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Category Theory for Applied Topology

Why category theory?

• It is a convenient language for describing persistence modules.

• It gives clues to finding the ‘right’ definitions and concepts.

• It gives immediate access to deeper theorems.

• We are free to drop it when it doesn’t fit.
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Category Theory for Applied Topology

Preordered sets

Let P be a set with a reflexive transitive relation ≤. Then

• objects = { elements of P }
• morphisms = { relations x ≤ y }

defines a category P.

Directed graphs

A directed graph defines a category:

• • • • •// // // //

or
• • • • •// oo oo //

or

• qq

(Identities and composites are implicit.)
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Category Theory for Applied Topology

Sublevelset persistent homology

Let f : X → R. Consider the category n defined by

0 1 . . . n − 1,// // //

and select a0 ≤ a1 ≤ · · · ≤ an−1. From

X a0 X a1 . . . X an−1 ,//
⊆

//
⊆

//
⊆

construct

H(X a0 ) H(X a1 ) . . . H(X an−1 ).// // //

Definitions

• X t := f −1(−∞, t] sublevelset

• Xs := f −1[s,+∞) superlevelset

• X t
s := f −1[s, t] interlevelset
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Category Theory for Applied Topology

Sublevelset persistent homology

The ‘persistence module’

H(X a0 ) H(X a1 ) . . . H(X an−1 )// // //

can be thought of as a functor

n Top Vect.//F //H

This means:

• For each object of n we have a vector space.

• For each morphism of n we have a linear map.

Generalized persistence modules (Bubenik, Scott 2014)

A ‘generalized persistence module’ is simply a functor V : C→ D.

• Usually C is a pre-ordered set, such as n,N,Z,R.

• Usually D is an abelian category, such as Vect,Ab.
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Category Theory for Applied Topology

Generalized persistence modules (Bubenik, Scott 2014)

A ‘generalized persistence module’ is simply a functor V : C→ D.

• Usually C is a pre-ordered set, such as n,N,Z,R.

• Usually D is an ‘abelian’ category, such as Vect,Ab.

Categories of functors

The collection of functors C → D is itself a category, denoted DC. The mor-
phisms are natural transformations φ : V⇒W, defined by the following data:

• For every c ∈ C there is a map φc : Vc →Wc .

• For every map f : c → c ′ in C the diagram

Vc
φc //

V [f ]

��

Wc

W [f ]

��

Vc′
φc′
// Wc′

is required to commute.
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Story 1: Persistence diagrams

Persistent homology takes a filtered space X = {Xt | t ∈ R} and returns a
barcode of intervals [p, q) ⊂ R or a persistence diagram of points (p, q) ∈ R2.
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Story 1: Persistence diagrams

Persistent homology takes a filtered space X = {Xt | t ∈ R} and returns a
barcode of intervals [p, q) ⊂ R or a persistence diagram of points (p, q) ∈ R2.

How is this defined?

Algorithmic approach (Edelsbrunner, Letscher, Zomorodian 2000).

• Discretize the t-variable.

• Present X as a finite list of cells, attached in sequence.

• Some cells σ generate new homology cycles.

• Other cells τ destroy cycles created by an earlier σ.

• There is an interval [tσ, tτ ) for each such pair (σ, τ).

• There is an interval [tσ,+∞) for each σ whose cycle is never destroyed.
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Story 1: Persistence diagrams

Using commutative algebra (Zomorodian, Carlsson 2003).

• Discretize the t-variable to integers: t = 0, 1, 2, . . .

• Present X as an increasing sequence:

X : X0 ⊂ X1 ⊂ X2 ⊂ . . .

• Apply a homology functor H = H(−; k) to the sequence:

H(X) : H(X0)→ H(X1)→ H(X2)→ . . .

• Observe that H(X) is a graded module over the polynomial ring k[z],
where z acts by shifting to the right.

• Decompose this graded module as a direct sum of cyclic submodules.

• Summands z sk[z]/(z t−s) are recorded as intervals [s, t).

• Summands z sk[z] are recorded as intervals [s,+∞).
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Story 1: Persistence diagrams

Using quiver theory (Carlsson, dS 2010).

• Discretize the t-variable to integers: t = 0, 1, . . . , n − 1.

• Present X as a sequence of spaces with maps:

X : X0 → X1 → · · · → Xn−1

• Apply a homology functor H = H(−; k) to the sequence:

H(X) : H(X0)→ H(X1)→ · · · → H(Xn−1)

• Observe that H(X) is a representation of the quiver • → • → . . .→ •.
• Decompose H(X) as a direct sum of indecomposable representations.

• According to Gabriel (1970), the indecomposables are precisely the
intervals:

0→ · · · → 0→ k→ · · · → k→ 0→ · · · → 0

The list of summands of H(X) gives the persistence intervals.

When the arrows have mixed orientations ←,→, we get zigzag persistence.
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Story 1: Persistence diagrams

What if we wish to work with a continuous parameter?

Interval decomposition

• Let V be a persistence module defined over the real numbers R.

• Suppose

V =
⊕
k∈K

I[ak ,bk ]

where I = I[a,b] denotes the persistence module with

It =

{
k if t ∈ [a, b]

0 otherwise

and all maps i ts having full rank. (Open, half-open intervals allowed too.)

• Then we can define the persistence diagram to be

Dgm(V) = {{(ak , bk) | k ∈ K}},

a multiset of points in the half-plane above the diagonal.
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Story 1: Persistence diagrams

Problem

Not every V decomposes into intervals.

Theorem (Gabriel, Auslander, Ringel–Tachikawa, Webb, Crawley-Boevey)

Let V be a persistence module over T ⊆ R. In either of the following situations,
V decomposes into interval modules:

T is a finite set; or

Every Vt is finite-dimensional.

On the other hand, there exists a persistence module over Z which does not
admit an interval decomposition.

Solution (Chazal, dS, Glisse, Oudot 2016)

Define a measure which counts the number of persistence points in an arbitrary
rectangle. Infer the existence of the persistence diagram. This works if the maps
Vs → Vt are finite-rank whenever s < t.
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Story 1: Persistence diagrams

Solution (Chazal, dS, Glisse, Oudot 2012)

Define a measure which counts the number of persistence points in an arbitrary
rectangle. Infer the existence of the persistence diagram. This works if the maps
Vs → Vt are finite-rank whenever s < t.

Definition 1 (non-functorial)

Let
µ([a, b]× [c, d ]) = rcb − rca − rdb + rda

where rts = rank(Vs → Vt).

Definition 2 (functorial)

Let
µ([a, b]× [c, d ]) = dim (Ma,b,c,dV)

where

Ma,b,c,dV =

[
Im(v c

b ) ∩ Ker(vd
c )

Im(v c
a ) ∩ Ker(vd

c )

]
.

Note. Each Ma,b,c,d extends to a functor VectR → Vect.
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Story 1: Persistence diagrams

Solution step

It is necessary to show that µ is additive with respect to splitting a rectangle.

S

pa
c

b

d
R

a
c

b

d
U

V

a

q

b
c

d
T

Proof 1 (for horizontal split)

rcb − rca − rdb + rda = (rcp − rca − rdp + rda ) + (rcb − rcp − rdb + rdp )

Proof 2 (for horizontal split)

There is a short exact sequence

0→

[
Im(v c

p ) ∩ Ker(vd
c )

Im(v c
a ) ∩ Ker(vd

c )

]
→
[

Im(v c
b ) ∩ Ker(vd

c )

Im(v c
a ) ∩ Ker(vd

c )

]
→
[

Im(v c
b ) ∩ Ker(vd

c )

Im(v c
p ) ∩ Ker(vd

c )

]
→ 0

or, in other words, a short exact sequence of functors

0 // Ma,p,c,d
// Ma,b,c,d

// Mp,b,c,d
// 0
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Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V : R→ Vect be a persistence module. Select

· · · < a−2 < a−1 < a0 < a1 < a2 < . . .

The functorial persistence diagram with respect to (an) is the function

(m, n) 7→ Mam,am+1,an,an+1V

for integers m < n. At each point there is a vector space.

Pros and cons

• A map V→W between persistence modules induces a map between f.p.d.

• This method defines a persistence diagram in any abelian category.

• It is not so easy to change the discretization.

• What is the right metric between these diagrams?

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V : R→ Vect be a persistence module. Select

· · · < a−2 < a−1 < a0 < a1 < a2 < . . .

The functorial persistence diagram with respect to (an) is the function

(m, n) 7→ Mam,am+1,an,an+1V

for integers m < n. At each point there is a vector space.

Pros and cons

• A map V→W between persistence modules induces a map between f.p.d.

• This method defines a persistence diagram in any abelian category.

• It is not so easy to change the discretization.

• What is the right metric between these diagrams?

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V : R→ Vect be a persistence module. Select

· · · < a−2 < a−1 < a0 < a1 < a2 < . . .

The functorial persistence diagram with respect to (an) is the function

(m, n) 7→ Mam,am+1,an,an+1V

for integers m < n. At each point there is a vector space.

Pros and cons

• A map V→W between persistence modules induces a map between f.p.d.

• This method defines a persistence diagram in any abelian category.

• It is not so easy to change the discretization.

• What is the right metric between these diagrams?

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V : R→ Vect be a persistence module. Select

· · · < a−2 < a−1 < a0 < a1 < a2 < . . .

The functorial persistence diagram with respect to (an) is the function

(m, n) 7→ Mam,am+1,an,an+1V

for integers m < n. At each point there is a vector space.

Pros and cons

• A map V→W between persistence modules induces a map between f.p.d.

• This method defines a persistence diagram in any abelian category.

• It is not so easy to change the discretization.

• What is the right metric between these diagrams?

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V : R→ Vect be a persistence module. Select

· · · < a−2 < a−1 < a0 < a1 < a2 < . . .

The functorial persistence diagram with respect to (an) is the function

(m, n) 7→ Mam,am+1,an,an+1V

for integers m < n. At each point there is a vector space.

Pros and cons

• A map V→W between persistence modules induces a map between f.p.d.

• This method defines a persistence diagram in any abelian category.

• It is not so easy to change the discretization.

• What is the right metric between these diagrams?

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 2: Interleaving

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} → {diagrams} is 1-Lipschitz.

Relators

The metrics on the two spaces are defined in terms of ‘relators’.

• Two persistence modules may be related by an interleaving.

• Two diagrams may be related by a matching.

Every relator, of each type, has a size associated with it. The metrics are defined
by finding the infimum of the size of relators between a given pair of objects.
(Compare the geodesic distance in a Riemannian manifold.)

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

If two persistence modules admit an ε-interleaving, then their persistence dia-
grams admit an ε-matching.
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

Glisse’s Lemma (Chazal, Cohen-Steiner, Glisse, Guibas, Oudot 2009)

The proof of the stability theorem relies on the following fact. If V,W are
ε-interleaved, then there is a 1-parameter family

(Vs | s ∈ [0, ε])

with V0 = V and Vε = W, and where Vr ,Vs are |r − s|-interleaved for all r , s.

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 2: Interleaving

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

Glisse’s Lemma (Chazal, Cohen-Steiner, Glisse, Guibas, Oudot 2009)

The proof of the stability theorem relies on the following fact. If V,W are
ε-interleaved, then there is a 1-parameter family

(Vs | s ∈ [0, ε])

with V0 = V and Vε = W, and where Vr ,Vs are |r − s|-interleaved for all r , s.

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 2: Interleaving

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 2: Interleaving

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

The [various conditions] require the diagrams

Vs

v st //

φs

!!

Vt

v tt+2ε
//

φt

""

Vt+2ε Vs+ε

v s+ε
t+ε
// Vt+ε

φt+ε
""

Ws+ε
w s+ε
t+ε

// Wt+ε

ψt+ε

<<

Ws
w s
t

//

ψs

<<

Wt
w t
t+2ε

//

ψt

<<

Wt+2ε

to commute for all s < t.
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

The [various conditions] amount to the assertion that there is a unique way to
get from any of the Vt ,Wt to any other. All compositions of the v t

s ,w
t
s , φt , ψt

with the same start and end point must agree.
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

Interleavor categories (Chazal, dS, Glisse, Oudot 2016)

An ε-interleaved pair of modules (V,W,Φ,Ψ) is ‘the same thing’ as a persistence
module defined over the set I = R×{0, ε} (two copies of the real line) with the
partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

s + ε ≤ t if a 6= b
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Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

Interleavor categories (Chazal, dS, Glisse, Oudot 2016)

An ε-interleaved pair of modules (V,W,Φ,Ψ) is ‘the same thing’ as a persistence
module defined over the set I = R×{0, ε} (two copies of the real line) with the
partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

s + ε ≤ t if a 6= b

R× {0, ε}: //

�� �� �� �� �� �� �� �� �� //

?? ?? ?? ?? ?? ?? ?? ?? ??

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 2: Interleaving

Interleavings for classical persistence modules

Two classical persistence modules V,W are ε-interleaved iff the following functor
extension problem has a solution:

Vect

R

V

::

// R× {0, ε}

OO

R

W

dd

oo

Here R× {0, ε} has the partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

s + ε ≤ t if a 6= b
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Story 2: Interleaving

Proof of Glisse’s Lemma

Consider the set J = R× [0, ε] with the partial order

(s, a) ≤ (t, b)⇔ s + |a− b| ≤ t

This contains the interleavor category I as a sub-poset. An ε-interleaving between
two persistence modules corresponds to a functor I → Vect which restricts to
V,W on the two respective copies of the real line.

An interpolation (Vt) is found constructing an extension of the functor to J:

Vect

I

==

// J

OO

Since I is a full subcategory of J, and Vect contains all limits and colimits, the
problem is solved by taking a left or right Kan extension.
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// R× [0, ε]

OO

Since I is a full subcategory of J, and Vect contains all limits and colimits, the
problem is solved by taking a left or right Kan extension.
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Story 2: Interleaving

Question (of Morozov)

Is the persistence diagram functorial?

Answer 2

The persistence diagram is a map

{persistence modules} → {diagrams in the upper half-plane}

What are the morphisms that make these into categories?

• A morphism V1 → V2 could be an interleaving pair (φ, ψ).

• A morphism Dgm1 → Dgm2 could be a matching between points.

For both notions there is an associative composition law with identities.

Question (of Morozov, reworded)

Does an ε-interleaving between two persistence modules specify a ε-matching
between their diagrams, in a way that respects composition?

Answer 2+ (Bauer, Lesnick 2015)

Almost. See recent work of Ulrich Bauer and Michael Lesnick.
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Story 3: Interleaving Metrics

Interleavings for classical persistence modules

Two classical persistence modules V,W are ε-interleaved iff the following functor
extension problem has a solution:

Vect

R

V

::

// R× {0, ε}

OO

R

W

dd

oo

Here R× {0, ε} has the partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

s + ε ≤ t if a 6= b
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Story 3: Interleaving Metrics

Interleavings for generalized persistence modules over a poset

Two persistence modules V,W : P → C are Ω-interleaved iff the following
functor extension problem has a solution:

C

P

V

;;

// P ∪Ω P

OO

P

W

cc

oo

Here P ∪Ω P has the partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

Ωs ≤ t if a 6= b

where Ω : P→ P is a translation.
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Story 3: Interleaving Metrics

Translations (Bubenik, dS, Scott 2015)

TransP is the poset of functions Ω : P→ P that are order-preserving and satisfy
x ≤ Ωx for all x ∈ P.

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Ωε | ε ∈ [0,∞))

such that
Ωε1 Ωε2 ≤ Ωε1+ε2

for all ε1, ε2 ∈ [0,∞).

Sublinear Projections

A sublinear projection is a map π : TransP → [0,∞] such that

π(Ω1Ω2) ≤ π(Ω1) + π(Ω2)

for all Ω1,Ω2 ∈ TransP.
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Story 3: Interleaving Metrics

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Ωε | ε ∈ [0,∞))

such that
Ωε1 Ωε2 ≤ Ωε1+ε2

for all ε1, ε2 ∈ [0,∞).

Examples of superlinear famlies

• P = R,
Ωε(t) = t + ε.

• P = {compact intervals in the real line},
Ωε([a, b]) = [a− ε, b + ε].

• P = {closed subsets of a metric space X},
Ωε(V ) = V ε = {x ∈ X such that d(x ,V ) ≤ ε}.
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Story 3: Interleaving Metrics

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Ωε | ε ∈ [0,∞))

such that
Ωε1 Ωε2 ≤ Ωε1+ε2

for all ε1, ε2 ∈ [0,∞).

Interleaving distance (Bubenik, dS, Scott 2015)

Given a superlinear family (Ωε) of translations of P, we define the interleaving
distance

di(V,W) = inf (ε | V,W are Ωε-interleaved)

between generalized persistence modules V,W : P→ C.
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Story 3: Interleaving Metrics

Sublinear Projections

A sublinear projection is a map π : TransP → [0,∞] such that

π(Ω1Ω2) ≤ π(Ω1) + π(Ω2)

for all Ω1,Ω2 ∈ TransP.

Interleaving distance (Bubenik, dS, Scott 2015)

Given a sublinear projection family π : TransP → [0,∞], we define the interleav-
ing distance

di(V,W) = inf (π(Ω) | V,W are Ω-interleaved)

between generalized persistence modules V,W : P→ C.
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Story 3: Interleaving Metrics

Functoriality

Suppose V,W : P→ C and H : C→ D are functors. Then

di(HV,HW) ≤ di(V,W)

for any superlinear family or sublinear projection.

Proof.

An Ω-interleaving of V,W gives an Ω-interleaving of HV,HW:

P

��

V

##
P ∪Ω P // C

H // D

P

OO

W

;;
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Story 3: Interleaving Metrics

Functoriality

Suppose V,W : P→ C and H : C→ D are functors. Then

di(HV,HW) ≤ di(V,W)

for any superlinear family or sublinear projection.

Example: sublevelset persistence

Let X be a topological space and f , g : X → R be functions with ‖f −g‖∞ ≤ ε.

• The persistence modules V,W : R→ Top defined

V(t) = f −1(−∞, t], W(t) = g−1(−∞, t],

are ε-interleaved.
(There are natural inclusions V(t) ⊆W(t + ε) and W(t) ⊆ V(t + ε).)

• For any homology functor H : Top→ Vect, the persistence modules
HV,HW : R→ Vect are ε-interleaved.
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Story 3: Interleaving Metrics

Interleavings for generalized persistence modules over a poset

Two persistence modules V,W : P → C are Ω-interleaved iff the following
functor extension problem has a solution:

C

P

V

;;

// P ∪Ω P

OO

P

W

cc

oo

Here P ∪Ω P has the partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

Ωs ≤ t if a 6= b

where Ω : P→ P is a translation.
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Story 3: Interleaving Metrics

Interleavings for generalized persistence modules over an arbitrary category

Two persistence modules V,W : D → C are ∆-interleaved iff the following
functor extension problem has a solution:

C

D

V
??

I1

// ∆

OO

D

W
``

I2

oo

Here ∆ is a cospan. The two functors I1, I2 are full-and-faithful. Every object
of ∆ is of the form I1(d) or I2(d).
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Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

• qq

Thus D has one object and morphisms {0, 1, 2, 3, . . . }.

• Functors D→ Top are discrete dynamical systems.

Let ∆n be the category with two objects •1 and •2 and morphisms

Mor(•1, •1) = Mor(•1, •1) = {0, 1, 2, 3, . . . }
Mor(•1, •2) = Mor(•2, •1) = {n, n + 1, n + 2, n + 3, . . . }

with addition as composition.

• ∆n-interleavings are shift-equivalences.

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

• qq

Thus D has one object and morphisms {0, 1, 2, 3, . . . }.

• Functors D→ Top are discrete dynamical systems.

Let ∆n be the category with two objects •1 and •2 and morphisms

Mor(•1, •1) = Mor(•1, •1) = {0, 1, 2, 3, . . . }
Mor(•1, •2) = Mor(•2, •1) = {n, n + 1, n + 2, n + 3, . . . }

with addition as composition.

• ∆n-interleavings are shift-equivalences.

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

• qq

Thus D has one object and morphisms {0, 1, 2, 3, . . . }.

• Functors D→ Top are discrete dynamical systems.

Let ∆n be the category with two objects •1 and •2 and morphisms

Mor(•1, •1) = Mor(•1, •1) = {0, 1, 2, 3, . . . }
Mor(•1, •2) = Mor(•2, •1) = {n, n + 1, n + 2, n + 3, . . . }

with addition as composition.

• ∆n-interleavings are shift-equivalences.

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

• qq

Thus D has one object and morphisms {0, 1, 2, 3, . . . }.

• Functors D→ Top are discrete dynamical systems.

Let ∆n be the category with two objects •1 and •2 and morphisms

Mor(•1, •1) = Mor(•1, •1) = {0, 1, 2, 3, . . . }
Mor(•1, •2) = Mor(•2, •1) = {n, n + 1, n + 2, n + 3, . . . }

with addition as composition.

• ∆n-interleavings are shift-equivalences.

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 4: Set-Valued Persistence Modules

Merge trees (Cagliari, Ferri, Pozzi 2001, & Morozov, Beketayev, Weber 2013)

• A functor T : R→ Set can be thought of as a merge tree.

• Let X be a topological space and f : X → R a function. Then

T(t) = π0f
−1(−∞, t]

T[s ≤ t] = π0

[
f −1(−∞, t] ⊆ f −1(−∞, t]

]
defines the sublevelset merge tree of (X , f ).

Interleaving Distance between Merge Trees 3

R
epi f Tf

a f̄�1(a)

XFa

Fig. 1 A graph of function f : X ! R together with its merge tree, Tf . The three compo-
nents of a levelset of the projection f̄ : epi f ! R are highlighted in bold together with the
points of the merge tree that represent them. This levelset projects onto the sublevel set,
Fa, highlighted inside the domain, X.

function f ; see Figure 1. Intuitively, it keeps track of the evolution of connected
components in the sublevel sets of f . A component appears at a minimum
and grows until it merges with another component at a saddle. We note that
according to our definition, a merge tree extends to infinity. This formulation
di↵ers from what usually appears in literature, where the root of the merge
tree is taken to be the global maximum of the function. This distinction is
minor, but useful to us for technical reasons that will become clear in the next
section.

Since the points identified by the equivalence relation in the definition of
a merge tree belong to the same level sets of f̄ , they have the same function
value. Therefore, there is a well-defined map f̂ : Tf ! R from the merge

tree to the range of f̄ — it is the unique map that satisfies f̄ = f̂ � q, where
q : epi f ! Tf is defined by q(x) = y, where y is the component of the level
set f̄�1(f̄(x)) that contains x.

We denote by i" : Tf ! Tf the "-shift map in the tree Tf . To define it,

recall that x 2 Tf , with f̂(x) = a, represents a connected component X in the
sublevel set Fa of function f . The inclusion of sublevel sets Fa ✓ Fa+" maps
X into a connected component Y of Fa+". Let y represent this component in
the tree Tf . Then i"(x) = y. In other words, to find the image of x under i",
we simply follow the path from x to the root of Tf until we encounter a point

y with f̂(y) = a + ".

Persistent homology. A 0–dimensional homology group of a space Y , denoted
by H0(Y ), is a group of formal sums of connected components of Y . For sim-
plicity, consider coe�cients in Z2. In this case, an element of H0(Y ) is a set of
connected components of Y ; the group operation is the symmetric di↵erence
of sets. If space Y is a subset of some space Z, Y ✓ Z, then the inclusion of
spaces maps connected components of Y into connected components of Z, and
so induces a map between homology groups, ◆ : H0(Y ) ! H0(Z).

Given a function f : X ! R, we can track the evolution of homology groups
of its sublevel sets, Fa. We get a sequence of groups, H0(Fa), connected by

• If f , g : X → R with ‖f − g‖∞ ≤ ε then di(T,U) ≤ ε.
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Reeb graphs (dS, Munch, Patel 2016)

• A functor F : Int→ Set can be thought of as a graph over the real line.
(Technically we require F to satisfy a cosheaf condition.)

• Let X be a topological space and f : X → R a function. Then

Ff (I ) = π0f
−1(I )

Ff [I ⊆ J] = π0

[
f −1(I ) ⊆ f −1(J)

]
defines the Reeb graph of (X , f ).

Figure 1: The Reeb graph is used to study connected components of levelsets.

1.2 Reeb graphs and Reeb cosheaves

Our starting point is a topological space X equipped with a continuous real-valued function
f : X ! R. We call the pair (X, f) a ‘space fibered over R’ or, more succinctly, an R-space.
For reasons of convenience we will often abbreviate (X, f) simply to f . The context will indicate
whether we are thinking of f as a function or as an R-space.

We can think of an R-space as a 1-parameter family of topological spaces f�1(a), the levelsets
of f . The topology on X gives information on how these spaces relate to each other. For instance,
each levelset can be partitioned into connected components. How can we track these components
as the parameter a varies? An answer is provided by the Reeb graph.

The (geometric) Reeb graph of an R-space f is an R-space f defined as follows. First, we
define an equivalence relation on the domain of f by saying two points x, x0 2 X are equivalent if
they lie on the same levelset f�1(a) and on the same component of that levelset. Let Xf be the
quotient space defined by this equivalence relation, and let f : Xf ! R be the function inherited
from f . This is the Reeb graph. See, for example, Figure 1.

If f is a Morse function on a compact manifold, or a piecewise linear function on a compact
polyhedron, then its Reeb graph is topologically a finite graph with vertices at each critical value
of f . This situation is well studied. These examples are included in a larger class, the constructible
R-spaces, which have similar good behavior. We will say more about this in Section 2. If we work
in greater generality, the quotient X! Xf can be badly behaved. Among other things, we would
need to pay attention to the distinction between connected components and path components.
This is not an issue for constructible R-spaces, where the two concepts lead to the same outcome.

We now indicate an alternate way of recording the information stored in the geometric Reeb
graph. The abstract Reeb graph or Reeb cosheaf of an R-space f is defined to be the
following collection of data (see Figure 2):

• for each open interval I ✓ R, let F(I) be the set of path-components of f�1(I);

• for I ✓ J , let F[I ✓ J ] be the map F(I)! F(J) induced by the inclusion f�1(I) ✓ f�1(J).

Let F denote the entirety of this data. It is easily confirmed that F is a functor (see Section 1.3)
from the category of open intervals to the category of sets. As such, F is sometimes called a
pre-cosheaf on the real line in the category of sets. The important point is that this information,
in the constructible case, is enough to recover the geometric Reeb graph; see Figure 3. The
other important point is that it is sometimes easier to work with the pre-cosheaf than with the
geometric Reeb graph.

4

• If f , g : X → R with ‖f − g‖∞ ≤ ε then di(F,G) ≤ ε.
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Reeb graphs

• An R-space (X , f ) is a topological space X with a map f : X → R.

• An R-space is a Reeb graph if X is a graph and each f −1(t) is finite.
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each levelset can be partitioned into connected components. How can we track these components
as the parameter a varies? An answer is provided by the Reeb graph.

The (geometric) Reeb graph of an R-space f is an R-space f defined as follows. First, we
define an equivalence relation on the domain of f by saying two points x, x0 2 X are equivalent if
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If f is a Morse function on a compact manifold, or a piecewise linear function on a compact
polyhedron, then its Reeb graph is topologically a finite graph with vertices at each critical value
of f . This situation is well studied. These examples are included in a larger class, the constructible
R-spaces, which have similar good behavior. We will say more about this in Section 2. If we work
in greater generality, the quotient X! Xf can be badly behaved. Among other things, we would
need to pay attention to the distinction between connected components and path components.
This is not an issue for constructible R-spaces, where the two concepts lead to the same outcome.

We now indicate an alternate way of recording the information stored in the geometric Reeb
graph. The abstract Reeb graph or Reeb cosheaf of an R-space f is defined to be the
following collection of data (see Figure 2):

• for each open interval I ✓ R, let F(I) be the set of path-components of f�1(I);

• for I ✓ J , let F[I ✓ J ] be the map F(I)! F(J) induced by the inclusion f�1(I) ✓ f�1(J).

Let F denote the entirety of this data. It is easily confirmed that F is a functor (see Section 1.3)
from the category of open intervals to the category of sets. As such, F is sometimes called a
pre-cosheaf on the real line in the category of sets. The important point is that this information,
in the constructible case, is enough to recover the geometric Reeb graph; see Figure 3. The
other important point is that it is sometimes easier to work with the pre-cosheaf than with the
geometric Reeb graph.

4

Reeb functor

• The Reeb functor converts a (constructible) R-space into a Reeb graph:

(X , f ) 7−→ ((X/∼), f )

where x ∼ y iff x , y are in the same component of the same levelset of f .
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Reeb cosheaves (dS, Munch, Patel 2016)

• Let Int denote the poset of open intervals, with respect to inclusion.

• A Reeb graph gives rise to a functor F : Int→ Set that is constructible
and satisfies the cosheaf condition for unions of intervals.

F(I =
⋃

Iα) = colim
[∐

α,β F(Iα ∩ Iβ) ⇒
∐
α F(Iα)

]
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Reeb cosheaves (dS, Munch, Patel 2016)

• Let Int denote the poset of open intervals, with respect to inclusion.

• A Reeb graph corresponds to a functor F : Int→ Set that is constructible
and satisfies the cosheaf condition for unions of intervals.

Discrete Comput Geom

pre-cosheaves
on

cosheaves on

constructible
cosheaves on

Pre

Csh

Csh

Csh

cc

c

Top

Top

Reeb

-spaces

constructible
-spaces

Reeb graphs

Fig. 4 Road map of categories and functors. Categories of geometric objects (Sect. 2) occupy the left-hand
column; categories of functors (Sect. 3) occupy the right-hand column. The up-arrows are inclusions of
categories. The bottom row is an equivalence of categories

Subsequently, we will define a metric on Pre and smoothing operators onR-Top and
Pre. Through the diagram, these lead to a metric and a smoothing operator on Reeb.

2 The Geometric Categories

In Sects. 2.1, 2.2 and 2.3 we describe the three geometric categories, from largest to
smallest. In Sect. 2.4 we define and study the geometric Reeb functorR.

2.1 The Category of R-Spaces

An object of R-Top is a topological space X equipped with a continuous map f :
X → R, denoted (X, f ) or simply f . Point-preimages f −1(a) are known as level
sets or fibers of the R-space. A morphism ϕ : (X, f ) → (Y, g) is a continuous map
ϕ : X → Y such that the following diagram commutes:

X
ϕ !!

f ""!
!!

!!
!!

Y

g
##""

""
""

"

R

Composition and identity maps are defined in the obvious way.

Remark 2.1 Being an example of a slice category, R-Top is sometimes named
(Top ↓ R). In [48] it is called the category of scalar fields.

123

Author's personal copy
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Figure 1: The Reeb graph is used to study connected components of levelsets.

1.2 Reeb graphs and Reeb cosheaves

Our starting point is a topological space X equipped with a continuous real-valued function
f : X ! R. We call the pair (X, f) a ‘space fibered over R’ or, more succinctly, an R-space.
For reasons of convenience we will often abbreviate (X, f) simply to f . The context will indicate
whether we are thinking of f as a function or as an R-space.

We can think of an R-space as a 1-parameter family of topological spaces f�1(a), the levelsets
of f . The topology on X gives information on how these spaces relate to each other. For instance,
each levelset can be partitioned into connected components. How can we track these components
as the parameter a varies? An answer is provided by the Reeb graph.

The (geometric) Reeb graph of an R-space f is an R-space f defined as follows. First, we
define an equivalence relation on the domain of f by saying two points x, x0 2 X are equivalent if
they lie on the same levelset f�1(a) and on the same component of that levelset. Let Xf be the
quotient space defined by this equivalence relation, and let f : Xf ! R be the function inherited
from f . This is the Reeb graph. See, for example, Figure 1.

If f is a Morse function on a compact manifold, or a piecewise linear function on a compact
polyhedron, then its Reeb graph is topologically a finite graph with vertices at each critical value
of f . This situation is well studied. These examples are included in a larger class, the constructible
R-spaces, which have similar good behavior. We will say more about this in Section 2. If we work
in greater generality, the quotient X! Xf can be badly behaved. Among other things, we would
need to pay attention to the distinction between connected components and path components.
This is not an issue for constructible R-spaces, where the two concepts lead to the same outcome.

We now indicate an alternate way of recording the information stored in the geometric Reeb
graph. The abstract Reeb graph or Reeb cosheaf of an R-space f is defined to be the
following collection of data (see Figure 2):

• for each open interval I ✓ R, let F(I) be the set of path-components of f�1(I);

• for I ✓ J , let F[I ✓ J ] be the map F(I)! F(J) induced by the inclusion f�1(I) ✓ f�1(J).

Let F denote the entirety of this data. It is easily confirmed that F is a functor (see Section 1.3)
from the category of open intervals to the category of sets. As such, F is sometimes called a
pre-cosheaf on the real line in the category of sets. The important point is that this information,
in the constructible case, is enough to recover the geometric Reeb graph; see Figure 3. The
other important point is that it is sometimes easier to work with the pre-cosheaf than with the
geometric Reeb graph.

4

Reeb functor (two versions)

• The Reeb functor converts a (constructible) R-space into a Reeb graph:

(X , f ) 7−→ ((X/∼), f )

where x ∼ y iff x , y are in the same component of the same levelset of f .

or

• The Reeb functor converts a constructible R-space into a Reeb cosheaf:

F(I ) = π0f
−1(I )

G[I ⊆ J] = π0

[
f −1(I ) ⊆ f −1(J)

]
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (Ωε) of functors Int→ Int by setting

Ωε(I ) = I ε = “ε-neighbourhood of I”

Reeb interleaving

An ε-interleaving between F,G is given by two families of maps

φI : F(I )→ G(I ε), ψI : G(I )→ F(I ε)

which are natural with respect to inclusions I ⊆ J and such that

ψIε ◦ φI = F[I ⊆ I 2ε], φIε ◦ ψI = G[I ⊆ I 2ε]

for all I .

Stability Theorem

If f , g : X → R with ‖f − g‖∞ ≤ ε then di(F,G) ≤ ε.
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (Ωε) of functors Int→ Int by setting

Ωε(I ) = I ε = “ε-neighbourhood of I”

Cosheaf Smoothing Theorem

If F : Int→ Set is a (constructible) cosheaf, then so is FΩε : Int→ Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.
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Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu:
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Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu:

Discretized Reeb Graphs

• A discrete Reeb graph is a diagram

E
` //

r
// V

φ
// R

where E ,V are finite sets and φ`(e) < φr(e) for each e ∈ E .

• Each v ∈ V has a left- and right-degree:

degl(v) = #r−1(v), degr(v) = #`−1(v), deg(v) = (degl(v), degr(v)).

• The discrete Reeb graph is reduced if deg(v) 6= (1, 1) for all v .

The critical radius of a reduced graph is

εcrit = 1
2

min
{
φr(e)− φ`(v) | e ∈ E , degr(`(e)) > 1, degl(r(e)) > 1

}
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Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu:

Algorithm: smooth by ε

• If deg(v) = (1, ?) then v moves by +ε.

• If deg(v) = (?, 1) then v moves by −ε.
• If deg(v) = (?, ?) then split v into two and move by ±ε.

Valid up to the critical radius. Recompute at critical radius and recurse.
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Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu:
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Story 6: Generalised Factors

Image persistence (Cohen-Steiner, Edelsbrunner, Harer, Morozov 2009)

Let V,W : P→ Vect be persistence modules and let Φ : V⇒W. Then we can
define a persistence module Im(Φ) with

• [Im(Φ)](t) = Im(Vt
φt→Wt) for all t.

• [Im(Φ)](s ≤ t) = the map induced by the horizontal maps in:

Vs Vt

Ws Wt

//

��
φs

��
φt

//

We can similarly define Ker(Φ) and Coker(Φ).

Example

Suppose p : X → Y is a map of spaces, f : X → R, and g : Y → R. If f ≤ gp,
then p carries the t-sublevelset of f into the t-sublevelset of g , for all t, and the
persistence module Im(H(p)) is defined.
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Story 6: Generalised Factors

Three ways of thinking of a map between persistence modules (over N, say)

A functor 2→ VectN:

F0
// F1

// F2
// · · ·

��
G0

// G1
// G2

// · · ·

A functor N× 2→ Vect:

F0
//

��

F1
//

��

F2
//

��

· · ·

G0
// G1

// G2
// · · ·

A functor N→ Vect2:

F0

��

F1

��

F2

��

· · ·

G0

+3

G1

+3

G2

+3

· · ·
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Story 6: Generalised Factors

The exponential law

The following categories of functors

(DP)W = DP×W = (DW)P

are equal for any three categories D,P,W.

Image, Kernel, Cokernel functors

The operations Im, Ker and Coker can be thought of as functors Vect2 → Vect.

• Each operation converts any (V
α→W ) into a vector space.

• Given a commutative square, there are induced maps between images,
kernels, cokernels.

Proposition (Bubenik, dS, Scott)

The image persistence of Φ : V⇒W is equal to the composite

P Vect2 Vect//Φ̂ //Im

where Φ̂ is the interpretation of Φ as a functor P→ Vect2.
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Story 6: Generalised Factors

Generalized factor persistence (Bubenik, dS, Scott)

Given

• a category of persistence modules DP;

• a category W, which we call the auxiliary category;

• a functor DW N−→ E, which we call the generalized factor.

Then any functor F : W→ DP determines a persistence module in EP, by

(DP)W DW×P (DW)P EP

F F̂ NF̂

//

� // � //
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Story 6: Generalised Factors

Reductions of 2-dimensional persistence

Let V = (V (s, t)) ∈ VectR×R be a two-dimensional persistence module. Think
of this as a family (Wt) of 1-dimensional persistence modules. We will define
various generalized factors N : VectR → Vect.

• Fix a and define N(W) = W(a).

• Fix a < b and define N(W) = Im(W(a)→W(b)).

• Fix a < b ≤ c < d and define

N(W) =

[
Im
(
W(b)→W(c)

)
∩ Ker

(
W(c)→W(d)

)
Im
(
W(a)→W(c)

)
∩ Ker

(
W(c)→W(d)

) ]
Then there is a 1-parameter persistence module associated to each of these
functors.
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Story 6: Generalised Factors

Zigzag factors

Suppose Z is the category defined by:

• • • •// oo //

An element of VectZ is a diagram

W : W1 W2 W3 W4
//f oo

g
//h

Then, for example, the functor VectZ → Vect defined by

N(W) =

[
g(h−1(0))

f (W1)

]
picks out the part of W supported over W2,W3.

Therefore, given a zigzag of persistence modules

V1 V2 V3 V4
//f oo

g
//h

we can constrict a single persistence module which extracts the [2, 3] part.
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Story 7: The observable category

Tame persistence modules

Let V : R → Vect be a persistence module. If the maps Vs → Vt have finite
rank whenever s < t, then V has a persistence diagram. If V has an interval
decomposition, then the summands are identified exactly by the points in the
diagram. However, it is not guaranteed that V has an interval decomposition.

Ephemeral modules (Chazal, Crawley-Boevey, dS 2016)

A persistence module V is ephemeral if v t
s = 0 whenever s < t.

Then:

• The ephemeral modules comprise a Serre subcategory of the category of
persistence modules.

• We can form the Serre quotient category by formally inverting all maps
whose kernels and cokernels are ephemeral.

• In this category, every q-tame persistence module admits an interval
decomposition.

Perhaps this is the ‘correct’ category for real-parameter persistence?

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 7: The observable category

Tame persistence modules

Let V : R → Vect be a persistence module. If the maps Vs → Vt have finite
rank whenever s < t, then V has a persistence diagram. If V has an interval
decomposition, then the summands are identified exactly by the points in the
diagram. However, it is not guaranteed that V has an interval decomposition.

Ephemeral modules (Chazal, Crawley-Boevey, dS 2016)

A persistence module V is ephemeral if v t
s = 0 whenever s < t.

Then:

• The ephemeral modules comprise a Serre subcategory of the category of
persistence modules.

• We can form the Serre quotient category by formally inverting all maps
whose kernels and cokernels are ephemeral.

• In this category, every q-tame persistence module admits an interval
decomposition.

Perhaps this is the ‘correct’ category for real-parameter persistence?

Vin de Silva Pomona College Reeb Graph Smoothing Via Cosheaves



Story 7: The observable category

Definition

A Serre subcategory is a full subcategory C of an Abelian category such that
for any short exact sequence

0 −→ U −→ V −→W −→ 0

we have
V ∈ C ⇔ U ∈ C and W ∈ C.

Equivalently, the subcategory C is closed under subobjects, quotient objects, and
extensions.

Noise systems (Scolamiero et al., 2016)

Noise in topological data analysis can be studied by considering a nested family
(Cε | ε ∈ [0,∞) satisfying an enriched version of the Serre conditions:

V ∈ Cε ⇒ U ∈ Cε and W ∈ Cε

V ∈ Cε1+ε2 ⇐ U ∈ Cε1 and W ∈ Cε2 .

for any short exact sequence.
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