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The realm of Set Theory and abstract math in general is weird. It might help to forget every-
thing you know about math. Set thoery is about building math from the ground up using only
LogicTM.

SETS
Formally defining a set can actually be difficult, so I’ll defer to my undergrad textbook:

The central concept of this book, that of a set, is, at least on the surface, extremely simple.
A set is any collection, group, or conglomerate. So we have the set of all students registered
at the City University of New York in February 1998, the set of all even natural numbers,
the set of all the points in the plane π exactly 2 inches distant from a given point P, the set
of all pink elephants.

Sets are not objects of the real world, like tables or stars; they are created by our mind, not
by our hands. A heap of potatoes is not a set of potatoes, the set of all molecules in a drop of
water is not the same object as that drop of water. The human mind possesses the ability to
abstract, to think of a variety of different objects as being bound together by some common
property, and thus form a set of objects having that property.

Introduction to Set Theory by Karel Hrbacek and Thomas Jech

So, we’ll run with this:

Definition
A set is a collection of (mathematical) objects bound by some property. The objects are
called elements of the set. Defining a set usually happens between curly braces and looks
something like:

{element, element, element, element} or { elements : properties }

If a is an element of the set A, we write a ∈ A.

Notice, we usually denote sets with capital letters and elements with lowercase. We also try to
be suggestive with our naming. If we have two sets running around A and B, and we want to
talk about elements of these sets we’ll name these elements a ∈ A and b ∈ B. It’s not always
easy or possible to keep this up, but it can make our proofs easier to read.



Example
Here are some sets!

• X = {1, 2, 3}

• A = {a,b, c}

• ∅ = {}

The last one here is called the empty set. It’s special because it has no elements! Here are
some other popular sets that you should know if you’re going to talk to other mathemati-
cians:

• The Natural Numbers*: N = {0, 1, 2, 3, 4, . . .}.

• The Integers: Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .}

• The Rational Numbers: Q =
{

m
n

: m ∈ Z and n ∈ Z
}

• The Real Numbers: R = {Any decimal expansion.}

• The Complex Numbers: C = {x+ iy : x ∈ R and y ∈ R}

*There is some contention with whether or not 0 ∈ N.

We like to think of sets as “living” in some ambient set so we need to define what it means for a
set to live in another:

Definition
A set A is a subset of B, denoted A ⊆ B, if any element a ∈ A is also an element of B. We
say two sets A and B are equal, denoted A = B, if A ⊆ B and B ⊆ A.

Example
Some toy examples:

• {a,b} ⊆ {a,b, c}

• {1, 2, 3} ⊆ N

• ∅ ⊆ A for any set A

Regarding our “popular” sets:

∅ ⊆ N ⊆ Z ⊆ Q ⊆ R ⊆ C

Now, let’s talk about the two basic operations we have for sets:



Definition
Given two sets A ⊆ X and B ⊆ X, define the intersection of the sets as

A ∩ B := {x ∈ X : x ∈ A and x ∈ B}

and the union of the sets as

A ∪ B := {x ∈ X : x ∈ A or x ∈ B}

We usually think of these using Venn diagrams:

Note that logical “or” is different from the way normal people use the word “or.” The logical
statement “this or that” includes the case of “this and that.”

Exercise Prove that (A ∪ B) ∪ C = A ∪ (B ∪ C).

We want to prove that
(A ∪ B) ∪ C ⊆ A ∪ (B ∪ C)

and
A ∪ (B ∪ C) ⊆ (A ∪ B) ∪ C

Starting with the former, let x ∈ (A ∪ B) ∪ C. By definition, then x ∈ A ∪ B or x ∈ C. Let’s
take it case by case.

CASE I: If x ∈ A ∪ B, then x ∈ A or x ∈ B. If x ∈ A, then x ∈ A ∪ (B ∪ C). If x ∈ B, then
x ∈ B ∪ C and hence x ∈ A ∪ (B ∪ C).

CASE II: If x ∈ C, then x ∈ B ∪ C and hence x ∈ A ∪ (B ∪ C).

This proves the first inclusion. To prove the other inclusion, let x ∈ A ∪ (B ∪ C). Again we
have cases:

CASE I: If x ∈ A, the x ∈ A ∪ B and hence x ∈ (A ∪ B) ∪ C.

CASE II: If x ∈ B ∪C, then x ∈ B or x ∈ C. If x ∈ B, the x ∈ A ∪ B and hence x ∈ (A ∪ B) ∪C.
If x ∈ C, then x ∈ (A ∪ B) ∪ C.

We call this property associativity. This property means there’s no ambiguity in writingA∪B∪C.
Moreover, we get the following defintion:



Definition
Let A denote an arbitrary set of sets, that is a set whose elements are sets. The we can define
the arbitrary union over A as⋃

A∈A

A := {x : x ∈ A for some A ∈ A}

and the arbitrary intersection over A as⋂
A∈A

A := {x : x ∈ A for all A ∈ A}

FUNCTIONS
Technically, a good set theorist would say there is only one thing—sets. You can actually define
a function as a set! For our sake, we’ll think of them as a different object.

Definition
A function f from a set A to a set B, denoted f : A → B, is an assignment of an element
f(a) ∈ B for each element of a ∈ A. Moreover, this assignment must be well-defined, is
that if a1 = a2, then f(a1) = f(a2). We call the set A the domain of f and B the codomain of
f.

A nice real-life example of a function is going to a store and asking for the price of something.
The assignment of a price to product is well-defined, one product can’t have two prices, but it
might be the case that two products are assigned the same price.

Mathematically, a place you’ve seen well-definedness before is with maps f : R → R. Such a
map is well-defined when its graph on the plane satisfies the vertical line test.

Definition
A function f : A → B is said to be injective if for any distinct elements a1 6= a2 ∈ A,
f(a1) 6= f(a2). This property is sometimes referred to as one-to-one.

A function f : A → B is said to be surjective if for every element b ∈ B, there exists an
element a ∈ A such that f(a) = b. This property is sometimes referred to as onto.

Example
Let A ⊆ X. Then we can define a map ι : A → X by ι(a) = a. Such a map is called the
inclusion map. The inclusion map is injective since, if a 6= b ∈ A, then f(ι) = a 6= b = ι(b).



A particular example of this example: ι : {a,b}→ {a,b, c} defined by ι(a) = a and ι(b) = b.

Definition
A function which is both surjective and injective is said to be bijective.

EQUIVALENCE RELATIONS & QUOTIENT SETS

Definition
A relation is a way of comparing two elements in a set. An equivalence relation is a relation
∼ that “acts like” equality. Specifically, ∼ has the following properties:

• (Reflexive) a ∼ a

• (Symmetric) If a ∼ b, then b ∼ a

• (Transitive) If a ∼ b and b ∼ c, then a ∼ c.

Definition
Given an equivalence relation ∼ on a set A and en element a ∈ A, we can define the equiv-
alence class of a by

[a] := {b ∈ A : a ∼ b}

We can further define the quotient set of A by ∼ as the set of equivalence relations. That is

A/ ∼ := {[a] : a ∈ A}


