫ T

0

∫
R2

(K ∗ ∇gα)(t, x)
∂

∂t
φ(t, x) dt dx

= −
∫ T

0

(
K ∗ ∇gα,

∂φ

∂t

)
dt = −

∫ T

0

(
F(K ∗ ∇gα),F

(
∂φ

∂t

))
dt

= −
∫ T

0

(
K̂∇̂gα,

∂

∂t
φ̂(t)

)
dt = −

∫
R2

∫ T

0
K̂(ξ)∇̂gα(t, ξ)

∂

∂t
φ̂(t, ξ) dt dξ

=

∫
R2

∫ T

0
K̂(ξ)

∂

∂t
∇̂gα(t, ξ)φ̂(t, ξ) dt dξ

=

∫
R2

∫ T

0
K̂(ξ)F

(
∇ ∂

∂t
gα

)
(t, ξ)φ̂(t, ξ) dt dξ

= −ν
∫
R2

∫ T

0
K̂(ξ)F

(
Λ2α∇gα

)
(t, ξ)φ̂(t, ξ) dt dξ

= −ν
∫
R2

∫ T

0
F
(
K ∗ Λ2α∇gα

)
(t, ξ)φ̂(t, ξ) dt dξ

= −ν
∫ T

0

(
K ∗ Λ2α∇gα(t, ξ), φ(t, ξ)

)
dt =

〈
−νK ∗ Λ2α∇gα, φ

〉
.

Above, we applied the Fubini-Tonelli theorem to interchange the order of integration. □

When showing that the constitutive law holds for the mild formulation, we will use the
limited form of commutativity of p. v.K and ∇gα given in Lemma 2.5. We will also need
a form of associativity, as we will see in the proof of Proposition 3.9; for this, we rely on a
lemma similar to Lemma 2.7 to provide a dominating L1

x bound.

Lemma 2.17 ([26]). For any function f satisfying the conditions of Lemma 2.7 there exists
a nonnegative function F ∈ L1(Rd) such that for all x ∈ R2,∣∣∣(1Ar,R(0)K

j) ∗ f(x)
∣∣∣ ≤ F (x), 1 ≤ j ≤ d,

holds uniformly over 0 < r ≤ R <∞.

Proof. This follows from a straightforward adaptation of the proof of Theorem 3.2 of [26],
which gives the result (as an explicit decay bound) for Kj . □

Lemma 2.18. Let α > 0. There exists a constant C = C(ν, α) such that for all 0 < r <
R <∞, ∥∥∥(1Ar,R(0)K

j) ∗ ∂igα(t)
∥∥∥
L1

≤ Ct−1/(2α).

Proof. The proof is a simple adaptation of Lemma 2.9, using the equality 1Ar,R(0)(az) =

1Ar/a,R/a(0)(z) for any a > 0, and using the uniform bound in Lemma 2.17 in place of

Lemma 2.7. □
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3. Properties of mild solutions to (SQG) and (SSQG)

In this section, we establish some properties of mild solutions to (SQG) and (SSQG) as in
Definition 1.1.

Our formulation of a mild solution does not fully incorporate a form of the constitutive
law; however, in Proposition 3.8, we show that if the constitutive law holds initially, then it
will hold for all time. In Proposition 3.10, we motivate Definition 1.1 more fully by showing
that a sufficiently regular mild solution is, in fact, a classical solution. When proving the
pointwise regularity of the solution, we must establish that the divergence-free condition on
u holds for all time if div u0 = 0. To that end, we need the following technical result.

Lemma 3.1. Suppose that f ∈ (L1([0, T ] × R2))2 with div f(t) = 0 in S ′(R2) for all
t ∈ [0, T ]. Then for all ψ ∈ L∞([0, T ]× R2) and t ∈ [0, T ],

div

∫ t

0
(f ∗ ψ)(s, x) ds = 0 in S ′(R2).

Proof. For fixed t ∈ [0, T ], let I(x) :=
∫ t
0 (f ∗ψ)(s, x) ds. Note that I is in (L∞(R2))2. Then

for any φ ∈ S(R2) we can apply the Tonelli-Fubini theorem to give,

(div I, φ) = −(I,∇φ) = −
∫ t

0

∫
R2

(f ∗ ψ)(s, x) · ∇φ(x) dx ds

= −
∫ t

0

∫
R2

∫
R2

f(s, x− y)ψ(s, y) · ∇φ(x) dy dx ds

= −
∫ t

0

∫
R2

∫
R2

f(s, x− y) · ∇φ(x)ψ(s, y) dx dy ds

=

∫ t

0

∫
R2

∫
R2

(div f)(s, x− y)φ(x)ψ(s, y)dx dy ds

=

∫ t

0
(div f(s) ∗ φ̃, ψ̃(s)) ds = 0. □

Here, φ̃ and ψ̃ are reflected versions of ϕ and ψ, namely φ̃(x) = ϕ(−x) and ψ̃(y) = ψ(−y).

3.1. Continuity in space. We turn now, in Proposition 3.2, to showing that mild solutions
gain some Hölder regularity immediately after time zero.

Proposition 3.2. Suppose that (θ, u) is a mild solution to (SQG) on [0, T ]. If α > 1/2
then for all t ∈ (0, T ] and 0 < γ < 2α− 1, (θ(t, ·), u(t, ·)) ∈ (Cγ(R2))3.

We first establish a series of lemmas.

Lemma 3.3. Let f ∈ L1(R2) ∩ Cγ(R2) for some γ ∈ (0, 1) and g ∈ L∞(R2). Then

∥f ∗ g∥Cγ ≤ ∥f∥
C̃γ ∥g∥L∞ ,

where

∥f∥
C̃γ := sup

x ̸=y

∫
R2

|f(x− z)− f(y − z)|
|x− y|γ

dz.

Proof. Let x, y ∈ R2. Then

|f ∗ g(x)− f ∗ g(y)|
|x− y|γ

=

∣∣∣∣∫
R2

f(x− z)− f(y − z)

|x− y|γ
g(z) dz

∣∣∣∣ ≤ ∥f∥
C̃γ ∥g∥L∞ . □
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Applying Lemma 3.3 to obtain Proposition 3.2 comes down to showing that gα(t) and

p. v.K ∗ ∇gα(t) have a C̃γ seminorm that scales sufficiently well in time.

Lemma 3.4. Let F ∈ C̃γ, γ ∈ (0, 1), and for any r > 0 define Fr(·) = r2aF (ra·) for some

fixed a > 0. Then Fr ∈ C̃γ with

∥Fr∥C̃γ ≤ raγ ∥F∥
C̃γ .

Proof. For any distinct x, y ∈ R2,∫
R2

|Fr(x− z)− Fr(y − z)|
|x− y|γ

dz = r2a
∫
R2

|F (ra(x− z))− F (ra(y − z))|
|rax− ray|γ

raγ dz

= r2a+aγr−2a

∫
R2

|F (rax− w)− F (ray − w)|
|rax− ray|γ

dw ≤ raγ ∥F∥
C̃γ . □

Lemma 3.5. If f ∈ W 1,1(R2) then for all γ ∈ (0, 1), we have f ∈ C̃γ with ∥f∥
C̃γ ≤

2 ∥f∥W 1,1.

Proof. Assume first that |x− y| ≤ 1 with x ̸= y, and let h = (y − x)/ |x− y|. Then∫
R2

|f(x− z)− f(y − z)|
|x− y|γ

dz ≤
∫
R2

|f(x− z)− f(y − z)|
|x− y|

dz

=
1

|x− y|

∫
R2

∣∣∣∣∣
∫ |x−y|

0
∇f(x+ sh− z) · h ds

∣∣∣∣∣ dz
≤ 1

|x− y|

∫ |x−y|

0

∫
R2

|∇f(x+ sh− z)| dz ds

=
1

|x− y|

∫ |x−y|

0
∥∇f∥L1 ds = ∥∇f∥L1 ,

where we used the translation invariance of the L1 norm. If |x− y| > 1 then∫
R2

|f(x− z)− f(y − z)|
|x− y|γ

dz ≤
∫
R2

|f(x− z)− f(y − z)| dz ≤ 2 ∥f∥L1 ,

which completes the proof. □

Corollary 3.6. Each of gα(1), ∇gα(1), and p. v.K ∗ ∇gα(1) have finite C̃γ norm.

Proof. For gα(1), ∇gα(1), apply Lemma 3.5 to Lemma 2.8.
We know that p. v.K ∗ ∇gα(1) ∈ L1 by Lemma 2.9. To bound its derivatives, let φ ∈

C∞
c (R2) take values in [0, 1] with φ ≡ 1 on B1(0) and supported on B2(0). Then, much as

in (2.27) of Lemma 2.15 (and see Remark 2.16), for j = 1, 2 setting k = 3− j,

∂j(p. v.K ∗ ∇gα(1)) = |ψ ∗ ∂k∇gα(1)| = |(φψ) ∗ ∂k∇gα(1) + ((1− φ)ψ) ∗ ∂k∇gα(1)|
= |(φψ) ∗ ∂k∇gα(1) + (∂k(1− φ)ψ) ∗ ∇gα(1)| ,

so

∥∂j(p. v.K ∗ ∇gα(1))∥L1 ≤ ∥φψ∥L1 ∥∂k∇gα(1)∥L1 + ∥∂k((1− φ)ψ)∥L1 ∥∇gα(1)∥L1 ,

which is finite by Lemma 2.8. Hence, we can apply Lemma 3.5 again to give that p. v.K ∗
∇gα(1) has a finite C̃γ norm. □
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Lemma 3.7. For any t > 0,

∥gα(t)∥C̃γ ≤ Ct−
γ
2α ,

∥∇gα(t)∥C̃γ ≤ Ct−
1+γ
2α ,

∥p. v.K ∗ ∇gα(t)∥C̃γ ≤ Ct−
1+γ
2α .

Proof. The bounds on ∥gα(t)∥C̃γ and ∥∇gα(t)∥C̃γ follow from applying Lemma 3.4 and Corol-
lary 3.6 with the scaling given by (2.6). The bound on ∥p. v.K ∗ ∇gα(t)∥C̃γ follows from
applying Lemma 3.4 and Corollary 3.6 with the scaling given by (2.13), noting the additional

factor in that equation of t−
1
2α . □

Proof of Proposition 3.2. Applying Lemmas 3.3 and 3.7 to (1.3), we have

∥θ(t)∥Cγ ≤ Ct−
γ
2α ∥θ0∥L∞ + C

∫ t

0
(t− s)−

1+γ
2α ∥(θu)(s)∥L∞ ds,

which is finite since γ ∈ (0, 2α− 1). The bound on u(t) is obtained the same way. □

3.2. Continuity in time. With the above result, we can now establish the regularity in
time of the mild solution.

Proposition 3.8. Suppose that (θ, u) is a mild solution to (SQG) on [0, T ]. Then we have
the following:

(1) If ∆̇ju0 = (∆̇jK) ∗ θ0 for all j ∈ Z, then ∆̇ju(t) = (∆̇jK) ∗ θ(t) for all t ∈ [0, T ]
and all j ∈ Z.

(2) Let α > 1/2, then (θ, u) belongs to (C((0, T ];L∞(R2)))3.
(3) We have, θ(t, x) → θ0(x) and u(t, x) → u0(x) a.e. x ∈ R2 as t→ 0.
(4) If div u0 = 0 then div u = 0 on [0, T ]× R2.

Proof. (1): Suppose that ∆̇ju0 = (∆̇jK) ∗ θ0. Applying (∆̇jK)∗ to both sides of the
expression for θ(t, x) in (1.3), we have

(∆̇jK) ∗ θ(t, x) = (∆̇jK) ∗ (Gα(t)θ0)(x)− (∆̇jK) ∗
∫ t

0
(∇Gα(t− s) · (θu)(s))(x) ds

= (gα(t) ∗·(∆̇jK) ∗ θ0)(x)−
∫ t

0
(∆̇jK) ∗ (∇gα(t− s) ∗·(θu)(s))(x) ds

= Gα(t)(∆̇ju0)(x)−
∫ t

0
∆̇j((K ∗ ∇gα(t− s)) ∗·(θu)(s))(x) ds

= ∆̇j(Gα(t)u0)(x)− ∆̇j

∫ t

0
(K ∗ ∇gα(t− s)) ∗·(θu)(s) ds

= ∆̇ju(t, x).

Here, we used that ∆̇jK ∈ S(R2) by Lemma 2.6 to move ∆̇jK inside the integral and to

commute ∆̇jK with the convolution at time zero. We brought ∆̇j = φj∗ outside the integral
similarly. Finally, we used that

(∆̇jK) ∗ ∇gα(t− s) ∗·(θu)(s) = ∆̇j((K ∗ ∇gα(t− s)) ∗·(θu)(s)),
as the Fourier transforms of the two expressions coincide.
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(2): We first aim to bound the size of u(b, x)− u(a, x) uniformly in x for a, b > 0. We can
write

∥u(b, x)− u(a, x)∥L∞
x

≤ ∥(Gα(b)−Gα(a))u0∥L∞
x

+

∥∥∥∥∫ b

0
K ∗ ∇Gα(b− s) · (θu)(s, x) ds−

∫ a

0
K ∗ ∇Gα(a− s) · (θu)(s, x) ds

∥∥∥∥
L∞
x

≤ ∥(Gα(b)−Gα(a))u0(x)∥L∞
x
+

∥∥∥∥∫ b

a
K ∗ ∇Gα(b− s) · (θu)(s, x) ds

∥∥∥∥
L∞
x

+

∥∥∥∥∫ a

0
(K ∗ ∇Gα(b− s)−K ∗ ∇Gα(a− s)) · (θu)(s, x)ds

∥∥∥∥
L∞
x

.

(3.1)

For the second term on the right hand side of (3.1), applying Young’s inequality and
Lemma 2.9 for k = 1 gives the bound,∥∥∥∥∫ b

a
K ∗ ∇Gα(b− s) · (θu)(s, x)ds

∥∥∥∥
L∞
x

≤ C

∫ b

a
(b− s)−

1
2α ∥(θu)(s, x)∥L∞

x
ds

≤ 2α

2α− 1
C∥θ∥L∞

t,x
∥u∥L∞

t,x
(b− a)1−

1
2α .

(3.2)

Moreover, applying Young’s inequality to the third term on the right hand side of (3.1), we
have ∥∥∥∥∫ a

0
(K ∗ ∇Gα(b− s)−K ∗ ∇Gα(a− s)) · (θu)(s, x) ds

∥∥∥∥
L∞
x

≤ ∥θ∥L∞
t,x
∥u∥L∞

t,x

∫ a

0
∥K ∗ ∇gα(b− s)−K ∗ ∇gα(a− s)∥L1

x
ds.

(3.3)

For the above integral term, by the Fundamental Theorem of Calculus and Lemma 2.14,
we can write∫ a

0
∥K ∗ ∇gα(b− s)−K ∗ ∇gα(a− s)∥L1

x
ds =

∫ a

0

∥∥∥∥∫ b−s

a−s

∂

∂ρ
K ∗ ∇gα(ρ) dρ

∥∥∥∥
L1
x

ds

≤
∫ a

0

∫ b−s

a−s

∥∥∥∥ ∂∂ρK ∗ ∇gα(ρ)
∥∥∥∥
L1
x

dρ ds ≤ ν

∫ a

0

∫ b−s

a−s

∥∥K ∗ Λ2α∇gα(ρ)
∥∥
L1
x
dρ ds.

(3.4)

Subsequently, by Lemma 2.12, one has

∥K ∗ Λ2α∇gα(ρ)∥L1
x
≤ Cρ−(1+

1
2α). (3.5)

Substituting (3.5) into (3.4) and integrating, one finds that,∫ a

0
∥K ∗∇gα(b−s)−K ∗∇gα(a−s)∥L1

x
ds ≲

4α2

2α− 1

[
(b− a)1−

1
2α + b1−

1
2α − a1−

1
2α

]
. (3.6)

To estimate the first term on the right hand side of (3.1), we note that by Lemmas 3.3
and 3.7, Gα(a)u0 belongs to Cγ for all γ > 0 and is therefore uniformly continuous. We
can then apply an approximation to the identity argument to conclude that, as b− a→ 0,

∥Gα(b)u0 −Gα(a)u0∥L∞
x

= ∥Gα(b− a)Gα(a)u0 −Gα(a)u0∥L∞
x

→ 0. (3.7)

Gathering (3.1),(5.16), (3.3), (3.6), and (3.7) and taking the limit of (3.1) as a → b, the
continuity of u is proved.
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For θ, we proceed with a series of estimates analogous to those of u to obtain the following:

∥θ(b, x)− θ(a, x)∥L∞
x

≤ ∥(Gα(b)−Gα(a)) θ0∥L∞
x

+ C∥θ∥L∞
t,x
∥u∥L∞

t,x

[
(b− a)1−

1
2α + b1−

1
2α − a1−

1
2α

]
.

Taking the limit as a→ b, the desired continuity of θ is achieved.
(3): The proof is similar to that of (2), but with b = 0. Indeed, the proofs of (2) and (3)
differ only in that the first term on the right side of (3.1), given by

∥u0 −Gα(a)u0∥L∞ = ∥u0 − gα(a) ∗ u0∥L∞ ,

need not vanish as a → 0, since u0 is not necessarily uniformly continuous. Rather, in
this case, we use that (gα(t, ·)t>0) is an approximation to the identity to conclude that
gα(a) ∗ u0(x) → u0(x) at every Lebesgue point of u0 (see Theorem 8.15 of [12]) and hence
a.e.. From this, (3) follows.
(4): We apply Lemma 3.1 on [0, T ] with f = K∗∇gα and ψ = (θu). The choice of f satisfies
the hypotheses of the lemma, as for all t ∈ [0, T ], div f(t) = 0 in S ′(R2) and f(t) ∈ L1(R2)
by Lemma 2.9. Thus,

div u(t, x) = div(gα(t) ∗ u0(x))− div

∫ t

0
((K ∗ ∇gα(t− s)) ∗·(θu)(s))(x) ds

= gα(t) ∗ div u0(x).
Therefore, div u(t) = 0 for all t ∈ [0, T ] if div u0 = 0. □

3.3. Preservation of the constitutive law. Having shown the time and spatial regularity
of (θ, u), we are now in a position to prove that (1) If (θ0, u0) satisfy the constitutive law
(6.3)2 in the form u0 = p. v.K ∗ θ0 uniformly then u(t) = p. v.K ∗ θ(t) for t > 0; (2) With
sufficient regularity of the initial conditions, a solution to the mild formulation satisfies
(SQG) pointwise. We prove (1) in this subsection, (2) in the next.

Proposition 3.9. Suppose that (θ, u) is a mild solution to (SQG) on [0, T ] for which
(θ, u) ∈ L∞([0, T ] × R2))3. If u0 = p. v.K ∗ θ0, converging uniformly over annuli, as in
(2.8), then (SQG)2 holds.

Proof. We show that (SQG)2 is satisfied componentwise. Pick j = 1, 2, and convolve the
solution θ with p. v.Kj ,

(p. v.Kj ∗ θ)(t, x) =
(
p. v.Kj ∗

(
Gα(t)θ(0, ·)−

∫ t

0
∇Gα(t− s) · (θu)(s, ·) ds

))
(x)

= (p. v.Kj ∗ (Gα(t)θ(0, ·)))(x)−
(
p. v.Kj ∗

∫ t

0
∇Gα(t− s) · (θu)(s, ·) ds

)
(x).

(3.8)
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As for the second term, because K(x − y) ∈ L∞(Ar,R(x)) and ∇Gα(t − s) · (θu)(s, ·) ∈
L1(R2), we can invoke the Fubini-Tonelli theorem to give(

p. v.K∗
∫ t

0
∇Gα(t− s) · (θu)(s, x) ds

)
(x)

= lim
r,R

∫
Ar,R(x)

∫ t

0
K(x− y)

(
∇Gα(t− s) · (θu)(s, y)

)
ds dy

= lim
r,R

∫ t

0

∫
Ar,R(x)

K(x− y)
(
∇Gα(t− s) · (θu)(s, y)

)
dy ds

= lim
r,R

∫ t

0
(1Ar,R(0)K) ∗ [∇gα(t− s) ∗ (θu)] (s, x) ds

= lim
r,R

∫ t

0

[
(1Ar,R(0)K) ∗ ∇gα(t− s)

]
∗ (θu)(s, x) ds.

(3.9)

Because the integrand was the convolution of two L1 functions and an L∞ function, we
were able to use the associativity of the convolutions. By Lemma 2.18,∣∣∣[(1Ar,R(0)K) ∗ ∇gα(t− s)

]
∗ (θu)(s, x)

∣∣∣
≤
∥∥∥(1Ar,R(0)K) ∗ ∇gα(t− s)

∥∥∥
L1(R2)

∥(θu)(s)∥L∞(R2)

≤ C ∥θu∥L∞((0,T )×R2) (t− s)−1/(2α),

which is in L1((0, t)). Hence, we can apply the dominated convergence theorem to give,(
p. v.K∗

∫ t

0
∇Gα(t− s) · (θu)(s, x) ds

)
(x)

=

∫ t

0
lim
r,R

[
(1Ar,R(0)K) ∗ ∇gα(t− s)

]
∗ (θu)(s, x) ds

=

∫ t

0
(K ∗ ∇Gα(t− s)) · (θu)(s, x).

Similarly, with the equality K ∗ θ(0, x) = u(0, x), by applying Lemma 2.5, we have

p. v. K ∗ (Gα(t)θ(0, x)) = Gα(t)(p. v. K ∗ θ(0, x)) = Gα(t)u(0, x). (3.10)

Using (3.10) in (3.8), we obtain

p. v. (K ∗ θ)(t, x) = Gα(t)u(0, x)−
∫ t

0
K ∗ ∇Gα(t− s) · (θu)(s, x) ds = u(t, x).

From this, we conclude that (SQG)2 holds for all t ∈ [0, T ]; that is, u = p. v.K ∗ θ in
[0, T ]× R2.

□

3.4. Classical (SQG) for smooth initial data. Having shown that (SQG)2 holds for
mild solutions, we now show that sufficiently smooth mild solutions also satisfy (SQG)1.
In the following proposition f(x) = ⌈x⌉ denotes the ceiling function.
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Proposition 3.10. Suppose that (θ, u) is a mild solution to (SQG) on [0, T ] for which

(θ, u) ∈ (L∞([0, T ];C
⌈2α⌉
b (R2)))3 and u0 = p. v.K ∗θ0. Then θ and u are once differentiable

in time and (SQG)1 holds in the classical sense for a.e x ∈ R2.

Proof. To avoid the singularity at Gα(0) and ∇Gα(0), we first use the Dominated Conver-
gence Theorem to rewrite the mild formulation as

θ(t, x) = Gα(t)θ(0, x)−
∫ t

0
∇Gα(t− s) · (uθ)(s, x) ds

= Gα(t)θ(0, x)− lim
ε→0

∫ t−ε

0
∇Gα(t− s) · (uθ)(s, x) ds.

Taking a time derivative of our expression for θ above, we make use of gα(t) as the funda-
mental solution of the fractional heat equation given by (2.3) and write

∂

∂t
θ(t, x) = −νΛ2αGα(t)θ(0, x)−

∂

∂t
lim
ε→0

∫ t−ε

0
∇Gα(t− s) · (uθ)(s, x) ds. (3.11)

We wish to show that the derivative and limit can be swapped. Equivalently (see Theorem
7.17 of [21]), fix t, let (εn)

∞
n=1 be any sequence such that εn → 0 as n→ ∞, and define the

functions

fn(t, x) :=

∫ t−εn

0
∇Gα(t− s) · (θu)(s, x) ds,

and

f(t, x) :=

∫ t

0
∇Gα(t− s) · (θu)(s, x) ds = lim

n→∞
fn(t, x).

We will show that for each x ∈ R2,

(1) fn(t, x) converges uniformly to f in time and
(2) ∂tfn(t, x) converges uniformly in time.

From this, we will conclude that ∂tf exists and

lim
n→∞

∂

∂t
fn(t, x) =

∂

∂t
f(t, x).

For (1): Uniform convergence in time follows by invoking Lemma 2.9 and Young’s inequality.
For each x ∈ R2, write

∥f(t, x)− fn(t, x)∥L∞
t

=

∥∥∥∥∫ t

t−εn

∇Gα(t− s) · (θu)(s, x) ds
∥∥∥∥
L∞
t

≤
∥∥∥∥∫ t

t−εn

C(t− s)−
1
2α ∥(θu)(s, x)∥L∞

x
ds

∥∥∥∥
L∞
t

≤ 2α

2α− 1
C ∥u∥L∞

t,x
∥θ∥L∞

t,x
ε
1− 1

2α
n .

For (2): We note that for each n, ∂tfn exists using the Leibniz integral rule,

∂

∂t
fn(t, x) =

∂

∂t

∫ t−εn

0
∇Gα(t− s) · (θu)(s, x) ds

= (∇Gα(εn) · (θu))(t− εn, x) +

∫ t−εn

0

∂

∂t
∇Gα(t− s) · (θu)(s, x) ds.

(3.12)
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To justify the use of Leibniz rule above, we note that ∥ ∂
∂t∇gα(t− s, x)∥L1

x
is continuous

in s on [0, t − εn], and ∥θu(s, x)∥L∞
x

is bounded on [0, t − εn] by assumption. Thus, an
application of Young’s inequality implies that the expression

∂

∂t
[∇Gα(t− s) · (uθ)(s, x)]

exists and is absolutely integrable in s on [0, t− εn].
Now we show that (∂tfn)

∞
n=1 is Cauchy in L∞

t . First note that by integration by parts
and an application of (2.3),

∂

∂t
[∇Gα(t− s) · (uθ)(s, x)] = ∂

∂t
Gα(t− s) div(uθ)(s, x) = ΛGα(t− s)Λ2α−1 div(uθ)(s, x).

Substituting this equality into (3.12) gives

∂

∂t
fn(t, x) =

∂

∂t

∫ t−εn

0
∇Gα(t− s) · (θu)(s, x) ds

= (∇Gα(εn) · (θu))(t− εn, x) +

∫ t−εn

0
ΛGα(t− s)Λ2α−1 div(uθ)(s, x) ds.

(3.13)

Thus, we have for n > m > 0 and for each x ∈ R2,

∥∂tfn(x)− ∂tfm(x)∥L∞
t

≤ ∥(∇Gα(εn)−∇Gα(εm)) · (θu)(t− εn, x)∥L∞
t

+ ∥∇Gα(εm)((θu)(t− εn, x)− (θu)(t− εm, x))∥L∞
t

+ ν

∥∥∥∥∫ t−εn

t−εm

ΛGα(t− s)Λ2α−1 div((uθ)(s, x)) ds

∥∥∥∥
L∞
t

.

(3.14)

For the first term of (3.14), we use the Fundamental Theorem of Calculus and the fractional
heat kernel property (2.3) to write

∥(∇Gα(εn)−∇Gα(εm)) · (θu)(t− εn, x)∥L∞
t

=

∥∥∥∥∫ εm

εn

∂

∂ρ
∇Gα(ρ) · (θu)(t− εn, x) dρ

∥∥∥∥
L∞
t

≤ ν

∥∥∥∥∫ εm

εn

∇Gα(ρ) · Λ2α(uθ)(t− εn, x) dρ

∥∥∥∥
L∞
t

≤ ν

∥∥∥∥∫ εm

εn

∥∥∇Gα(ρ) · Λ2α(uθ)(t− εn, x)
∥∥
L∞
x
dρ

∥∥∥∥
L∞
t

.

Applying Young’s inequality and Lemma 2.9, and integrating with respect to ρ, yields∥∥∥∥∫ εn

εm

∥∥∇Gα(ρ) · Λ2α(uθ)(t− εn, x)
∥∥
L∞
x
dρ

∥∥∥∥
L∞
t

≤ 2α

2α− 1
C
∥∥Λ2α(uθ)

∥∥
L∞
t,x

(
ε
1− 1

2α
m − ε

1− 1
2α

n

)
.

(3.15)
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We expand the second term of (3.14) by using integration by parts, Young’s convolution
inequality, and the divergence-free condition on u = ∇⊥Λθ, which follows from Proposi-
tion 3.9. We write

sup
t∈[0,T ]

|∇Gα(εn) · ((θu)(t− εn, x)− (θu)(t− εm, x))|

= sup
t∈[0,T ]

|Gα(εn) div((θu)(t− εn, x)− (θu)(t− εm, x))|

≤ sup
t∈[0,T ]

∥gα(εn, x)∥L1
x
∥u · ∇θ(t− εn, x)− u · ∇θ(t− εm, x)∥L∞

x

= sup
t∈[0,T ]

∥(u · ∇θ)(t− εn, x)− (u · ∇θ)(t− εm, x)∥L∞
x
.

(3.16)

The above term vanishes as a consequence of the continuity in time of u from Proposi-
tion 3.8(2) and the continuity in time of ∇θ from Lemma 5.1 below. Turning to the third

term in (3.14), we apply Lemma 2.9 and invoke the C
⌈2α⌉
b regularity of (θ, u), to write∥∥∥∥∫ t−εn

t−εm

ΛGα(t− s)Λ2α−1 div((uθ)(s, x)) ds

∥∥∥∥
L∞
t

≤
∫ t−εn

t−εm

C(t− s)−
1
2α

∥∥Λ2α−1 div((uθ)(s, x))
∥∥
L∞
x
ds

≤ 2α

2α− 1
C
∥∥Λ2α−1 div(uθ)

∥∥
L∞
t,x

(
ε
1− 1

2α
m − ε

1− 1
2α

n

)
.

(3.17)

Combined, (3.15), (3.16), and (3.17) imply that ∂tfn is Cauchy in L∞
t . In addition, ∂tf

exists and ∂tfn → ∂tf as n → ∞. We utilize this convergence and (3.13) to rewrite (3.11)
as

∂

∂t
θ(t, x) =

∂

∂t

[
Gα(t) ∗ θ(0, ·)

]
(x) − lim

n→∞

∂

∂t
fn(t, x)

=
∂

∂t

[
Gα(t) ∗ θ(0, ·)

]
(x) − lim

n→∞

[
∇Gα

(
εn
)
·
(
θu
)
(t− εn, x)

− ν

∫ t−εn

0
ΛGα(t− s)Λ2α−1 div(uθ)(s, x) ds

]
.

(3.18)

For the first term on the right-hand side of (3.18), we apply (2.3), and for the second term, we
use integration by parts. Finally, for the third term, we apply the Dominated Convergence
Theorem, noting that by a calculation similar to that in (3.17), ΛGα(t−·)Λ2α−1 div(uθ)(·, x)
belongs to L1([0, t]) for each x. We conclude that

∂

∂t
θ = −νΛ2αGα(t)θ(0, ·)− lim

n→∞
[Gα(εn) div(θu)(t− εn, ·)]

+ ν

∫ t

0
Λ2α∇Gα(t− s) · (θu)(s, ·) ds.

(3.19)

For the second term of (3.19), write it as

Gα(εn) div(θu)(t− εn, ·)
= Gα(εn)(div(θu)(t− εn, ·)− div(θu)(t, ·)) +Gα(εn) div(θu)(t, ·)

(3.20)
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Applying the divergence free condition on u, the first term of (3.20) vanishes as a conse-
quence of the continuity in time of ∇θ from Lemma 5.1 and the continuity in time of u
from Proposition 3.8(2).

For the second term of (3.20), we apply Theorem 8.15 of [12] to assert the a.e. convergence
of Gα(εn) div(θu)(t, x) to div(uθ)(t, x). Hence,

lim
n→∞

Gα(εn) div(θu) = div(θu) = u · ∇θ, (3.21)

where we used the divergence free condition on u to get the second equality above. Notice
that for the third term of (3.19), we can interchange the order of time integration and Λ2α

as a consequence of the Leibniz integral rule, as both

∇Gα(t− s) · (θu) and Λ2α∇Gα(t− s) · (uθ)
are integrable in time by Lemma 2.9 and Lemma 2.12, respectively. Indeed, for Λ2α∇Gα(t−
s) · (uθ), we apply Λ2α to the product θu and use the boundedness of the derivatives of θu
to reach the conclusion. Thus, we have

ν

∫ t

0
Λ2α∇Gα(t− s) · (uθ)(s, x) ds = νΛ2α

∫ t

0
∇Gα(t− s) · (uθ)(s, x) ds. (3.22)

Collecting terms (3.21) and (3.22), we can rewrite (3.19) using the definition of θ in (1.3)1
and deduce

∂

∂t
θ(t, x) = −νΛ2αGα(t)θ(0, x)− (u · ∇θ)(t, x) + νΛ2α

∫ t

0
∇Gα(t− s) · (uθ)(s, x) ds

= −νΛ2αθ(t, x)− (u · ∇θ)(t, x).

Hence, we see that (SQG)1 is satisfied. From here, we can estimate the size of ∂
∂tθ by∥∥∥∥ ∂∂tθ

∥∥∥∥
L∞
x

≤ ν∥Λ2αθ∥L∞
x
+ ∥u∥L∞

x
∥∇θ∥L∞

x
<∞. (3.23)

Thereby, we conclude that (θ, u) is a classical solution. □

3.5. Solutions to (SSQG). Reusing the first parts of the argument of Proposition 3.10,
by modifying the assumption on the initial data, we can show mild solutions of (SSQG)
also satisfy the equation pointwise.

Proposition 3.11. Suppose that (θ, u) ∈ L∞([0, T ];C2
b (R2)) × (L∞([0, T ];C2

b (R2))2 and

satisfy (1.1) with ∆̇ju0 = (∆̇jK) ∗ θ0 for all j ∈ Z and div u0 = 0. Then (θ, u) are once
differentiable in time and satisfy (SSQG).

Proof. By Proposition 3.8 (4) one has div u = 0, Therefore, the argument in Proposition 3.10
proceeds identically up to line (3.19). More specifically, we have that θ is differentiable in
time. For any sequence (εn)

∞
n=1 with εn → 0, the time derivative of θ is given by:

∂

∂t
θ = −νΛ2αGα(t)θ(0, x)− lim

n→∞
Gα(εn) div(θu)

+ ν

∫ t

0
Λ2α∇Gα(t− s) · (uθ) ds.

(3.24)

For the first term of (3.24), we can successively apply part (4) and Theorem 8.15 of [12],

lim
n→∞

Gα(εn) div(θu) = lim
n→∞

Gα(εn)(u · ∇θ) = u · ∇θ. (3.25)
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Substituting (3.22) and (3.25) into (3.24) yields the desired result for θ,

∂

∂t
θ = −νΛ2αθ − u · ∇θ.

We invoke the same estimate as in the previous proposition for ∂
∂tθ,∥∥∥∥ ∂∂tθ

∥∥∥∥
L∞
x

≤ ν∥Λ2αθ∥L∞
x
+ ∥u∥L∞

x
∥∇θ∥L∞

x
<∞, (3.26)

by the hypotheses. The constitutive law (SSQG)2 is recovered directly from Proposition 3.8
(1). □

4. Existence of a Finite Time Mild Solution

In this section, we prove Theorem 1.2. We let τ > 0, choosing a precise value of τ later.
For p ∈ L∞([0, τ ]× R2) and ω ∈ (L∞([0, τ ]× R2))2, we define the two maps,

Tωp(t, ·) := Gα(t)θ0 −
∫ t

0
∇Gα(t− s) · (pω)(s) ds,

Upω(t, ·) := Gα(t)u0 −
∫ t

0
(K ∗ ∇Gα(t− s)) · (pω) ds.

(4.1)

Our proof of existence will follow an iterative scheme, setting

θ1(t, x) := θ0(x), u
1(t, x) := u0(x) for all t ≥ 0, (4.2)

while for n ≥ 1,

θn+1(t, x) := Tunθn+1(t, x) = Gα(t)θ0 −
∫ t

0
∇Gα(t− s) · (unθn+1)(s) ds,

un+1(t, x) := Uθn+1un(t, x) = Gα(t)u0 −
∫ t

0
(K ∗ ∇Gα(t− s)) · (unθn+1)(s) ds.

(4.3)

We iterate over n = 0, 1, . . . as follows:

(1) Setting ω = un, we use the Banach contraction mapping theorem to obtain θn+1 as
the fixed point of the operator Tω. This fixed point exists on a time interval τ > 0
that depends on the initial data, but is independent of n.

(2) For a fixed p = θn+1, we set un+1 = Upu
n.

We then prove the convergence of the sequences (θn) and (un) to θ and u, respectively, and
we show that (θ, u) is a mild solution as in Definition 1.1 up to time τ .

We begin with estimates on the integrals appearing in T and U .
From the definition of Gα(t) and Lemma 2.9 for k = 1,∥∥∥∥∫ t

0
∇Gα(t− s) · (pω)ds

∥∥∥∥
L∞
x

≤
∫ t

0
∥∇gα(t− s, y) ∗ ·(pω)∥L∞

x
ds

≤ C

∫ t

0
(t− s)−

1
2α ∥pω∥L∞

x
ds ≤ C

∫ t

0
(t− s)−

1
2α ∥p∥L∞

x
∥ω∥L∞

x
ds.
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Integrating the above in time and applying the L∞
t ≡ L∞([0, τ ]) norm to both sides of the

resulting inequality gives∥∥∥∥∫ t

0
∇Gα(t− s) · (pω)ds

∥∥∥∥
L∞
t,x

≤ 2α

2α− 1
Cτ1−

1
2α ∥p∥L∞

t,x
∥ω∥L∞

t,x
. (4.4)

Again, using Lemma 2.9 for k = 1,∥∥∥∥∫ t

0
K ∗ ∇Gα(t− s) · (pω)(s)ds

∥∥∥∥
L∞
x

≤
∫ t

0
∥(K ∗ ∇Gα(t− s)) · (pω)(s)∥L∞

x
ds

≤
∫ t

0
C(t− s)−

1
2α ∥p∥L∞

x
∥ω∥L∞

x
ds.

As before, integrating in time and applying the L∞
t norm to both sides gives∥∥∥∥∫ t

0
K ∗ ∇Gα(t− s) · (pω)ds

∥∥∥∥
L∞
t,x

≤ 2α

2α− 1
Cτ1−

1
2α ∥p∥L∞

t,x
∥ω∥L∞

t,x
. (4.5)

Now, we choose τ > 0 to satisfy the following size condition,

2α

2α− 1
Cτ1−

1
2α (∥θ0∥L∞

x
+ ∥u0∥L∞

x
) ≤ 1

8 . (4.6)

Convergence of Approximating Sequence. We begin the iterative process by re-
alizing θ2 as the fixed point of Tu1 using the Banach contraction mapping theorem (Step
1). From there we can quickly obtain u2 and then for illustrative purposes, we proceed
by generating θ3 with a similar argument, as the fixed point of Tu2 (Step 2). Finally, we
consider the general case of θn+1 as the fixed point of Tun (Step 3).

Step 1 (Fixed point of Tu1): Set R = 2∥θ0∥L∞
x

and define BR as the ball of radius R

centered at the origin in L∞([0, τ ]× R2). Let p and p̄ be two elements of BR. Then, using
estimate (4.4) and the equality ∥u1∥L∞

t,x
= ∥u0∥L∞

x
from (4.2), we have

∥Tu1p− Tu1 p̄∥L∞
t,x

=

∥∥∥∥∫ t

0
∇Gα(t− s) · (u1(p− p̄)) ds

∥∥∥∥
L∞
t,x

≤ 2α

2α− 1
Cτ1−

1
2α ∥u1∥L∞

t,x
∥p− p̄∥L∞

t,x
=

2α

2α− 1
Cτ1−

1
2α ∥u0∥L∞

x
∥p− p̄∥L∞

t,x
.

Invoking the size condition on τ in (4.6), we conclude that

∥Tu1p− Tu1 p̄∥L∞
t,x

≤ 1

8
∥p− p̄∥L∞

t,x
. (4.7)

To see that Tu1 maps BR into BR, select p ∈ BR. Applying the estimate (4.7) and
Young’s inequality, we write

∥Tu1p∥L∞
t,x

≤ ∥Tu1p− Tu10∥L∞
t,x

+ ∥Tu10∥L∞
t,x

≤ 1

8
∥p− 0∥L∞

t,x
+ ∥Gα(t)θ0∥L∞

t,x

≤ 1

8
∥p∥L∞

t,x
+ sup

t∈(0,τ ]
∥gα(t)∥L1

x
∥θ0∥L∞

x
≤ 1

4
∥θ0∥L∞

x
+ ∥θ0∥L∞

x
=

5

4
∥θ0∥L∞

x
≤ R.

(4.8)

It follows that Tu1 is a strict contraction from BR into BR. Thus, there exists a fixed
point of Tu1 , call it θ1+1 = θ2.
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To proceed, we establish the existence of u2 := Uθ2u
1 by proving the boundedness of Uθ2 .

By (4.3)2 and (4.5),

∥u2(t)∥L∞
t,x

=

∥∥∥∥Gα(t)u0(x)−
∫ t

0
(K ∗ ∇Gα(t− s)) · (θ2u1)(s) ds

∥∥∥∥
L∞
t,x

≤ ∥Gα(t)u0(x)∥L∞
t,x

+

∥∥∥∥∫ t

0
(K ∗ ∇Gα(t− s)) · (θ2u1)(s) ds

∥∥∥∥
L∞
t,x

≤ ∥u0∥L∞
x
+

2α

2α− 1
Cτ1−

1
2α ∥θ2∥L∞

t,x
∥u1∥L∞

t,x
.

We then substitute in the estimate ∥θ2∥L∞
t,x

≤ 5
4∥θ0∥L∞

x
from (4.8) and apply our condition

on τ in (4.6). This gives

∥u2(t)∥L∞
t,x

≤ ∥u0∥L∞
x
+

5

4

2α

2α− 1
Cτ1−

1
2α ∥θ0∥L∞

t,x
∥u0∥L∞

x

≤ ∥u0∥L∞
x
+

5

32
∥u0∥L∞

x
≤ 2∥u0∥L∞

x
= R.

(4.9)

With the boundedness of u2 ∈ (L∞([0, τ ]× R2))2, we continue by showing the existence
of the fixed point of Tu2 .

Step 2 (Fixed point of Tu2): For p ∈ L∞([0, τ ]× R2), consider

Tu2p(t, x) = Gα(t)θ0 −
∫ t

0
∇Gα(t− s) · (pu2)(s) ds. (4.10)

Using an argument similar to the work in Step 1, we find that for p and p̄ in BR,

∥Tu2p− Tu2 p̄∥L∞
t,x

≤ 2α

2α− 1
Cτ1−

1
2α ∥p− p̄∥L∞

t,x
∥u2∥L∞

t,x
. (4.11)

Substituting (4.9) into (4.11) yields

∥Tu2p− Tu2 p̄∥L∞
t,x

≤ 2
2α

2α− 1
Cτ1−

1
2α ∥p− p̄∥L∞

t,x
∥u0∥L∞

x
.

Again, applying the size condition on τ in (4.6), we conclude that

∥Tu2p− Tu2 p̄∥L∞
t,x

≤ 1

4
∥p− p̄∥L∞

t,x
. (4.12)

As before, we now show Tu2 maps BR into BR. Let f ∈ BR and utilize (4.12) and Young’s
inequality to write

∥Tu2f∥L∞
t,x

≤ ∥Tu2f − Tu20∥L∞
t,x

+ ∥Tu20∥L∞
t,x

≤ 1

4
∥f − 0∥L∞

t,x
+ ∥Gα(t)θ0∥L∞

t,x

≤ 1

4
∥f∥L∞

t,x
+ sup

t∈[0,τ ]
∥gα(t)∥L1

x
∥θ0∥L∞

x
≤ R.

Thus Tu2 has a fixed point, call it θ2+1 = θ3.

Step 3 (General case): For the inductive step, fix n ∈ N and suppose ∥θm∥L∞
t,x

≤ 2∥θ0∥L∞
x

for every m ≤ n. We compute θn+1 by showing the existence of a fixed point of the map
defined on BR given by

Tunp = Gα(t)θ0 −
∫ t

0
∇Gα(t− s) · (pun)(s) ds. (4.13)
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The dependence of Tun on un prompts us to first estimate the size of um. To that effect,
observe that for m ≤ n,

∥um∥L∞
t,x

=

∥∥∥∥Gα(t)u0 −
∫ t

0
(K ∗ ∇Gα(t− s)) · (θmum−1)(s) ds

∥∥∥∥
L∞
t,x

≤ ∥Gα(t)u0∥L∞
t,x

+

∥∥∥∥∫ t

0
(K ∗ ∇Gα(t− s)) · (θmum−1)(s) ds

∥∥∥∥
L∞
t,x

≤ ∥u0∥L∞
x
+

2α

2α− 1
Cτ1−

1
2α ∥θm∥L∞

t,x
∥um−1∥L∞

t,x
,

where we have used our estimate on the integral of K ∗ ∇G from (4.5) in the second
inequality. We can then apply the induction hypothesis ∥θm∥L∞

t,x
≤ 2∥θ0∥L∞

x
coupled with

the size condition on τ in (4.6) to conclude that

∥um∥L∞
t,x

≤ ∥u0∥L∞
x
+

2α

2α− 1
Cτ1−

1
2α ∥θm∥L∞

t,x
∥um−1∥L∞

t,x

≤ ∥u0∥L∞
x
+ 2

2α

2α− 1
Cτ1−

1
2α ∥θ0∥L∞

x
∥um−1∥L∞

t,x

≤ ∥u0∥L∞
x
+

1

4
∥um−1∥L∞

t,x
.

(4.14)

Thus, for each m ≤ n,

∥um∥L∞
t,x

≤ ∥u0∥L∞
x
+

1

4
∥um−1∥L∞

t,x

≤ ∥u0∥L∞
x
+

1

4

(
∥u0∥L∞

x
+

1

4
∥um−2∥L∞

t,x

)
≤ ∥u0∥L∞

x
+

1

4

(
∥u0∥L∞

x
+

1

4

(
∥u0∥L∞

x
+

1

4
∥um−3∥L∞

t,x

))
=

(
1 +

1

4
+

(
1

4

)2
)
∥u0∥L∞

x
+

(
1

4

)3

∥um−3∥L∞
t,x
.

Continuing in this way, we find that for every m ≤ n,

∥um∥L∞
t,x

≤
m−2∑
k=0

(
1

4

)k

∥u0∥L∞
x
+

(
1

4

)m−1

∥u1∥L∞
t,x

=
m−1∑
k=0

(
1

4

)k

∥u1∥L∞
t,x

≤ 4

3
∥u1∥L∞

t,x
=

4

3
∥u0∥L∞

x
≤ 2∥u0∥L∞

x
.

(4.15)

We now show that Tun is a contraction map. Suppose p, p̄ ∈ BR. Invoking the integral
estimate in (4.4), the estimate on un in (4.15), and the condition on τ in (4.6) successively,

∥Tunp− Tun p̄∥L∞
t,x

=

∥∥∥∥∫ t

0
∇Gα(t− s) · ((p− p̄)un)ds

∥∥∥∥
L∞
t,x

≤ 2α

2α− 1
Cτ1−

1
2α ∥p− p̄∥L∞

t,x
∥un∥L∞

t,x
≤ 2

2α

2α− 1
Cτ1−

1
2α ∥p− p̄∥L∞

t,x
∥u0∥L∞

x

≤ 1

4
∥p− p̄∥L∞

t,x
.
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Moreover, observe that Tunp ∈ BR whenever p ∈ BR, as

∥Tunp∥L∞
t,x

≤ ∥Tunp− Tun0∥L∞
t,x

+ ∥Tun0∥L∞
t,x

≤ 1

4
∥p∥L∞

t,x
+ ∥θ0∥∞ ≤ 2∥θ0∥L∞

x
= R.

(4.16)

Thus, Tun has a fixed point θn+1 and we conclude by induction that

∥θn∥L∞
t,x

≤ 2∥θ0∥L∞
x

(4.17)

and
∥un∥L∞

t,x
≤ 2∥u0∥L∞

x
(4.18)

for all n > 1.

Passing to the limit. We show that the sequences {θn} and {un} are Cauchy. Indeed,
we have

θn+1 − θn =

∫ t

0
∇Gα(t− s) · (θnun−1 − θn+1un) ds

=

∫ t

0
∇Gα(t− s) · θn(un−1 − un) ds+

∫ t

0
∇Gα(t− s) · (θn − θn+1)un ds,

un+1 − un =

∫ t

0
(K ∗ ∇Gα(t− s)) · (θnun−1 − θn+1un) ds

=

∫ t

0
(K ∗ ∇Gα(t− s)) · θn(un−1 − un) ds

+

∫ t

0
(K ∗ ∇Gα(t− s)) · (θn − θn+1)un ds.

Using the integral bounds in (4.4) and (4.5), one has the estimate,∥∥θn+1 − θn
∥∥
L∞
t,x

+
∥∥un+1 − un

∥∥
L∞
t,x

≤ 2 (∥u0∥L∞ + ∥θ0∥L∞)C
2α

2α− 1
τ1−

1
2α

(∥∥θn+1 − θn
∥∥
L∞
t,x

+
∥∥un − un−1

∥∥
L∞
t,x

)
.

By invoking the size condition on τ in (4.6), we can write∥∥θn+1 − θn
∥∥
L∞
t,x

+
∥∥un+1 − un

∥∥
L∞
t,x

≤ 1

4

(∥∥θn+1 − θn
∥∥
L∞
t,x

+
∥∥un − un−1

∥∥
L∞
t,x

)
. (4.19)

Thus ∥∥un+1 − un
∥∥
L∞
t,x

≤ 1

4

∥∥un − un−1
∥∥
L∞
t,x
,

from which it follows that {un} is Cauchy and converges to u in L∞((0, τ)× R2).
It also follows from (4.19) that

3

4

∥∥θn+1 − θn
∥∥
L∞
t,x

≤ 1

4

∥∥un − un−1
∥∥
L∞
t,x
,

so {θn} is Cauchy and converges to θ in L∞((0, τ)× R2).
Finally, the above observations imply that

∥θ∥L∞
t,x

≤ 2∥θ0∥L∞
x

(4.20)

and
∥u∥L∞

t,x
≤ 2∥u0∥L∞

x
. (4.21)



30 DAVID M. AMBROSE, RYAN ASCHOFF, ELAINE COZZI, AND JAMES P. KELLIHER

The limit (u, θ) is a mild solution. We have

u(t, x)−Gα(t)u0(x) +

∫ t

0
(K ∗ ∇Gα(t− s)) · (uθ)(s, x) ds

= u(t, x)− un+1(t, x) +

∫ t

0
(K ∗ ∇Gα(t− s)) · ((uθ)(s)− (unθn+1)(s, x) ds.

Because un → u and θn → θ in L∞((0, τ) × R2) and are bounded in that same space, we
have,∣∣((uθ)(s)− (unθn+1)(s, x)

∣∣ ≤ C
(
∥u− un∥L∞

t,x
+
∥∥θ − θn+1

∥∥
L∞
t,x

)
→ 0 as n→ ∞.

It follows that

u(t, x)−Gα(t)u0(x) +

∫ t

0
(K ∗ ∇Gα(t− s)) · (uθ)(s, x) ds = 0.

With the parallel argument for θ, we see that (u, θ) is a mild solution to (SQG) as in
Definition 1.1.
Uniqueness. For uniqueness, suppose (θ, u) and (θ̃, ũ) are two mild solutions as in (1.1).
We can then write

∥θ − θ̃∥L∞
t,x

+ ∥u− ũ∥L∞
t,x

=

∥∥∥∥∫ t

0
∇Gα(t− s) · (θu− θ̃ũ)ds

∥∥∥∥
L∞
t,x

+

∥∥∥∥∫ t

0
K ∗ ∇Gα(t− s) · (θu− θ̃ũ)ds

∥∥∥∥
L∞
t,x

≤ 4α

2α− 1
Cτ1−

1
2α ∥θu− θ̃ũ∥L∞

t,x
=

4α

2α− 1
Cτ1−

1
2α ∥θu− θ̃u+ θ̃u− θ̃ũ∥L∞

t,x

≤ 4α

2α− 1
Cτ1−

1
2α

(
∥u∥L∞

t,x
∥θ − θ̃∥L∞

t,x
+ ∥θ̃∥L∞

t,x
∥u− ũ∥L∞

t,x

)
.

(4.22)

We apply the uniform bounds on θ̃ in (4.20) and u in (4.21), and the constraint on τ in
(4.6). We conclude that

∥θ − θ̃∥L∞
t,x

+ ∥u− ũ∥L∞
t,x

≤ 8α

2α− 1
Cτ1−

1
2α

(
∥u0∥L∞

t,x
∥θ − θ̃∥L∞

t,x
+ ∥θ0∥L∞

t,x
∥u− ũ∥L∞

t,x

)
≤ 1

2

(
∥θ − θ̃∥L∞

t,x
+ ∥u− ũ∥L∞

t,x

)
.

(4.23)

Thus, θ = θ̃ and u = ũ. We conclude that (θ, u) is the unique mild solution on [0, τ ]. With a
simple application of Proposition 3.9, for all t ∈ [0, T ], we have u(t) = p. v.K ∗ θ(t). Lastly,
the stated continuity properties are a consequence of Proposition 3.8.

5. Spatial Regularity of the Solution

In this section we establish the spatial regularity of short-time solutions as is stated in
Theorem 1.3. Going forward, we set Dγ = ∂γ1

∂x1
∂γ2

∂x2 for γ ∈ N2, and we let D denote the
partial derivative with respect to either x1 or x2.
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Proof of Theorem 1.3. The argument is similar to that in [28]. We will manipulate (1.3)
formally by taking spatial derivatives to obtain a map in terms of the derivatives of u and
θ. We can then apply a Banach fixed point argument to produce a solution. Our argument
will use induction on the number of derivatives of u and θ.

5.1. Existence of first derivatives of θ and u. We start by noting that if Dθ and Du
exist, then they must satisfy

Dθ = Gα(t)Dθ0 −
∫ t

0
∇Gα(t− s) · ((Dθ)u+ θDu) ds,

Du = Gα(t)Du0 −
∫ t

0
(K ∗ ∇Gα(t− s)) · ((Dθ)u+ θDu) ds.

(5.1)

Our strategy is to show that the operator defined by the right hand side of (5.1) has a fixed
point. By uniqueness, the fixed point will correspond to our derivatives Dθ and Du. To
show that (5.1) has a fixed point, we apply an argument similar to that used to show (1.3)
has a fixed point.

Let θ0 ∈ C1
b (R2) and u0 ∈ (C1

b (R2))2. We will show that the sequence (θnx , u
n
x) generated

by

θ1x(t, x) = Dθ0(x),

u1x(t, x) = Du0(x),
(5.2)

and

θn+1
x (t, x) = Gα(t)Dθ0(x)−

∫ t

0
∇Gα(t− s) · (θunx + θn+1

x u)(s) ds,

un+1
x (t, x) = Gα(t)Du0(x)−

∫ t

0
K ∗ ∇Gα(t− s) · (θunx + θn+1

x u)(s) ds

(5.3)

converges to the desired fixed point (Dθ,Du). (That is, we will find that the sequence θnx
converges to a limit as n → ∞. We have previously shown that θ exists, and we will call
this limit θx. However, that will leave a step still to establish, which is to show that this
θx is actually the derivative of our θ with respect to x. And, of course, we establish the
corresponding results for u as well.) We first construct solutions θx and ux on [0, τ ] with
initial data (θ0, u0), where τ is the same as in (4.6), satisfying

2α

2α− 1
Cτ1−

1
2α (∥u0∥L∞

x
+ ∥θ0∥L∞

x
) ≤ 1/8. (5.4)

Set R = 2max{∥θ0∥C1
b
, ∥u0∥C1

b
} and BR = {f ∈ L∞([0, τ ] × R2) : ∥f∥L∞

t,x
≤ R}. We will

use an inductive argument to posit the existence and boundedness of the sequence (θnx , u
n
x).

For the base case, it is obvious that ∥θ1x∥L∞
t,x

≤ R and ∥u1x∥L∞
t,x

≤ R. For the inductive step,

suppose that for all 0 < t < τ , θnx and unx satisfy (5.3) with the bounds

∥θnx∥L∞
t,x

≤ R and ∥unx∥L∞
t,x

≤ R. (5.5)

We aim to show the existence of θn+1
x and un+1

x satisfying (5.3). Using a Banach fixed point
argument, assign the maps

T ′
ωp = DGα(t)θ0 −

∫ t

0
∇Gα(t− s) · (θω + pu) ds,
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and

U ′
pω = DGα(t)u0 −

∫ t

0
K ∗ ∇Gα(t− s) · (θω + pu) ds,

and let p, p̄ ∈ BR. We apply our uniform bound on u in (4.21) and the size condition on τ
in (5.4) to yield

∥T ′
un
x
(p− p̄)∥L∞

t,x
=

∥∥∥∥∫ t

0
∇Gα(t− s) · (u(p− p̄)) ds

∥∥∥∥
L∞
t,x

≤ 2
2α

2α− 1
Cτ1−

1
2α ∥u0∥L∞

x
∥p− p̄∥L∞

t,x
≤ 1

4
∥p− p̄∥L∞

t,x
.

(5.6)

To see that T ′
un
x
maps BR into BR, we use (5.6), the integral estimate (4.4), and the bound-

edness of θ0 in C1
b to write

∥T ′
un
x
f∥L∞

t,x
≤ ∥T ′

un
x
f − T ′

un
x
0∥L∞

t,x
+ ∥T ′

un
x
0∥L∞

t,x

≤ 1

4
∥p∥L∞

t,x
+

∥∥∥∥Gα(t)Dθ0 −
∫ t

0
∇Gα(t− s)(unxθ)ds

∥∥∥∥
L∞
t,x

≤ 1

4
∥p∥L∞

t,x
+ ∥Gα(t)Dθ0∥L∞

t,x
+

∥∥∥∥∫ t

0
∇Gα(t− s)(unxθ)ds

∥∥∥∥
L∞
t,x

≤ 1

4
∥p∥L∞

t,x
+ ∥θ0∥C1

b
+

2α

2α− 1
Cτ1−

1
2α ∥unx∥L∞

t,x
∥θ∥L∞

t,x
.

The uniform bound on θ in (4.20) and (5.4) gives

∥T ′
un
x
f∥L∞

t,x
≤ 1

4
∥f∥L∞

t,x
+ ∥θ0∥C1

b
+ 2

2α

2α− 1
Cτ1−

1
2α ∥unx∥L∞

t,x
∥θ0∥L∞

t,x

≤ 1

4
∥f∥L∞

t,x
+ ∥θ0∥C1

b
+

1

4
∥unx∥L∞

t,x
.

By our induction hypothesis (5.5),

∥T ′
un
x
f∥L∞

t,x
≤ 1

4
R+ ∥θ0∥C1

b
+

1

4
R ≤ R. (5.7)

We therefore have shown the existence of θn+1
x satisfying (5.3)1 and (5.5). We apply a

similar argument on U ′
θn+1
x

to yield the existence of un+1
x satisfying (5.3)2. Note also that,

thanks to the integral estimate in (4.5), the condition on τ given by (5.4), the uniform
bounds on θ and u given by (4.20) and (4.21) respectively, and our induction hypothesis in
(5.5), we derive the following inequalities.

∥un+1
x ∥L∞

t,x
=

∥∥∥∥Gα(t)Du0(x)−
∫ t

0
K ∗ ∇Gα(t− s) · (unxθ + θun+1

x )(s) ds

∥∥∥∥
L∞
t,x

≤ ∥Gα(t)Du0(x)∥L∞
t,x

+

∥∥∥∥∫ t

0
K ∗ ∇Gα(t− s) · (unxθ + θun+1

x )(s) ds

∥∥∥∥
L∞
t,x

≤ ∥u0∥C1
b
+

2α

2α− 1
Cτ1−

1
2α

(
∥unx∥L∞

t,x
∥θ∥L∞

t,x
+ ∥u∥L∞

t,x
∥θn+1

x ∥L∞
t,x

)
≤ ∥u0∥C1

b
+

1

4
∥unx∥L∞

t,x
+

1

4
∥θn+1

x ∥L∞
t,x

≤ R.

(5.8)
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Hence, we can generate the sequences {θnx} and {unx}, which by construction possess weak-⋆
limits θx and ux, respectively, in L

∞
t,x.

To finalize the proof of the existence of Dθ and Du, we show that θx and ux satisfy (5.1).
To this end, note that by an argument identical to that leading to (4.19), we have

∥θn+1
x − θnx∥L∞

t,x
+ ∥un+1

x − unx∥L∞
t,x

≤ 1

4
(∥θn+1

x − θnx∥L∞
t,x

+ ∥unx − un−1
x ∥L∞

t,x
), (5.9)

from which we conclude, as in Section 4, that∥∥un+1
x − unx

∥∥
L∞
t,x

≤ 1

4

∥∥unx − un−1
x

∥∥
L∞
t,x
.

Thus, {unx} is Cauchy and converges to ux in L∞((0, τ)× R2).
It also follows from (5.9) that

3

4

∥∥θn+1
x − θnx

∥∥
L∞
t,x

≤ 1

4

∥∥unx − un−1
x

∥∥
L∞
t,x
,

so {θnx} is Cauchy and converges to θx in L∞((0, τ)× R2).
Let Du satisfy Du = U ′

θx
Du, and let Dθ satisfy T ′

DuDθ = Dθ. We omit the proof of the
existence of Du and Dθ, but their existence and the bounds

∥Dθ∥L∞
t,x

≤ R and ∥Du∥L∞
t,x

≤ R, (5.10)

are readily checked with an analogous argument given by the previous considerations in
(5.6), (5.7) and (5.8).

To see that θx = Dθ, we show that θx also satisfies T ′
Duθx = θx. We write

θx −DG(t)θ0 +

∫ t

0
∇Gα(t− s) · (θxu+ θux) ds

= θx − θnx +

∫ t

0
∇Gα(t− s) · ((θxu+ θux)− (θnxu+ θun−1

x )) ds.

As unx → ux and θnx → θx in L∞((0, T )×R2) and are bounded in that same space, we have,∣∣(θxu+ θux)− (θnxu+ θun−1
x )

∣∣ ≤ C
(
∥θx − θnx∥L∞

t,x
+
∥∥ux − un−1

x

∥∥
L∞
t,x

)
→ 0 as n→ ∞.

It follows that

θx(t, x)−DGα(t)θ0(x) +

∫ t

0
(K ∗ ∇Gα(t− s)) · (θxu+ θux)(s, x) ds = 0,

and we have T ′
Duθx = θx.

A similar argument shows that U ′
Dθux = ux.

We conclude by the uniqueness of the fixed point in the Banach contraction mapping
theorem that θx = Dθ and ux = Du. Thus the first order derivatives of u and θ exist and
satisfy (5.1).

5.2. Existence of higher derivatives of θ and u. To establish existence of higher deriva-
tives, we once more use induction. Fix k ∈ N and set R = 2max{∥θ0∥Ck

b
, ∥u0∥Ck

b
}. The

base case is shown in the previous section. For the inductive step, suppose that Dβθ and
Dβu exist for all β ∈ N2 satisfying |β| < k with the bound

∥θ∥Ck−1
b

≤ R and ∥u∥Ck−1
b

≤ R.
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Our objective is to show the existence of Dγθ and Dγu for γ ∈ N2 with |γ| = k. First
note that if such derivatives were to exist, then, by the Leibniz rule, they would satisfy

Dγθ = Gα(t)D
γθ0 −

∫ t

0
∇Gα(t− s) ·

 ∑
0≤β≤γ

(
γ

β

)
DβθDγ−βu

 ds, (5.11)

and

Dγu = Gα(t)D
γu0 −

∫ t

0
(K ∗ ∇Gα(t− s)) ·

 ∑
0≤β≤γ

(
γ

β

)
DβθDγ−βu

 ds. (5.12)

As in the previous subsection, we construct sequences {unγ} and {θnγ} via an iterative
scheme and show that the sequences converge to Dγu and Dγθ, respectively. First let

θ1γ(t, x) ≡ Dγθ0(x) and u
1
γ(t, x) ≡ Dγu0,

and, using a similar iterative scheme as in (5.3), set

θn+1
γ = Gα(t)D

γθ0 −
∫ t

0
∇Gα(t− s) ·

θn+1
γ u+ θunγ +

∑
0<β<γ

(
γ

β

)
DβθDγ−βu

 ds,
and

un+1
γ = Gα(t)D

γu0 −
∫ t

0
(K ∗ ∇Gα(t− s)) ·

θn+1
γ u+ θunγ +

∑
0<β<γ

(
γ

β

)
DβθDγ−βu

 ds.
(5.13)

The argument that {θnγ} converges uniformly to Dγθ and that {unγ} converges uniformly to
Dγu is virtually identical to the analogous argument for the first derivatives of θ and u as
given in Subsection 5.1, so we omit the details. Remarkably, the higher derivatives satisfy
that following bounds.

∥Dγθ∥L∞
t,x

≤ R and ∥Dγu∥L∞
t,x

≤ R. (5.14)

This completes the proof of Theorem 1.3. □

We can also show that the first spatial derivatives of θ are continuous in time. The proof
follows as a direct variation of Proposition 3.8.

Lemma 5.1. Let α > 1
2 and select θ0 ∈ C1

b (R2), u0 ∈ C1
b (R2))2 satisfying u0 = p. v.K ∗ θ0.

Let (θ, u) be the mild solution given by Theorem 1.2 which exists up to time T . For all
t < T , we have ∂xiθ(t, x) is continuous in t for all t > 0 for i = 1, 2.
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Proof. We first aim to bound the size of ∂xiθ(b, x) − ∂xiθ(a, x) uniformly in x for a, b > 0.
We can write

∥∂xiθ(b, x)− ∂xiθ(a, x)∥L∞
x

≤ ∥(Gα(b)−Gα(a)) ∂xiθ0∥L∞
x

+

∥∥∥∥∫ b

0
∇Gα(b− s) · (∂xiθu+ θ∂xiu)(s, x) ds−

∫ a

0
∇Gα(a− s) · (∂xiθu+ θ∂xiu))(s, x) ds

∥∥∥∥
L∞
x

≤ ∥(Gα(b)−Gα(a)) ∂xiθ0(x)∥L∞
x
+

∥∥∥∥∫ b

a
∇Gα(b− s) · (∂xiθu+ θ∂xiu)(s, x) ds

∥∥∥∥
L∞
x

+

∥∥∥∥∫ a

0
(∇Gα(b− s)−∇Gα(a− s)) · (∂xiθu+ θ∂xiu) ds

∥∥∥∥
L∞
x

.

(5.15)

For the second term on the right hand side of (5.15), applying Young’s inequality and
Lemma 2.9 for k = 1 gives the bound,∥∥∥∥∫ b

a
∇Gα(b− s) · (∂xiθu+ θ∂xiu)(s, x) ds

∥∥∥∥
L∞
x

≤ C

∫ b

a
(b− s)−

1
2α ∥(∂xiθu+ θ∂xiu)(s)∥L∞

x
ds

≤ 2α

2α− 1
C∥∂xiθu+ θ∂xiu∥L∞

t,x
(b− a)1−

1
2α .

(5.16)

Observe that ∥∂xiθu + θ∂xiu∥L∞
t,x

is bounded as a consequence of Theorem 1.3. Moreover,

applying Young’s inequality to the third term on the right hand side of (5.15), we have∥∥∥∥∫ a

0
(∇Gα(b− s)−∇Gα(a− s)) · (∂xiθu+ θ∂xiu)(s, x) ds

∥∥∥∥
L∞
x

≤ ∥∂xiθu+ θ∂xiu∥L∞
t,x

∫ a

0
∥∇gα(b− s)−∇gα(a− s)∥L1

x
ds.

The argument then follows similarly to that after line (3.3). □

Lastly, we conclude with a proof of Theorem 1.6.

6. Extending the Solution

6.1. Improved bounds on (θ, u). Having established the short time existence and regu-
larity of (θ, u), we now extend the solution to all t ∈ [0,∞). In order to achieve an extension,
we must establish the appropriate L∞ bounds for (θ, u); in particular, the current bounds
∥θ∥L∞

t,x
≤ 2∥θ0∥L∞

x
and ∥u∥L∞

t,x
≤ 2∥u0∥L∞

x
only allow us to extend the solution up to some

finite time.
To begin, we restate a convolution-type Grönwall inequality from [27].

Lemma 6.1 (Volterra-Grönwall Inequality (Theorem 3.2 of [27])). Suppose v(t) ∈ L∞([0, T ])
with v(t) ≥ 0 for all t ∈ [0, T ], and let a ≥ 0, b > 0, and 0 < γ < 1 be constants. If v(t)
satisfies the inequality

v(t) ≤ a+ b

∫ t

0
(t− s)−γv(s) ds for a.e t ∈ [0, T ],
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then

v(t) ≤ a

1− γ
exp

(
b

1− γ

(
γ

bB0

)− γ
1−γ

t

)
for a.e t ∈ [0, T ].

Here B0 = B(1− γ, 1) where B(x, y) is the Beta function.

From here, we are able to improve the L∞ bound on u.

Proposition 6.2. Let T > 0. Suppose (θ, u) is a mild solution to (SQG) on [0, T ] with
initial data (θ0, u0) ∈ L∞(R2). Then u satisfies the bound:

∥u(t)∥L∞
x

≤ µ∥u0∥L∞
x
exp

(
Cα∥θ(t)∥µL∞

x
t
)
,

where

µ =
2α

2α− 1
, B0 = B(µ−1, 1), and Cα =

2α

2α− 1
C(2αB0)

1
2α−1 . (6.1)

Proof. Applying the L∞ norm to (1.3)2 and using the fact that Gα is a probability measure,
we obtain,

∥u(t)∥L∞
x

≤ ∥u0∥L∞
x
+

∥∥∥∥∫ t

0
K ∗ ∇Gα(t− s) · (θu)(s, x) ds

∥∥∥∥
L∞
x

. (6.2)

Next, bringing the L∞ norm inside the integral, invoking Young’s convolution inequality,
and applying the bound on K ∗ ∇Gα(t) in Lemma 2.9 yields

∥u(t)∥L∞
x

≤ ∥u0∥L∞
x
+

∫ t

0
C(t− s)−

1
2α ∥θu∥L∞

x
ds

≤ ∥u0∥L∞
x
+ ∥θ∥L∞([0,t];R2)

∫ t

0
C(t− s)−

1
2α ∥u∥L∞

x
ds.

To reach the conclusion, we employ Lemma 6.1 with

a = ∥u0∥L∞
x
, b = C∥θ∥L∞([0,t];R2), and γ =

1

2α
to produce the desired inequality,

∥u(t)∥L∞
x

≤ 2α

2α− 1
∥u0∥L∞

x
exp

(
2α

2α− 1
C∥θ∥L∞([0,t];R2)

(
2αB0∥θ∥L∞([0,t];R2)

) 1
2α−1 t

)
.

□

We now establish a maximum principle for a solution θ of (SQG) with sufficient regularity.

Proposition 6.3. Let α ∈
(
1
2 , 1
]
. Suppose that (θ, u) ∈ (L∞([0, T ];C2

b (R2)))3 is a mild
solution to (SQG) on [0, T ] for some T with initial data (θ0, u0). Then θ obeys the maximum
principle

∥θ∥L∞([0,T ]×R2) ≤ ∥θ0∥L∞
x
.

Proof. With the hypotheses of the proposition, by Proposition 3.10, (θ, u) is a C2-solution
to

∂tθ + u · ∇θ = −νΛ2αθ (6.3)

on [0, T ]× R2.
Let ϕ be a smooth, compactly supported bump function, with ϕ identically one on B1(0)

and suppϕ contained in B2(0). For each R > 0 and x ∈ R2, set ϕR(x) = ϕ(x/R).
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We multiply (6.3) by ϕR, which gives

∂

∂t
(ϕRθ) + ϕRu · ∇θ = −νϕRΛ2αθ. (6.4)

Using the product rule, we have

u · ∇(ϕRθ) = θu · ∇ϕR + ϕRu · ∇θ.
Making the above substitution and adding and subtracting νΛ2α(ϕRθ) , one has

∂

∂t
(ϕRθ) + u · ∇(ϕRθ) = θu · ∇ϕR − νϕRΛ

2αθ + νΛ2α(ϕRθ)− νΛ2α(ϕRθ)

= −νΛ2α(ϕRθ) + I + II,
(6.5)

where
I = uθ · ∇ϕR

and
II = ν[Λ2α, ϕR]θ.

Now, for p ≥ 2, multiply (6.5) by p|ϕRθ|p−2ϕRθ and integrate over R2. This gives∫
R2

p|ϕRθ|p−2ϕRθ
∂

∂t
(ϕRθ) dx = −

∫
R2

p|ϕRθ|p−2ϕRθu · ∇(ϕRθ) dx

−
∫
R2

νp|ϕRθ|p−2ϕRθΛ
2α(ϕRθ) dx+

∫
R2

p|ϕRθ|p−2ϕRθ(I + II) dx.

Using a weak derivative formulation, we apply the identity d
dt |z(t)|

p = p|z(t)|p−2z(t)dzdt and
the Liebniz integral rule to conclude that∫

R2

p|ϕRθ|p−2ϕRθ
∂

∂t
(ϕRθ)dx =

∫
R2

∂

∂t
|ϕRθ|pdx =

d

dt

∫
R2

|ϕRθ|pdx.

Therefore, we have

d

dt
∥ϕRθ∥pLp = −p

∫
R2

|ϕRθ|p−2ϕRθu · ∇(ϕRθ) dx

− νp

∫
R2

|ϕRθ|p−2ϕRθΛ
2α(ϕRθ) dx+ p

∫
R2

|ϕRθ|p−2ϕRθ(I + II) dx.

(6.6)

With the divergence free condition on u0, by Lemma 3.1, u is divergence free for all time,
so we can recast the first term on the right hand side of (6.6) as

p

∫
R2

|ϕRθ|p−2ϕRθ u · ∇(ϕRθ) dx =

∫
R2

u · ∇(ϕRθ)
p dx

= −
∫
R2

(ϕRθ)
p div u dx = 0.

(6.7)

Moreover, by Lemma 2.5 of [10],

−pν
∫
R2

|ϕRθ|p−2(ϕRθ)Λ
2α(ϕRθ) dx ≤ 0.

Thus,

p∥ϕRθ∥p−1
Lp
x

d

dt
∥ϕRθ∥Lp

x
≤ p

∫
R2

|ϕRθ|p−2ϕRθ(I + II) dx. (6.8)
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We divide both sides of (6.8) by p∥ϕRθ∥p−1
Lp
x
. We conclude that

d

dt
∥ϕRθ∥Lp

x
≤ p

(
1

p∥ϕRθ∥p−1
Lp
x

)∫
R2

|ϕRθ|p−2ϕRθ(I + II) dx

≤ ∥I + II∥L∞
x

∥ϕRθ∥p−1

Lp−1
x

∥ϕRθ∥p−1
Lp
x

= ∥I + II∥L∞
x

(
∥ϕRθ∥Lp−1

x

∥ϕRθ∥Lp
x

)p−1

.

(6.9)

We now bound the second term in the product. By the generalized Hölder inequality and
the compactness of the support of ϕ,

∥ϕRθ∥Lp−1
x

= ∥ϕ2RϕRθ∥Lp−1
x

≤ ∥ϕ2R∥Lp(p−1)
x

∥ϕRθ∥Lp
x
≤ (2πR2)

1
p(p−1) ∥ϕRθ∥Lp

x
.

This implies (
∥ϕRθ∥Lp−1

x

∥ϕRθ∥Lp
x

)p−1

≤ (2πR2)
1
p .

Substituting the above bound into (6.9), we find that for any p ∈ [1,∞) and any fixed
R <∞,

d

dt
∥ϕRθ∥Lp

x
≤ (2πR2)

1
p ∥I(s) + II(s)∥L∞

x
.

Integrating the above expression over time, we get

∥ϕRθ(t)∥Lp
x
≤ ∥ϕRθ0∥Lp

x
+ (2πR2)

2
p

∫ t

0
∥I(s) + II(s)∥L∞

x
ds.

We take the limit as p→ ∞ to produce the bound

∥ϕRθ(t)∥L∞
x

≤ ∥ϕRθ0∥L∞
x
+

∫ t

0
∥I(s) + II(s)∥L∞

x
ds. (6.10)

We claim that ∥I(t) + II(t)∥L∞
x
<∞ for all t and moreover,

lim
R→∞

∥I(t) + II(t)∥L∞
x

= 0.

Clearly we have

∥I∥L∞
x

≤ 1

R
∥(θu)(s, x)∥L∞

x
∥∇ϕ∥L∞

x
. (6.11)

We now estimate the commutator term II. We consider two cases separately: α ∈ (1/2, 1)
and α = 1. First assume α ∈ (1/2, 1). We expand the fractional Laplacian using the singular
integral definition (2.2), since θ ∈ C2

b (R2). We then simplify the commutator as follows:

[Λ2α, ϕR]θ(x) = ϕR(x)

∫
R2

θ(x)− θ(y)

|x− y|2+2α
dy −

∫
R2

ϕR(x)θ(x)− ϕR(y)θ(y)

|x− y|2+2α
dy

=

∫
R2

ϕR(y)θ(y)− ϕR(x)θ(y)

|x− y|2+2α
dy.

We now split up the above integral into two parts,

[Λ2α, ϕR]θ(x) = III + IV,
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where

III =

∫
R2

ϕ(x− y)
ϕR(y)θ(y)− ϕR(x)θ(y)

|x− y|2+2α
dy,

IV =

∫
R2

(1− ϕ)(x− y)
ϕR(y)θ(y)− ϕR(x)θ(y)

|x− y|2+2α
dy.

We estimate III and IV separately. Starting with III, write

III =

∫
R2

ϕ(x− y)
ϕR(y)θ(y)− ϕR(x)θ(y)

|x− y|2+2α
dy

=

∫
R2

ϕ(x− y)
(ϕR(y)− ϕR(x))(θ(y)− θ(x)) + ϕR(y)θ(x)− ϕR(x)θ(x)

|x− y|2+2α
dy

=

∫
R2

ϕ(x− y)
(ϕR(y)− ϕR(x))(θ(y)− θ(x))

|x− y|2+2α
dy + θ(x)

∫
R2

ϕ(x− y)
(ϕR(y)− ϕR(x))

|x− y|2+2α
dy.

We invoke the Lipschitz bounds on ϕR and θ, as well as the singular integral definition of
Λ2α, and find that

III ≤ ∥∇ϕR∥L∞
x
∥∇θ∥L∞

x

∫
R2

ϕ(x− y)

|x− y|2α
+

∣∣∣∣θ(x)∫
R2

ϕ(x− y)
(ϕR(y)− ϕR(x))

|x− y|2+2α
dy

∣∣∣∣
≤ C∥∇ϕR∥L∞

x
∥∇θ∥L∞

x
+
∣∣θ(x)Λ2αϕR(x)

∣∣
+

∣∣∣∣θ(x) ∫
R2

(1− ϕ)(x− y)
(ϕR(y)− ϕR(x))

|x− y|2+2α
dy

∣∣∣∣
≤ C∥∇ϕR∥L∞

x
∥∇θ∥L∞

x
+ ∥θ∥L∞

x
∥Λ2αϕR∥L∞

x
+ C∥θ∥L∞

x
∥∇ϕR∥L∞

x
.

(6.12)

Moving on to IV , we use the Lipschitz bound of ϕR to write

IV ≤
∫
R2

(1− ϕ)(x− y)
(ϕR(y)− ϕR(x))

|x− y|2+2α
|θ(y)| dy

≤ ∥θ∥L∞
x
∥∇ϕR∥L∞

x

∫
R2

(1− ϕ)(x− y)

|x− y|1+2α
dy ≤ C∥θ∥L∞

x
∥∇ϕR∥L∞

x
.

(6.13)

Combining (6.12) and (6.13), we conclude that

∥[Λ2α, ϕR]θ(x)∥L∞
x

= ∥III + IV ∥L∞
x

≤ C̃∥θ∥C1
b x
(∥∇ϕR∥L∞

x
+ ∥Λ2αϕR∥L∞

x
).

It remains to show that as R → ∞, the above quantities vanish in the limit. Clearly we
have

∥∇ϕR∥L∞
x

≤ 1

R

∥∥∥(∇ϕ)( x
R

)∥∥∥
L∞
x

=
1

R
∥∇ϕ∥L∞

x
. (6.14)

Lastly, we have to prove ∥Λ2αϕR∥L∞
x

→ 0 as R approaches infinity. To see why this is
the case, write

Λ2αϕR(x) =

∫
R2

ϕR(y)− ϕR(x)

|x− y|2+2α dy =
1

R2+2α

∫
R2

ϕ(y/R)− ϕ(x/R)

|(x/R)− (y/R)|2+2α dy

=
1

R2α

∫
R2

ϕ(z)− ϕ(x/R)

|(x/R)− z|2+2α dz =
1

R2α
(Λ2αϕ)(x/R).

(6.15)

Therefore,

∥Λ2αϕR∥L∞
x

=
1

R2α
∥(Λ2αϕ)(·/R)∥L∞

x
=

1

R2α
∥Λ2αϕ∥L∞

x
. (6.16)
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Gathering (6.14) and (6.16), we obtain the following commutator estimate:

∥[Λ2α, ϕR]θ(x)∥L∞
x

≤ C̃∥θ∥C1
b x

(
1

R
∥∇ϕ∥L∞

x
+

1

R2α
∥Λ2αϕ∥L∞

x

)
. (6.17)

Substituting (6.17) and the estimate for I in (6.11) into the L∞ bound for the cutoff of θ
in (6.10), we conclude that

∥ϕRθ(t)∥L∞
x

≤ ∥ϕRθ0∥L∞
x
+

∫ t

0

(
1

R
∥(uθ)(s)∥L∞

x
∥∇ϕ∥L∞

x

+ C̃ν∥θ(s)∥C1
b x

(
1

R
∥∇ϕ∥L∞

x
+

1

R2α
∥Λ2αϕ∥L∞

x

))
ds.

Thus, given our hypotheses, which imply θ ∈ C1
b t,x, we can rewrite the above expression as

∥ϕRθ(t)∥L∞
x

≤ ∥ϕRθ0∥L∞
x
+ t

(
1

R
∥θu∥L∞

t,x
∥∇ϕ∥L∞

x

+ C̃∥θ∥C1
b t,x

(
1

R
∥∇ϕ∥L∞

x
+

1

R2α
∥Λ2αϕ∥L∞

x

))
.

(6.18)

Taking the limit R→ ∞ and invoking the weak-⋆ convergence of ϕRθ → θ and the uniform
boundedness principle yields the desired conclusion,

∥θ(t)∥L∞
x

≤ ∥θ0∥L∞
x
, (6.19)

for all t ∈ [0, τ), when α ∈ (1/2, 1).
Now suppose that α = 1. We again fix R > 0 and multiply (6.3) by the radial function

ϕR, which gives

∂

∂t
(ϕRθ) + ϕRu · ∇θ = νϕR∆θ.

We expand the Laplacian term as

ϕR∆θ = ∆(ϕRθ)− θ∆ϕR − 2∇θ · ∇ϕR.

Proceeding as before, we multiply by p |ϕRθ|p−2 ϕRθ and integrate over R2, leading to

d

dt
∥ϕRθ∥pLp ≤ p

∫
R2

|ϕRθ|p−2 ϕRθ(I + II ′) dx,

where

II ′ = −νθ∆ϕR − 2ν∇θ · ∇ϕR.
For the new term, we have∥∥II ′∥∥

L∞ ≤ ν ∥∆ϕR∥L∞ ∥θ∥L∞ + 2ν ∥∇ϕR∥L∞ ∥∇θ∥L∞

≤ C̃ ′ν

R2
∥θ∥L∞ +

C̃ ′ν

R
∥∇θ∥L∞ ,

(6.20)

Repeating the argument up to (6.10), we get

∥ϕRθ(t)∥L∞
x

≤ ∥ϕRθ0∥L∞
x
+

∫ t

0
∥I(s) + II ′(s)∥L∞

x
ds.



NON-DECAYING SOLUTIONS TO DISSIPATIVE SQG 41

By repeating an analogous argument as above, we arrive at the same conclusion. That is,
for α = 1,

∥θ(t)∥L∞
x

≤ ∥θ0∥L∞
x

(6.21)

for all t ∈ [0, T ]. □

6.2. Extending the Solution. In this section we prove Theorems 1.4 and 1.5.

Proof of Theorem 1.4. By Theorem 1.2, we can produce a short time solution (θ, u)
on [0, τ ] for some τ > 0. By Theorem 1.3, (θ(t), u(t)) ∈ (C2

b (R2))3 for all t ∈ [0, τ ].
This implies that (θ, u) is a classical solution to (SQG) on [0, τ ] by Proposition 3.9 and
Proposition 3.10. Moreover, from the construction of the solution, we have ∥θ(t)∥L∞

x
≤

2∥θ0∥L∞
x

and ∥u(t)∥L∞
x

≤ 2∥u0∥L∞
x
. In fact, we have better bounds for the solution:

(i) By Proposition 6.3, ∥θ(t)∥L∞
x

≤ ∥θ0∥L∞
x
, ∀t ∈ [0, τ ].

(ii) By Proposition 6.2, ∥u(t)∥L∞
x

≤ 2α

2α− 1
∥u0∥L∞

x
exp(Cα∥θ0∥µL∞

x
t), ∀t ∈ [0, τ ],

(6.22)

where

µ =
2α

2α− 1
and Cα =

2α

2α− 1
C(2αB0)

1
2α−1 .

Let τ1 = τ . Inductively, we will create a sequence {τn}∞n=1 of finite times for which we
can extend the solution. To do so, for each additional extension time τn, we verify that the
conditions (6.22) hold.

For each integer k ≥ 1, define

Sk :=

k∑
j=1

τj .

Suppose that we have constructed the solution up to time Sn−1 and that (6.22) holds for
all t ∈ [0, Sn−1]. Then, define τn as in (4.6) by

2α

2α− 1
Cτ

1− 1
2α

n

(
∥θ0∥L∞

x
+

2α

2α− 1
∥u0∥L∞

x
exp

(
Cα∥θ0∥µL∞

x
Sn−1

))
≤ 1

8 . (6.23)

For this τn, setting Sn := Sn−1+τn, we use Theorem 1.2 to generate a mild solution to (SQG)
on [Sn−1, Sn] whose initial data is given by (θ(Sn−1, x), u(Sn−1, x)). With Theorem 1.3, the
extended solution satisfies (θ, u) ∈ (L∞([0, Sn];C

2
b (R2)))3. Moreover, on the interval [0, Sn],

we have the a priori bounds on θ and u given by

∥θ∥L∞([0,Sn]×R2) ≤ max
{
∥θ∥L∞([Sn−1,Sn]×R2), ∥θ∥L∞([0,Sn−1]×R2)

}
≤ max

{
2∥θ(Sn−1, ·)∥L∞

x
, ∥θ0∥L∞

x

}
≤ 2∥θ0∥L∞

x
,

and similarly,

∥u∥L∞([0,Sn]×R2) ≤ max
{
∥u∥L∞([Sn−1,Sn]×R2), ∥u∥L∞([0,Sn−1]×R2)

}
≤ max

{
2∥u(Sn−1, ·)∥L∞

x
,

2α

2α− 1
∥u0∥L∞

x
exp(Cα∥θ0∥µL∞

x
t)

}
≤ 4α

2α− 1
∥u0∥L∞

x
exp(Cα∥θ0∥µL∞

x
t).

Thus, we improve these estimates to match our induction hypothesis.

(1) We now have that a classical solution exists on [0, Sn]. Thus, with Proposition 6.3,
we deduce ∥θ(t)∥L∞

x
≤ ∥θ0∥L∞

x
for all t ∈ [0, Sn].
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(2) By Proposition 6.2, ∥u(t)∥L∞
x

≲ ∥u0∥L∞
x
exp(Cα∥θ0∥µL∞

x
t) for some exponent µ > 0

and all t ∈ [0, Sn].

Lastly, we verify that this extension process will cover all time t ∈ [0,∞). Rearranging
(6.23) and solving for τn gives

τn ≤

1
8

2α− 1

2α

1

C

1

∥θ0∥L∞
x
+

2α

2α− 1
∥u0∥L∞

x
exp
(
Cα∥θ0∥µL∞

x
Sn−1

)


2α
2α−1

.

For large Sn−1 the exponential term dominates so that

τn ≳ exp(−λSn−1) ,

for some λ > 0. It is clear that Sn satisfies the discrete recurrence,

Sn = Sn−1 + τn with τn ≳ exp(−λSn−1).

For that reason, consider the continuous ODE analogue:

dS

dn
= exp(−λS), S(0) = S0.

Hence,

S(n) =
1

λ
ln
(
λn+ exp(λS0)

)
.

Since ln(λn + exp(λS0)) → ∞ as n → ∞, we conclude that S(n) → ∞. By a discrete-
continuous comparison argument, it follows that

∞∑
n=1

τn = lim
n→∞

Sn = ∞.

Therefore, we conclude that the solution can be extended for arbitrary time. Moreover,
for any T > 0, we have the bounds,

(1) ∥θ∥L∞([0,T ]×R2) ≤ ∥θ0∥L∞(R2) and

(2) ∥u∥L∞([0,T ]×R2) ≤ ∥u0∥L∞
x
exp

(
Cα∥θ0∥µL∞

x
T
)
.

We conclude from Theorem 1.3 that if (θ0, u0) ∈ Ck
b (R2), then the higher derivatives of

(θ, u) also exist on the interval [0, τn] for n arbitrarily large. Moreover, we have the simple
estimate ∥∇kθ∥L∞([0,τn]×R2) ≤ 2n∥∇kθ0∥L∞

x
and ∥∇ku∥L∞([0,τn]×R2) ≤ 2n∥∇u0∥L∞

x
. □

Having extended the Ck solution for k ≥ 2 to be global in time, we now use this result
to extend solutions whose initial data is in L∞(R2). We present the proof of Theorem 1.5

Proof of Theorem 1.5. For the mild solutions (θ, u), if (θ0, u0) are not C
γ continuous for

some γ, set (θ0, u0) := (θ(t), u(t)) for some arbitrarily small t ∈ [0, T ]. As a consequence
of Proposition 3.2, we can assume that there exists γ > 0 such that u0 and θ0 belong to
Cγ(R2). Let φ : R2 → R be a smooth bump function and consider φn(x) := n2φ (nx) .
Consider the sequence θn0 := φn ∗ θ0. Clearly, θn0 ∈ L∞(R2) and moreover un0 := p. v.K ∗ θn0
exists and is an element of L∞(R2) as

∥ p. v.K ∗ (φn ∗ θ)∥∞ ≤ ∥φn∥L1∥ p. v.K ∗ θ∥L∞ .
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Because of the convolution, we have that (θn0 , u
n
0 ) is sufficiently regular that Theorem 1.4

applies. We can therefore let (θn, un) be the classical solution on [0, T ] with initial data
(θn0 , u

n
0 ). We show that {(θn, un)}∞n=1 is Cauchy in L∞

t,x. For n > m ≥ 0,

∥θn − θm∥L∞
x

≤ ∥Gα(t)(θ
n
0 − θm0 )∥L∞

x
+

∫ t

0
∥∇Gα(t− s) · ((θnun − θmum)(s, x))∥L∞

x
ds

and similarly for u,

∥un − um∥L∞
x

≤ ∥Gα(t)(u
n
0 − um0 )∥L∞

x
+

∫ t

0
∥(K ∗ ∇Gα(t− s)) · ((θnun − θmum)(s, x))∥L∞

x
ds.

Adding the above lines together we invoke the boundedness of Gα(t),

∥θn − θm∥L∞
x
+∥un − um∥L∞

x
≤ ∥θn0 − θm0 ∥L∞

t,x
+ ∥un0 − um0 ∥L∞

t,x

+

∫ t

0
∥∇Gα(t− s) · ((θnun − θmum)(s, x))∥L∞

x
ds

+

∫ t

0
∥K ∗ ∇Gα(t− s) · ((θnun − θmum)(s, x))∥L∞

x
ds.

Now apply the kernel estimates of Lemma 2.9,

∥θn − θm∥L∞
x
+∥un − um∥L∞

x
≤ ∥θn0 − θm0 ∥L∞

t,x
+ ∥un0 − um0 ∥L∞

t,x

+ 2C

∫ t

0
(t− s)−

1
2α ∥θnun − θmum∥L∞

x
ds.

Further, by adding and subtracting θnum, one can derive the bound

∥θn − θm∥L∞
x
+ ∥un − um∥L∞

x
≤ ∥θn0 − θm0 ∥L∞

t,x
+ ∥un0 − um0 ∥L∞

t,x

+ 2C
(
∥θn∥L∞

t,x
+ ∥um∥L∞

t,x

)∫ t

0
(t− s)−

1
2α
(
∥θn − θm∥L∞

x
+ ∥un − um∥L∞

x

)
ds.

(6.24)

Thus, by Volterra-Grönwall inequality as in Lemma 6.1, one has

∥θn − θm∥L∞
x
+∥un − um∥L∞

x

≤ µ
(
∥θn0 − θm0 ∥L∞

t,x
+ ∥un0 − um0 ∥L∞

t,x

)
exp

(
Cα

(
2C
(
∥θn∥L∞

t,x
+ ∥um∥L∞

t,x

)µ)
t
)
,

where µ and Cα are given by (6.1). Next, invoking the Cγ continuity of the initial data, by
an approximation to the identity argument (see Lemma 8.14 of [12]) we have,

θε0 → θ0 and uε0 → u0 as ε→ 0.

For fixed T , one can conclude {(θn, un)}∞n=1 forms a Cauchy sequence.
Since the sequence converges uniformly and each element of the sequence satisfies a mild

formulation, it is clear that the limit (θ, u) will also satisfy the mild solution definition.
Therefore, for arbitrary T > 0, there exists a mild solution (θ, u) to (SQG) on [0, T ] with
initial data (θ0, u0) ∈ (L∞(R2))3, and with ∥θ∥L∞

t,x
≤ ∥θ0∥L∞

x
. □

Finally, we show Theorem 1.6.

Proof of Theorem 1.6. The first conclusion holds from Theorem 1.2. The second conclu-
sion follows from Theorem 1.3. The global existence of solutions follows from Theorem 1.4.
The fact that C2 solutions to (SSQG) satisfy the equation in a classical sense follows from
Proposition 3.11. □
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Appendix A.

We conclude by showing the equivalence of the definitions of Λ and ΛI on C2
b (R2).

Lemma A.1. Suppose that f ∈ C2
b (R2), then for α ∈ (1/2, 1),

Λ2αf ≡ Λ2α
I f.

Proof. As a consequence of Lemma 3.10 of [14] or Lemma 1 Section V of [25], it suffices to
show that Λ2α

I f is well defined as Dom(Λ2α
I ;L∞(R2)) ⊂ Dom(Λ2α;L∞(R2)). To that end,

we first break the integral into two pieces,

Λ2α
I f = lim

r→0+

∫
r<|h|<1

f(x+ h)− f(x)

|h|2+2α
dh︸ ︷︷ ︸

=:I(x)

+

∫
|h|>1

f(x+ h)− f(x)

|h|2+2α
dh.︸ ︷︷ ︸

=:II(x)

We first work with I(x) by using the differentiability of f . Rewrite I(x) as

I(x) = lim
r→0+

1

2

∫
r<|h|<1

f(x+ h)− 2f(x) + f(x− h)

|h|2+2α
dh.

Since f ∈ C2
b (R2), by the Mean Value Theorem there exists some ξ on the line segment

from x to x+ h such that

f(x+ h)− f(x) = ∇f(x+ ξh) · h.
Similarly, there exists some ζ on the segment from x− h to x such that

f(x)− f(x− h) = ∇f(x− ζh) · h.
Subtracting the second equality from the first, we obtain

f(x+ h)− 2f(x) + f(x− h) = ∇f(x+ ξh) · h−∇f(x− ζh) · h.
Now, we apply the Mean Value Theorem once more to the difference∇f(x+ξh)−∇f(x−ζh).
Since f ∈ C2

b (R2) implies that ∇f is Lipschitz, there exists some point η (lying on the line
segment connecting x+ ξh and x− ζh) such that

∇f(x+ ξh)−∇f(x− ζh) = D2f(η)
[
(x+ ξh)− (x− ζh) =

]
= D2f(η)

[
(ξ + ζ)h

]
.

Noting that ξ, ζ ∈ [0, 1] so that ξ + ζ ≤ 2, we deduce

|f(x+ h)− 2f(x) + f(x− h)| ≤ ∥D2f∥L∞ (ξ + ζ) |h|2 ≤ 2 ∥D2f∥L∞ |h|2.
Thus, for every x ∈ R2 and h ̸= 0 we have

|f(x+ h)− 2f(x) + f(x− h)|
|h|2+2α

≤ 2 ∥D2f∥L∞
|h|2

|h|2+2α
= 2 ∥D2f∥L∞

1

|h|2α
.

Thus, since α ∈ (1/2, 1),

|I(x)| ≤ 2∥D2f∥L∞

∫
|h|≤1

dh

|h|2α
<∞.

Turning to estimate II, we have

|II(x)| ≤
∫
|h|>1

|f(x+ h)− f(x)|
|h|2+2α

≤
∫
|h|>1

|f(x+ h)− f(x)|
|h|2+2α

≤ ∥f∥L∞

∫
|h|>1

1

|h|2+2α
dh <∞.
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Hence, the principal-value integral

I(x) =
1

2
lim
r→0+

∫
|h|>r

f(x+ h)− 2f(x) + f(x− h)

|h|2+2α
dh

converges absolutely for each x ∈ R2, and so the singular integral definition of the fractional
Laplacian is well defined for f ∈ C2

b (R2).
□
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Lp or Ḣ−1/2. Comm. Math. Phys., 277(1):45–67, 2008. 3
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