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Category Theory for Applied Topology

Why category theory?

e It is a convenient language for describing persistence modules.
e It gives clues to finding the ‘right’ definitions and concepts.
e It gives immediate access to deeper theorems.

e We are free to drop it when it doesn't fit.
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Category Theory for Applied Topology

Preordered sets

Let P be a set with a reflexive transitive relation <. Then

® objects = { elements of P }
e morphisms = { relations x < y }

defines a category P.

Directed graphs
A directed graph defines a category:

(Identities and composites are implicit.)
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Category Theory for Applied Topology

Sublevelset persistent homology

Let f : X — R. Consider the category n defined by

0 > 1 > > n—1,

and select ag < a; < --- < a,_1. From

= < = a
X2 s XA S s X n—l’

construct

H(X™) —— H(X™)

~

> H(X—1).
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Category Theory for Applied Topology

Sublevelset persistent homology

Let f : X — R. Consider the category n defined by

0 > 1 > > n—1,

and select ag < a; < --- < a,_1. From

C

S a
X2 G s X@n-1

~N

construct

H(X®) —— H(X*) . » H(X>).

o X':=f!(—o0,t] sublevelset

o Xs = f[s,4+00) superlevelset

o XEi=rF"1[s, 1] interlevelset
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Category Theory for Applied Topology

Sublevelset persistent homology

The ‘persistence module’

H(X®) —— H(X) > » H(X1)

can be thought of as a functor

F H
n > Top > Vect.

This means:

e For each object of n we have a vector space.

e For each morphism of n we have a linear map.
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Category Theory for Applied Topology

Sublevelset persistent homology

The ‘persistence module’

H(X®) —— H(X) » H(X?1)

can be thought of as a functor

F H
n > Top > Vect.

This means:
e For each object of n we have a vector space.

e For each morphism of n we have a linear map.

Generalized persistence modules (Bubenik, Scott 2014)

A ‘generalized persistence module’ is simply a functor V: C — D.

e Usually C is a pre-ordered set, such as n,N,Z,R.

e Usually D is an abelian category, such as Vect, Ab.
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Category Theory for Applied Topology

Generalized persistence modules (Bubenik, Scott 2014)

A ‘generalized persistence module’ is simply a functor V: C — D.
e Usually C is a pre-ordered set, such as n,N,Z,R.

e Usually D is an ‘abelian’ category, such as Vect, Ab.
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Category Theory for Applied Topology

Generalized persistence modules (Bubenik, Scott 2014)

A ‘generalized persistence module’ is simply a functor V: C — D.
e Usually C is a pre-ordered set, such as n,N,Z,R.

e Usually D is an ‘abelian’ category, such as Vect, Ab.

Categories of functors

The collection of functors C — D s itself a category, denoted D€. The mor-
phisms are natural transformations ¢ : V = W, defined by the following data:

e For every ¢ € C there is a map ¢ : V. — W,.
e For every map f : ¢ — ¢’ in C the diagram

V. w,

V[f]l lW[f]

VC/ ¢—) WC/
C,

is required to commute.
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Story 1: Persistence diagrams

Persistent homology takes a filtered space X = {X; | t € R} and returns a
barcode of intervals [p, g) C R or a persistence diagram of points (p, q) € R®.
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Story 1: Persistence diagrams

Persistent homology takes a filtered space X = {X; | t € R} and returns a
barcode of intervals [p, g) C R or a persistence diagram of points (p, q) € R®.
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Story 1: Persistence diagrams

Persistent homology takes a filtered space X = {X; | t € R} and returns a
barcode of intervals [p, g) C R or a persistence diagram of points (p, q) € R®.

How is this defined?
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Story 1: Persistence diagrams

Persistent homology takes a filtered space X = {X; | t € R} and returns a
barcode of intervals [p, g) C R or a persistence diagram of points (p, q) € R®.

How is this defined?

Algorithmic approach (Edelsbrunner, Letscher, Zomorodian 2000).

e Discretize the t-variable.

e Present X as a finite list of cells, attached in sequence.
e Some cells o generate new homology cycles.

e Other cells 7 destroy cycles created by an earlier o.

e There is an interval [t,, t.) for each such pair (o, 7).

e There is an interval [t,,+00) for each o whose cycle is never destroyed.
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Story 1: Persistence diagrams

Using commutative algebra (Zomorodian, Carlsson 2003).

e Discretize the t-variable to integers: t =0,1,2,...

e Present X as an increasing sequence:

X: XoCXiCXoC...

Apply a homology functor H = H(—; k) to the sequence:
H(X): H(Xo) = H(X1) = H(X:) — ...

Observe that H(X) is a graded module over the polynomial ring k[z],
where z acts by shifting to the right.

Decompose this graded module as a direct sum of cyclic submodules.

e Summands z°k[z]/(z"*) are recorded as intervals [s, t).

Summands z°k[z] are recorded as intervals [s, +00).
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Story 1: Persistence diagrams

Using quiver theory (Carlsson, dS 2010).

e Discretize the t-variable to integers: t =0,1,...,n— 1.

e Present X as a sequence of spaces with maps:

X: Xo—=>X1— - — X1

Apply a homology functor H = H(—; k) to the sequence:

H(X): H(X) — H(X1) = -+ = H(Xa-1)

Observe that H(X) is a representation of the quiver e — e — ... — o.

Decompose H(X) as a direct sum of indecomposable representations.

e According to Gabriel (1970), the indecomposables are precisely the
intervals:
0—»---—>0—>k—>---—k—=>0—---—0

The list of summands of H(X) gives the persistence intervals.
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Story 1: Persistence diagrams

Using quiver theory (Carlsson, dS 2010).

e Discretize the t-variable to integers: t =0,1,...,n— 1.

e Present X as a sequence of spaces with maps:

X: Xo—=>X1— - — X1

Apply a homology functor H = H(—; k) to the sequence:

H(X): H(X) — H(X1) = -+ = H(Xa-1)

Observe that H(X) is a representation of the quiver e — e — ... — o.

Decompose H(X) as a direct sum of indecomposable representations.

e According to Gabriel (1970), the indecomposables are precisely the
intervals:
0—»---—>0—>k—>---—k—=>0—---—0

The list of summands of H(X) gives the persistence intervals.

When the arrows have mixed orientations <—, —, we get zigzag persistence.
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Story 1: Persistence diagrams

What if we wish to work with a continuous parameter?

Interval decomposition

o Let V be a persistence module defined over the real numbers R.

V= @ Ifay, b4l

kek

o Suppose

where [ = I}, ;) denotes the persistence module with

I k ifte]a,b
"7 10 otherwise

and all maps il having full rank. (Open, half-open intervals allowed too.)

o Then we can define the persistence diagram to be
Dgm(V) = {(ax, bx) | k € K},

a multiset of points in the half-plane above the diagonal.
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Story 1: Persistence diagrams

Problem

Not every V decomposes into intervals.
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Story 1: Persistence diagrams

Problem

Not every V decomposes into intervals.

Theorem (Gabriel, Auslander, Ringel-Tachikawa, Webb, Crawley-Boevey)

Let V be a persistence module over T C R. In either of the following situations,
V decomposes into interval modules:

o T is a finite set; or
o Every V; is finite-dimensional.

On the other hand, there exists a persistence module over Z which does not
admit an interval decomposition.

Reeb Graph Smoothing Via Cosheaves



Story 1: Persistence diagrams

Problem

Not every V decomposes into intervals.

Theorem (Gabriel, Auslander, Ringel-Tachikawa, Webb, Crawley-Boevey)

Let V be a persistence module over T C R. In either of the following situations,
V decomposes into interval modules:

o T is a finite set; or
o Every V; is finite-dimensional.

On the other hand, there exists a persistence module over Z which does not
admit an interval decomposition.

Solution (Chazal, dS, Glisse, Oudot 2016)

Define a measure which counts the number of persistence points in an arbitrary
rectangle. Infer the existence of the persistence diagram. This works if the maps
Vs — V4 are finite-rank whenever s < t.
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Story 1: Persistence diagrams

Solution (Chazal, dS, Glisse, Oudot 2012)

Define a measure which counts the number of persistence points in an arbitrary
rectangle. Infer the existence of the persistence diagram. This works if the maps
Vs — V; are finite-rank whenever s < t.
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Story 1: Persistence diagrams

Solution (Chazal, dS, Glisse, Oudot 2012)

Define a measure which counts the number of persistence points in an arbitrary
rectangle. Infer the existence of the persistence diagram. This works if the maps
Vs — V; are finite-rank whenever s < t.

Definition 1 (non-functorial)

Let
p(la, b] x [c,d]) =r5 —rs —r) + 1]

where rf = rank(Vs — V).
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Story 1: Persistence diagrams

Solution (Chazal, dS, Glisse, Oudot 2012)

Define a measure which counts the number of persistence points in an arbitrary
rectangle. Infer the existence of the persistence diagram. This works if the maps
Vs — V; are finite-rank whenever s < t.

Definition 1 (non-functorial)

Let
p(la, b] x [c,d]) =r5 —rs —r) + 1]

where rf = rank(Vs — V).

Definition 2 (functorial)

Let
w([a, b] x [c,d]) =dim (M, p.c.aV)

where

c d
MypeqV = [Im(vb) N Ker(v¢ )] .

Im(vg) N Ker(ve)
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Story 1: Persistence diagrams

Solution (Chazal, dS, Glisse, Oudot 2012)

Define a measure which counts the number of persistence points in an arbitrary
rectangle. Infer the existence of the persistence diagram. This works if the maps
Vi — V; are finite-rank whenever s < t.

Definition 1 (non-functorial)

Let
p(la, b] x [c,d]) =r5 —rs —r) + 1]

where rf = rank(Vs — V).

Definition 2 (functorial)

Let
w([a, b] x [c,d]) =dim (M, p.c.aV)

where

c d
MypeqV = [Im(vb) N Ker(v¢ )] .

Im(vg) N Ker(ve)

Note. Each M, . 4 extends to a functor Vect® — Vect.

o
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Story 1: Persistence diagrams

Solution step

It is necessary to show that p is additive with respect to splitting a rectangle.
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Story 1: Persistence diagrams

Solution step

It is necessary to show that p is additive with respect to splitting a rectangle.

Proof 1 (for horizontal split)

c c d d c c d d c c d d
=5 =l 15 = (=15 =y 4= 18) 4 (s = 5 = @ 4= 1)
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Story 1: Persistence diagrams

Solution step
It is necessary to show that p is additive with respect to splitting a rectangle.

Proof 1 (for horizontal split)

c c d d c c d d c c d d
=5 =l 15 = (=15 =y 4= 18) 4 (s = 5 = @ 4= 1)

Proof 2 (for horizontal split)

There is a short exact sequence

Im(vg) N Ker(ve) Im(vg) N Ker(vd) Im(vg) N Ker(ve)
0= [Im(v§) N Ker(vcd)] - [Im(vac) N Ker(vc")] - {Im(v,f) N Ker(vg)] -0

or, in other words, a short exact sequence of functors

0 — Ma,p,c,d — Ma,b,c,d — M, ,b,c,d — 0
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Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Reeb Graph Smoothing Via Cosheaves



Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V: R — Vect be a persistence module. Select

< as<ag<ag<aa<a<...
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Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V: R — Vect be a persistence module. Select

< as<ag<ag<aa<a<...

The functorial persistence diagram with respect to (a,) is the function

(m, n) — M, \%

m»@m+1,3n,dn+1

for integers m < n. At each point there is a vector space.
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Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V: R — Vect be a persistence module. Select

< as<ag<ag<aa<a<...

The functorial persistence diagram with respect to (a,) is the function
(M, n) = Mapapi1,30,801 Y

for integers m < n. At each point there is a vector space.

Pros and cons

e A map V — W between persistence modules induces a map between f.p.d.

e This method defines a persistence diagram in any abelian category.

e It is not so easy to change the discretization.
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Story 1: Persistence diagrams

Question (of Morozov)

Is the persistence diagram functorial?

Answer 1: Constructing a functorial persistence diagram

Let V: R — Vect be a persistence module. Select

< as<ag<ag<aa<a<...

The functorial persistence diagram with respect to (a,) is the function

(m, n) — M, \%

m»@m+1,3n,dn+1

for integers m < n. At each point there is a vector space.

Pros and cons

e A map V — W between persistence modules induces a map between f.p.d.

e This method defines a persistence diagram in any abelian category.
e It is not so easy to change the discretization.
e What is the right metric between these diagrams?
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Story 2: Interleaving

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} — {diagrams} is 1-Lipschitz.
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Story 2: Interleaving

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} — {diagrams} is 1-Lipschitz.

Relators

The metrics on the two spaces are defined in terms of ‘relators’.
e Two persistence modules may be related by an interleaving.
e Two diagrams may be related by a matching.

Every relator, of each type, has a size associated with it. The metrics are defined
by finding the infimum of the size of relators between a given pair of objects.
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Story 2: Interleaving

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} — {diagrams} is 1-Lipschitz.

Relators

The metrics on the two spaces are defined in terms of ‘relators’.
e Two persistence modules may be related by an interleaving.
e Two diagrams may be related by a matching.

Every relator, of each type, has a size associated with it. The metrics are defined
by finding the infimum of the size of relators between a given pair of objects.
(Compare the geodesic distance in a Riemannian manifold.)
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Story 2: Interleaving

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} — {diagrams} is 1-Lipschitz.

Relators

The metrics on the two spaces are defined in terms of ‘relators’.
e Two persistence modules may be related by an interleaving.
e Two diagrams may be related by a matching.

Every relator, of each type, has a size associated with it. The metrics are defined
by finding the infimum of the size of relators between a given pair of objects.
(Compare the geodesic distance in a Riemannian manifold.)

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

If two persistence modules admit an e-interleaving, then their persistence dia-
grams admit an e-matching.
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

e 2 Ve = Weye et We — Viye

such that [various conditions].
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Story 2: Interleaving

Definition
Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

¢t 2 Ve — Wi et We — Viye

such that [various conditions].

Glisse's Lemma (Chazal, Cohen-Steiner, Glisse, Guibas, Oudot 2009)

The proof of the stability theorem relies on the following fact. If V,W are
e-interleaved, then there is a 1-parameter family

(Vs | s €[0,€])

with Vo =V and V. = W, and where V,, V; are |r — s|-interleaved for all r,s.
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

e 2 Ve = Weye e : We — Vige

such that [various conditions].
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

¢t 2 Ve — Wi et We — Viye

such that [various conditions].

The [various conditions] require the diagrams

v vt+2€ tsI:
> Vt+2e Vs+e — Vt+e
Ptte
Ptte
5+e s—> Wt+e ? Wt+2e
Wite t Wr+2e

to commute for all s < t.
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Story 2: Interleaving

Definition
Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

¢t 2 Ve — Wi et We — Viye

such that [various conditions].

The [various conditions] amount to the assertion that there is a unique way to
get from any of the Vi, W; to any other. All compositions of the v, wl, ¢, 9+
with the same start and end point must agree.
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

e 2 Ve = Weye e : We — Vige

such that [various conditions].
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

e 2 Ve = Weye et We — Viye

such that [various conditions].

Interleavor categories (Chazal, dS, Glisse, Oudot 2016)

An e-interleaved pair of modules (V, W, ® W) is ‘the same thing’ as a persistence
module defined over the set | = R x {0, €} (two copies of the real line) with the
partial order

s<t ifa=»b

(s,a)S(t,b)©{5+ESt ifa#b
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Story 2: Interleaving

Definition

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

¢t 2 Ve — Wi et We — Viye

such that [various conditions].

Interleavor categories (Chazal, dS, Glisse, Oudot 2016)

An e-interleaved pair of modules (V, W, ® W) is ‘the same thing’ as a persistence
module defined over the set | = R x {0, €} (two copies of the real line) with the
partial order

s<t ifa=»b

(s,a)g(t,b)©{5+6§t ifatb




Story 2: Interleaving

Interleavings for classical persistence modules

Two classical persistence modules V, W are e-interleaved iff the following functor
extension problem has a solution:

Vect
v W
R SRx{0,J+——R
Here R x {0, ¢} has the partial order

s<t ifa=»b

(s,a)S(tab)‘i’{s_i_ESt ifa#b
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Story 2: Interleaving

Proof of Glisse's Lemma

Consider the set J = R x [0, €] with the partial order
(s,a) < (t,b) & s+|a—b| <t

This contains the interleavor category | as a sub-poset. An e-interleaving between
two persistence modules corresponds to a functor | — Vect which restricts to
V, W on the two respective copies of the real line.

An interpolation (V) is found constructing an extension of the functor to J:

Vect

1

Since | is a full subcategory of J, and Vect contains all limits and colimits, the
problem is solved by taking a left or right Kan extension.
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Story 2: Interleaving

Proof of Glisse's Lemma

Consider the set J = R x [0, €] with the partial order
(s,a) < (t,b) & s+|a—b| <t

This contains the interleavor category | as a sub-poset. An e-interleaving between
two persistence modules corresponds to a functor | — Vect which restricts to
V, W on the two respective copies of the real line.

An interpolation (V) is found constructing an extension of the functor to J:

Vect

R x {0,¢} —— R ><E[0,e]

Since | is a full subcategory of J, and Vect contains all limits and colimits, the
problem is solved by taking a left or right Kan extension.
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Story 2: Interleaving

Question (of Morozov)

Is the persistence diagram functorial?
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Story 2: Interleaving

Question (of Morozov)

Is the persistence diagram functorial?

Answer 2

The persistence diagram is a map
{persistence modules} — {diagrams in the upper half-plane}

What are the morphisms that make these into categories?

e A morphism Vi — V5 could be an interleaving pair (¢, ).

e A morphism Dgm; — Dgm, could be a matching between points.

For both notions there is an associative composition law with identities.
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Story 2: Interleaving

Question (of Morozov)

Is the persistence diagram functorial?

Answer 2

The persistence diagram is a map
{persistence modules} — {diagrams in the upper half-plane}

What are the morphisms that make these into categories?

e A morphism Vi — V5 could be an interleaving pair (¢, ).

e A morphism Dgm; — Dgm, could be a matching between points.

For both notions there is an associative composition law with identities.

Question (of Morozov, reworded)

Does an e-interleaving between two persistence modules specify a e-matching
between their diagrams, in a way that respects composition?
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Story 2: Interleaving

Question (of Morozov)

Is the persistence diagram functorial?

Answer 2

The persistence diagram is a map
{persistence modules} — {diagrams in the upper half-plane}

What are the morphisms that make these into categories?

e A morphism Vi — V5 could be an interleaving pair (¢, ).

e A morphism Dgm; — Dgm, could be a matching between points.

For both notions there is an associative composition law with identities.

Question (of Morozov, reworded)

Does an e-interleaving between two persistence modules specify a e-matching
between their diagrams, in a way that respects composition?

v

Answer 27 (Bauer, Lesnick 2015)

Almost. See recent work of Ulrich Bauer and Michael Lesnick.
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Story 3: Interleaving Metrics

Interleavings for classical persistence modules

Two classical persistence modules V, W are e-interleaved iff the following functor
extension problem has a solution:

Vect
v W
R SRx{0,J+——R
Here R x {0, ¢} has the partial order

s<t ifa=»b

(s,a)S(tab)‘i’{s_i_ESt ifa#b
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Story 3: Interleaving Metrics

Interleavings for generalized persistence modules over a poset

Two persistence modules VW : P — C are Q-interleaved iff the following
functor extension problem has a solution:

P

P——PUqgP<——P
Here P Ugq P has the partial order

s<t ifa=»b

(S"")S(t’b)@{nsgt ifab
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Story 3: Interleaving Metrics

Interleavings for generalized persistence modules over a poset

Two persistence modules VW : P — C are Q-interleaved iff the following
functor extension problem has a solution:

P

P——PUqgP<——P
Here P Ugq P has the partial order

s<t ifa=»b

(S"")S(t’b)@{nsgt ifab

where Q2 : P — P is a translation.
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Story 3: Interleaving Metrics

Translations (Bubenik, dS, Scott 2015)

Transp is the poset of functions Q2 : P — P that are order-preserving and satisfy
x < Qx for all x € P.
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Story 3: Interleaving Metrics

Translations (Bubenik, dS, Scott 2015)

Transp is the poset of functions Q2 : P — P that are order-preserving and satisfy
x < Qx for all x € P.

Superlinear Families

A superlinear family is a 1-parameter family of translations of P
(Qc | € €[0,00))

such that
QeIQeg S QEl+€2

for all €1, €2 € [0, 00).
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Story 3: Interleaving Metrics

Translations (Bubenik, dS, Scott 2015)

Transp is the poset of functions Q2 : P — P that are order-preserving and satisfy
x < Qx for all x € P.

Superlinear Families

A superlinear family is a 1-parameter family of translations of P
(Qc | € €[0,00))

such that
QeIQeg S QEl+€2

for all €1, €2 € [0, 00).

Sublinear Projections

A sublinear projection is a map 7 : Transp — [0, 0] such that

(1) < 7(Q1) + 7(Q2)

for all Q1,5 € Transp.
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Story 3: Interleaving Metrics

Superlinear Families

A superlinear family is a 1-parameter family of translations of P
(Qe [ € € [0, 00))

such that
Qe1Q€2 < Q€1+€2

for all €1, €2 € [0, 00).
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Story 3: Interleaving Metrics

Superlinear Families

A superlinear family is a 1-parameter family of translations of P
(Qe [ € € [0, 00))

such that
Qelﬂez S Q€1+€2

for all €1, €2 € [0, 00).

Examples of superlinear famlies

e P=R,
Q(t)=t+e.

e P = {compact intervals in the real line},
Qc([a,b]) = [a— €, b+¢].

o P = {closed subsets of a metric space X},
Q(V) = Ve = {x € X such that d(x, V) < €}.
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Story 3: Interleaving Metrics

Superlinear Families

A superlinear family is a 1-parameter family of translations of P
(Qe [ € € [0, 00))

such that
Qe1Q€2 < Q€1+€2

for all €1, €2 € [0, 00).
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Story 3: Interleaving Metrics

Superlinear Families

A superlinear family is a 1-parameter family of translations of P
(Qe [ € € [0, 00))

such that
Qelﬂez S Q€1+€2

for all €1, €2 € [0, 00).

Interleaving distance (Bubenik, dS, Scott 2015)

Given a superlinear family (€¢) of translations of P, we define the interleaving
distance
di(V, W) = inf (¢ | V, W are Q.-interleaved)

between generalized persistence modules V, W : P — C.
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Story 3: Interleaving Metrics

Sublinear Projections

A sublinear projection is a map 7 : Transp — [0, co] such that

7('(9192) < 71'(91) + W(Qz)

for all 1, € Transp.

Interleaving distance (Bubenik, dS, Scott 2015)

Given a sublinear projection family 7 : Transp — [0, o0], we define the interleav-
ing distance

di(V, W) = inf (7(2) | V,W are Q-interleaved)

between generalized persistence modules V, W : P — C.
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Story 3: Interleaving Metrics

Suppose V., W : P — C and H : C — D are functors. Then

di(va HW) < di(Vv W)

for any superlinear family or sublinear projection.

Proof.
An Q-interleaving of V, W gives an Q-interleaving of HV, HW:

P
l v
PUP oo yc—5D
| «
P
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Story 3: Interleaving Metrics

Suppose V, W : P — C and H : C — D are functors. Then
di(va HW) < di(V7 W)

for any superlinear family or sublinear projection.
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Story 3: Interleaving Metrics

Functoriality

Suppose V., W : P — C and H : C — D are functors. Then

di(va HW) < di(Vv W)

for any superlinear family or sublinear projection.

Example: sublevelset persistence

Let X be a topological space and f, g : X — R be functions with ||f — g||oc < €.

e The persistence modules V, W : R — Top defined
V(t) = fH(=o0,t],  W(t) =g '(—oo, 1],

are e-interleaved.
(There are natural inclusions V(t) C W(t + €) and W(t) C V(t +€).)
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Story 3: Interleaving Metrics

Suppose V., W : P — C and H : C — D are functors. Then

di(va HW) < di(Vv W)

for any superlinear family or sublinear projection.

Example: sublevelset persistence

Let X be a topological space and f, g : X — R be functions with ||f — g||oc < €.

e The persistence modules V, W : R — Top defined

V()= F (oo t],  W(t) =g " (~o0, 1],
are e-interleaved.
(There are natural inclusions V(t) C W(t + €) and W(t) C V(t +€).)

e For any homology functor H : Top — Vect, the persistence modules
HV, HW : R — Vect are e-interleaved.
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Story 3: Interleaving Metrics
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Story 3: Interleaving Metrics

Interleavings for generalized persistence modules over a poset

Two persistence modules VW : P — C are Q-interleaved iff the following
functor extension problem has a solution:

P

P——PUqgP<——P
Here P Ugq P has the partial order

s<t ifa=»b

(S"")S(t’b)@{nsgt ifab

where 2 : P — P is a translation.
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Story 3: Interleaving Metrics

Interleavings for generalized persistence modules over an arbitrary category

Two persistence modules VW : D — C are A-interleaved iff the following
functor extension problem has a solution:

7N

D—)A(—D

Here A is a cospan. The two functors /i, l, are full-and-faithful. Every object
of A is of the form h(d) or h(d).
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Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

®

Thus D has one object and morphisms {0,1,2,3,...}.
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Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

®

Thus D has one object and morphisms {0,1,2,3,...}.

e Functors D — Top are discrete dynamical systems.
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Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

®

Thus D has one object and morphisms {0,1,2,3,...}.
e Functors D — Top are discrete dynamical systems.
Let A, be the category with two objects ; and e, and morphisms

Mor(e1,e1) = Mor(e1,e1) = {0,1,2,3,...}
Mor(e1,2) = Mor(ez, 1) ={n,n+1,n+2,n+3,...}

with addition as composition.
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Story 3: Interleaving Metrics

Example: dynamical system interleavings

Let D be the category defined by the directed graph

®

Thus D has one object and morphisms {0,1,2,3,...}.
e Functors D — Top are discrete dynamical systems.
Let A, be the category with two objects ; and e, and morphisms

Mor(e1,e1) = Mor(e1,e1) = {0,1,2,3,...}
Mor(e1,2) = Mor(ez, 1) ={n,n+1,n+2,n+3,...}

with addition as composition.

o A -interleavings are shift-equivalences.
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Story 4: Set-Valued Persistence Modules

Merge trees (Cagliari, Ferri, Pozzi 2001, & Morozov, Beketayev, Weber 2013)

o A functor T : R — Set can be thought of as a merge tree.
o Let X be a topological space and f : X — R a function. Then

T(t) = 7T0f_1(—00, t]

T[s < t] = mo [f—l(—oo, t] C f(—o0, t]]

defines the sublevelset merge tree of (X, f).

R
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Story 4: Set-Valued Persistence Modules

Merge trees (Cagliari, Ferri, Pozzi 2001, & Morozov, Beketayev, Weber 2013)

o A functor T : R — Set can be thought of as a merge tree.
o Let X be a topological space and f : X — R a function. Then

T(t) = 7T0f_1(—00, t]

T[s < t] = mo [f—l(—oo, t] C f(—o0, t]]

defines the sublevelset merge tree of (X, f).

R

)

Fu

X

o If f,g : X = Rwith ||f — g[lc < € then di(T,U) <e. |
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Story 4: Set-Valued Persistence Modules

Reeb graphs (dS, Munch, Patel 2016)

o A functor F : Int — Set can be thought of as a graph over the real line.
(Technically we require F to satisfy a cosheaf condition.)

o Let X be a topological space and f : X — R a function. Then
Fe(l) = mof '(1)
Fe[l C J] = mo [f—l(/) c f—l(J)}

defines the Reeb graph of (X, f).
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Story 4: Set-Valued Persistence Modules

Reeb graphs (dS, Munch, Patel 2016)

o A functor F : Int — Set can be thought of as a graph over the real line.
(Technically we require F to satisfy a cosheaf condition.)

o Let X be a topological space and f : X — R a function. Then
Fe(l) = mof '(1)
Fe[l C J] = mo [f—l(/) c f—l(J)}

defines the Reeb graph of (X, f).

o If f,g: X — R with ||f — gloc < € then di(F,G) <e.
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Story 5: Reeb Graphs & Reeb Cosheaves
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb graphs

e An R-space (X, f) is a topological space X with a map f : X — R.
o An R-space is a Reeb graph if X is a graph and each f=%(t) is finite.
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb graphs
e An R-space (X, f) is a topological space X with a map f : X — R.
o An R-space is a Reeb graph if X is a graph and each f=%(t) is finite.
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb graphs
e An R-space (X, f) is a topological space X with a map f : X — R.
o An R-space is a Reeb graph if X is a graph and each f=%(t) is finite.

Reeb functor

o The Reeb functor converts a (constructible) R-space into a Reeb graph:
(X, ) — ((X/~),F)

where x ~ y iff x,y are in the same component of the same levelset of f.
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Story 5: Reeb Graphs & Reeb Cosheaves

]E() X [a,(), al] E; x [al, az] Es x [az, a3] Eg X [a3, a4] Ey4 x [a4, a5]

I/ﬂ\I/E\I/ﬁ\I/E\I/u\I

VO Vl Vz V3 V4 V5
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Story 5: Reeb Graphs & Reeb Cosheaves

1

Eo X [ao, a1]

I/I\I/I\I/I\I/I\I/I\I

E1x a1, as) Ey x[as, as) Es3x a3, as) Eyx a4, as)

Vo Vi Vo V3 Vi Vs
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, with respect to inclusion.

o A Reeb graph gives rise to a functor F : Int — Set that is constructible
and satisfies the cosheaf condition for unions of intervals.

Set
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, with respect to inclusion.

o A Reeb graph arises from a functor F : Int — Set that is constructible
and satisfies the cosheaf condition for unions of intervals.

Set




Story 5: Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, with respect to inclusion.

o A Reeb graph arises from a functor F : Int — Set that is constructible
and satisfies the cosheaf condition for unions of intervals.

E fa E\ (a E\ fa
AN ZJ X\ J X\

o6 S=000

b/
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, with respect to inclusion.

o A Reeb graph arises from a functor F : Int — Set that is constructible
and satisfies the cosheaf condition for unions of intervals.
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, with respect to inclusion.

o A Reeb graph corresponds to a functor F : Int — Set that is constructible
and satisfies the cosheaf condition for unions of intervals.
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, with respect to inclusion.

o A Reeb graph corresponds to a functor F : Int — Set that is constructible
and satisfies the cosheaf condition for unions of intervals.

pre-cosheaves

Pre on R

C
R-spaces R-Top —— Csh cosheaves on R
constructible R-T ¢
R-spaces op* Csh

IHR

c” constructible

Reeb hi — ¢
€ graphs Reeb D Csh cosheaves on R
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Story 5: Reeb Graphs & Reeb Cosheaves

Reeb functor (two versions)

o The Reeb functor converts a (constructible) R-space into a Reeb graph:
(X, £) — ((X/~), )
where x ~ y iff x,y are in the same component of the same levelset of f.
or
o The Reeb functor converts a constructible R-space into a Reeb cosheaf:
F(I) = mof (1)
Gl C ) =m0 [F1(1) € F(I)]
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Reeb interleaving

An e-interleaving between F, G is given by two families of maps
o F(1) = G(I), 1 :G(I)— F(I)
which are natural with respect to inclusions / C J and such that

Pre 0 gy = F[I C1*],  ¢ye othy = G[I C I*]

for all /.
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2¢) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Reeb interleaving

An e-interleaving between F, G is given by two families of maps
o F(1) = G(I), 1 :G(I)— F(I)
which are natural with respect to inclusions / C J and such that

Pre 0 gy = F[I C1*],  ¢ye othy = G[I C I*]

for all /.

Stability Theorem

If f,g: X — R with ||f — g|]lc < € then di(F,G) <.
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Reeb Graph Smoothing Via Cosheaves



Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.

.
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.

d+e
d ct+e
c b+e
b
a
a—¢
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.

iz
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Story 5: Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.

4
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Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu: J
epsilon = 0.00 epsilon = 0.14 epsilon = 0.27
-1 o 1 2 3 4 -1 o 1 2 3 4 -1 o 1 2 3 4
epsilon = 0.41 epsilon = 0.55 epsilon = 0.68

-1 o0 1 2 3 4 -1 o0 1 2 3 4 -1 o0 1 2 3 4

epsilon = 0.82 epsilon = 0.95 epsilon = 1.09

—_——— | | e | |

-1 0 1 2 3 4 -1 0 1 2 3 4 -2 -1 0 1 2 3 4 5
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Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu: J

Discretized Reeb Graphs

e A discrete Reeb graph is a diagram
£ ¢
E—V——R

where E, V are finite sets and ¢{(e) < ¢r(e) for each e € E.
e Each v € V has a left- and right-degree:

deg(v) = #r '(v), deg,(v)=#L'(v), deg(v) = (deg)(v),deg,(v)).
e The discrete Reeb graph is reduced if deg(v) # (1,1) for all v.

The critical radius of a reduced graph is

ecrit = 3 min {¢r(e) — ¢pl(v) | e € E, deg,(£(e)) > 1, deg,(r(e)) > 1}
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Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu: J

Algorithm: smooth by €

o If deg(v) = (1,7) then v moves by +e.
e If deg(v) = (?,1) then v moves by —e.
o If deg(v) = (7,7?) then split v into two and move by =+e.

Valid up to the critical radius. Recompute at critical radius and recurse. J

Reeb Graph Smoothing Via Cosheaves



Story 5: Reeb Graphs & Reeb Cosheaves

Progressive smoothing algorithm by Dmitriy Smirnov & Song Yu: J
epsilon = 0.00 epsilon = 0.14 epsilon = 0.27
-1 o 1 2 3 4 -1 o 1 2 3 4 -1 o 1 2 3 4
epsilon = 0.41 epsilon = 0.55 epsilon = 0.68

-1 o0 1 2 3 4 -1 o0 1 2 3 4 -1 o0 1 2 3 4

epsilon = 0.82 epsilon = 0.95 epsilon = 1.09

—_——— | | e | |

-1 0 1 2 3 4 -1 0 1 2 3 4 -2 -1 0 1 2 3 4 5
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Story 6: Generalised Factors

Image persistence (Cohen-Steiner, Edelsbrunner, Harer, Morozov 2009)

Let V,W : P — Vect be persistence modules and let ® : V = W. Then we can
define a persistence module Im(®) with

o [Im(®)](t) = Im(V: 25 W,) for all t.
o [Im(®)](s < t) = the map induced by the horizontal maps in:

Vi — Vi

ol e

Ws — W;

We can similarly define Ker(®) and Coker(®).
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Story 6: Generalised Factors

Image persistence (Cohen-Steiner, Edelsbrunner, Harer, Morozov 2009)

Let V,W : P — Vect be persistence modules and let ® : V = W. Then we can
define a persistence module Im(®) with

o [Im(®)](t) = Im(V: 25 W,) for all t.
o [Im(®)](s < t) = the map induced by the horizontal maps in:

Vi — Vi

ol e

Ws — W;

We can similarly define Ker(®) and Coker(®).

Example

Suppose p: X — Y is a map of spaces, f : X - R,and g: Y — R. If f < gp,
then p carries the t-sublevelset of f into the t-sublevelset of g, for all t, and the
persistence module Im(H(p)) is defined.
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Story 6: Generalised Factors

Three ways of thinking of a map between persistence modules (over N, say)

A functor 2 — VectN:

Fo—Fh—FH—---

\

Go—G —> G —>---
A functor N x 2 — Vect:

Fo—Fh —FH—---

I

G—G —G — -

A functor N — Vect?:




Story 6: Generalised Factors

The exponential law

The following categories of functors
(DP)W — DPXW _ (DW)P

are equal for any three categories D, P, W.
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Story 6: Generalised Factors

The exponential law

The following categories of functors

(DP)W _ DPXW _ (DW)P

are equal for any three categories D, P, W.

Image, Kernel, Cokernel functors

The operations Im, Ker and Coker can be thought of as functors Vect? — Vect.

o Each operation converts any (V % W) into a vector space.

o Given a commutative square, there are induced maps between images,
kernels, cokernels.
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Story 6: Generalised Factors

The exponential law

The following categories of functors
(DP)W _ DPXW _ (DW)P

are equal for any three categories D, P, W.

mage, Kernel, Cokernel functors

The operations Im, Ker and Coker can be thought of as functors Vect? — Vect.
o Each operation converts any (V % W) into a vector space.

o Given a commutative square, there are induced maps between images,
kernels, cokernels.

Proposition (Bubenik, dS, Scott)

The image persistence of ® : V = W is equal to the composite
P L) Vect2 I_m) Vect

where & is the interpretation of ® as a functor P — Vect?.
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Story 6: Generalised Factors

Generalized factor persistence (Bubenik, dS, Scott)

Given
e a category of persistence modules D?;

e a category W, which we call the auxiliary category;

N . .
e a functor DW — E, which we call the generalized factor.
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Story 6: Generalised Factors

Generalized factor persistence (Bubenik, dS, Scott)
Given

e a category of persistence modules D?;

e a category W, which we call the auxiliary category;
e a functor DW s E, which we call the generalized factor.

Then any functor F : W — DP determines a persistence module in E®, by

(DP)W — DWXP — (DW)P ; EP

F > Fo > NF

va Pomona C
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Story 6: Generalised Factors

Reductions of 2-dimensional persistence

Let V = (V(s,t)) € Vect®™ R be a two-dimensional persistence module. Think
of this as a family (W;) of 1-dimensional persistence modules. We will define
various generalized factors N : Vect® — Vect.

o Fix a and define N(W) = W(a).

e Fix a < b and define N(W) = Im(W(a) — W(b)).

e Fix a < b < ¢ < d and define

Im (W(b) — W(c)) N Ker (W(c) — W(d))

N(W) = Im (W(a) — W(c)) N Ker (W(c) — W(d))

Then there is a 1-parameter persistence module associated to each of these
functors.
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Story 6: Generalised Factors

Zigzag factors
Suppose Z is the category defined by:

o ® < ° L]
?

An element of Vect? is a diagram

WZ W]_ f W2 g W3 h 4 W4

Then, for example, the functor Vect” — Vect defined by

o [t

picks out the part of W supported over W5, Ws.
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Story 6: Generalised Factors

Zigzag factors
Suppose Z is the category defined by:

o ® < ° (]
?

An element of Vect? is a diagram

WZ W]_ f W2 g W3 h 4 W4

Then, for example, the functor Vect” — Vect defined by
g(h_l(o))]
NW) = | =
o = | £
picks out the part of W supported over W5, Ws.

Therefore, given a zigzag of persistence modules

Vi sV, v, L,

we can constrict a single persistence module which extracts the [2, 3] part.
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Story 7: The observable category

Tame persistence modules

Let V: R — Vect be a persistence module. If the maps Vi — V; have finite
rank whenever s < t, then V has a persistence diagram. If V has an interval
decomposition, then the summands are identified exactly by the points in the
diagram. However, it is not guaranteed that V has an interval decomposition.
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Story 7: The observable category

Tame persistence modules

Let V: R — Vect be a persistence module. If the maps Vi — V; have finite
rank whenever s < t, then V has a persistence diagram. If V has an interval
decomposition, then the summands are identified exactly by the points in the
diagram. However, it is not guaranteed that V has an interval decomposition.

Ephemeral modules (Chazal, Crawley-Boevey, dS 2016)

A persistence module V is ephemeral if vi = 0 whenever s < t.
Then:

e The ephemeral modules comprise a Serre subcategory of the category of
persistence modules.

e We can form the Serre quotient category by formally inverting all maps
whose kernels and cokernels are ephemeral.

e In this category, every g-tame persistence module admits an interval
decomposition.

Perhaps this is the ‘correct’ category for real-parameter persistence?
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Story 7: The observable category

Definition
A Serre subcategory is a full subcategory C of an Abelian category such that
for any short exact sequence

0—U—V—>W-—0

we have
VeC & UeCandW € C.

Equivalently, the subcategory C is closed under subobjects, quotient objects, and
extensions.
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Story 7: The observable category

Definition

A Serre subcategory is a full subcategory C of an Abelian category such that
for any short exact sequence

0—U—V—>W-—0

we have
VeC & UeCandW € C.

Equivalently, the subcategory C is closed under subobjects, quotient objects, and
extensions.

Noise systems (Scolamiero et al., 2016)

Noise in topological data analysis can be studied by considering a nested family
(Cec | € € [0, 0) satisfying an enriched version of the Serre conditions:

VeC. = UeC.andW e C.
VeCyi, « UeCyandWeC,.

for any short exact sequence.
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