The associator:

traces out the shaded surface Poincaré dual to a tetrahedron:

The boundary of this shaded surface is a graph with 4 vertices and 6 edges - again a tetrahedron! Each edge in the boundary of the shaded surface intersects one edge of the original tetrahedron. If we label the tetrahedron's edges like this:

the corresponding edges of the boundary of the shaded surface get labelled like this:

In the Ponzano-Regge model of Riemannian $3 d$ quantum gravity, we define the amplitude for a tetrahedron whose edges have lengths given by nonzero natural numbers:

to be the result of evaluating the Poincaré dual spin network:

(the boundary of the shaded surface on the previous page). In this spin network, the numbers a, b, c, d, e, f stand for the dimensions of irreducible representations of $\mathrm{SU}(2)$.

Regge and Ponzano used a stationary phase approximation to argue that when we multiply all the numbers a, b, c, d, e, f by an ever larger natural number, we get an asymptotic formula:

where V is the volume of the original tetrahedron and S is its so-called 'Ponzano-Regge action':

$$
S=\sum_{e} \ell_{e} \theta_{e} .
$$

Here the sum is taken over all 6 edges of the original tetrahedron, l_{e} is the length of the edge e, and θ_{e} is the dihedral angle of the edge e, that is, the angle between the outward normals of the two faces incident to this edge.

A rigorous proof of this asymptotic formula was given only in 1999, by Justin Roberts.
One can show that the Ponzano-Regge action is discretized version of the action for general relativity (namely the integral of the Ricci scalar curvature). Naively one might have hoped to get $\exp (i S)$ in the formula above. That one gets a cosine instead can be traced back to the fact that the lengths of the edges of a tetrahedron only determine its geometry modulo rotation and reflection. The phase $\frac{\pi}{4}$ shows up because calculating the asymptotics of the tetrahedral spin network involves a stationary phase approximation. The factor involving V is still mysterious to me.

