AMS Special Session on Applied Category Theory

The multiresolution analysis of flow graphs

Steve Huntsman

Cyber and Communications Technologies (goo.gl/DRnf3e)

5 November 2017

A control flow graph (CFG) for a tiny program

START 1 2 repeat з repeat 4 repeat 5 if b goto 7 6 if b 7 repeat 8 S 9 until b 10 andif 11 until b 12 do while b 13 do while b 14 repeat 15 S 16 until b 17 enddo 18 enddo 19 until b 20 until b 21 HALT

Each S is its own statement or subroutine; each b is its own Boolean predicate; branches are colored according to whether or not their corresponding b evals to \top or \perp

The multiresolution analysis of flow graphs

Another (still small) CFG

Background and motivation

- Machine code of any program of practical interest is much larger than examples shown above
- A ray of sunshine: code can be restructured to eliminate gotos [Zhang and D'Hollander, 2004]
 - Effective version of Böhm-Jacopini structured program theorem
 - Dovetails with the constructions we discuss here
- Subroutines are programs in their own right
 - Recursively (de)compose programs: multiresolution analysis
 - Much more interesting when trying to parallelize source or reverse engineer binary code than when merely parsing Python
- Similar considerations inform myriad other domains where flow graphs are good process models

A CFG with no gotos

A CFG with no gotos

Definition. A *flow graph* is a digraph such that:

- There is a unique source (indegree = 0) vertex and a unique target (outdegree = 0) vertex
- There is a unique edge (entry) from the source vertex and a unique edge (exit) to the target vertex
- Identifying the source and target vertices yields a strongly connected digraph
 - Trivial case: entry = exit
 - Precludes, e.g. do while b; goto <num>; enddo

Approved for public release; distribution unlimited

INSPIRED WORK

Single-entry/single-exit regions

- Definition. Let G be a digraph and j, k ∈ V(G): j dom k iff every path from a source s in G to k passes through j
 - Relation extends to edges; dual relation denoted pdom
- Definition. A single entry/single exit region (SESER) in a digraph G is an ordered pair of edges (e_1, e_2) s.t.
 - *e*₁ dom *e*₂
 - *e*₂ pdom *e*₁
 - a cycle in G contains e_1 iff it contains e_2
- Notes
 - SESERs correspond to sub-flow graphs
 - (e_1, e_1) is a degenerate SESER
 - A nondegenerate SESER (e₁, e₂) can also be specified by the vertex pair (t(e₁), s(e₂)), where s(·) and t(·) respectively denote the source and target of an edge
 - Very easy to find SESERs in DAGs, but requires some sophistication in general

Stretching flow graphs is helpful

• Insert edges into a flow graph as follows:

- Lemma. The resulting stretching is well defined
- There is a planar flow graph whose stretching is nonplanar:

The program structure tree

- Definition. The *interior* of a SESER (e_s, e_t) is the set of vertices on paths from $t(e_s)$ that do not encounter $t(e_t)$
 - Different from flawed definition 6 of [Johnson, Pearson and Pingali, 1994]: §5 of [Boissinot *et al.*, 2012] illustrates this and why it matters
- Definition. A nondegenerate SESER (e1, e2) is canonical if
 - For any SESER (e_1, e'_2) we have e_2 dom e'_2
 - For any SESER (e'_1, e_2) we have e_1 pdom e'_1
- Theorem [easily salvaged from JPP'94]. Interiors of distinct canonical SESERs are either disjoint or nested
 - "Canonical = minimal"
 - Inclusion relation induces the program structure tree (PST)

Stretching, PST, and "coarsening" 1, 2, 3, & 6x

HALTZI

START.

Stretching, PST, and "coarsening" 1, 3, 5, & 13x

Introducing categories

- Definition. A *category* is a collection of *objects* endowed with *morphisms* between them that can be composed like functions
 - There is an identity morphism for every object
 - Composition is associative
 - Category theory = abstract math of systems engineering
- We will encounter some of the most fundamental structures:
 - Operadic: objects "plug into each other" like $f_{(m)}: X^m \to X$
 - $f_{(m)} \circ_{\ell} g_{(n)} := f(\cdot_1, \ldots, \cdot_{\ell-1}, g(\cdot_\ell, \ldots, \cdot_{\ell+n-1}), \cdot_{\ell+n}, \ldots, \cdot_{m+n})$
 - Monoidal (a/k/a tensor): objects and morphisms can be combined simultaneously
 - We'll actually see two varieties of this: sequential and parallel
 - Enriched: objects from another category are like morphisms
 - Sub-flow graphs

The category of flow graphs

- There ought to be one that behaves like **Cob**_n or **Tan**_k
 - Could have software with a mathematically nice API
 - Program analysis transformations should be morphisms
- Unfortunately, categories of digraphs are complicated
 - Problem: how to deal with loops [Brown et al. 2008]
 - Identifying vertices "should" induce a graph morphism, but edges must also be preserved, so any edges between identified vertices induce a loop
 - Insofar as loops in a coarse CFG ought to correspond to actual loops in the program, this behavior is bad
- Solution: treat loops and non-loop edges differently
- Resulting category **Dgph** is awkward to define but works
- Flow is the full subcategory whose objects are flow graphs

Coarsening flow graphs

- Definition. For j, k ∈ V, the absorption of k into j is the morphism induced by identifying j and k and (if k ≠ j) annihilating any loop at j (by mapping it to the vertex j)
 - Definition chosen to dovetail with ideas of program abstraction
 - Absorbing k, m into j is equivalent to absorbing m, k into j
 - For G, H ∈ Ob(Flow) with H ⊂ G, define the absorption of H to be the image of absorbing the interior of H into its source (considered as a vertex in G)
 - Amounts to replacing H w/ single edge from source to target
- Definition. The *coarsening* ⊚*G* is obtained by absorbing all of the sub-flow graphs corresponding to leaves of PST(*G*)
- Observation: the pullback of $a \xrightarrow{g \circ f} c \xleftarrow{g} b$ is $a \xleftarrow{id} a \xrightarrow{f} b$
 - In particular, f is the pullback of $g \circ f$ by g
 - We may therefore think of
 G somewhat literally as a kind of pullback of *G* by the leaves of PST(*G*)

The operad of flow graphs

• Let $P(n) := \{ \text{flow graphs with } n \text{ ordered edges} \} \text{ and define} \}$

$$p: P(n) \times P(k_1) \times \cdots \times P(k_n) \rightarrow P(k_1 + \cdots + k_n)$$

 $(G, G_1, \dots, G_n) \mapsto G \circ (G_1, \dots, G_n)$

by replacing the jth edge in G with G_j in the obvious way

- Edge ordering on $G \circ (G_1, \ldots, G_n)$ inherited from constituents
- Theorem. The triple {e, {P(n)}_{n=1}[∞], ∘}, where e denotes the trivial flow graph, forms a operad (in Set)
- \circ and \odot are complementary:
 - Lemma. If $G \in P(n)$ and $\odot G_j = e \neq G_j$ for $j \in [n]$, then $\odot(G \circ (G_1, \ldots, G_n)) = G$

Tensoring flow graphs (series)

- Proposition. (**Flow**, ⊠, e) is a monoidal category, where ⊠ is defined below and the unit object e is the trivial flow graph
 - $G \boxtimes G'$: identify exit edge of G with entry edge of G'
 - For f ∈ Flow(G, G_f) and f' ∈ Flow(G', G'_{f'}), we obtain f ⊠ f' ∈ Flow(G ⊠ G', G_f ⊠ G'_{f'}) by identifying the output of f on the exit edge of G with that of f' on the entry edge of G'
- Proposition. For a flow graph *G*, we can form a category **SubFlow**_{*G*} enriched over **Flow** as follows:
 - Ob(SubFlow_G) := E(G) (recall this excludes loops);
 - For e_s, e_t ∈ Ob(SubFlow_G), SubFlow_G(e_s, e_t) ∈ Ob(Flow) is the (possibly empty) flow graph with entry e_s and exit e_t;
 - The composition morphism is induced by ⊠;
 - The identity element is determined by the trivial flow graph
- Unlike **Free**(G), **SubFlow**_G is always finite and we can build it

Tensoring flow graphs (parallel)

- Theorem. (Flow, ⊗, e) is a monoidal category, where ⊗ is defined below and the unit object e is the trivial flow graph
 - G ⊗ G' := G ⊔ G' / ~, where ~ is mostly obvious but has messy technical details to account for the cases where entry and exit edges are either identical or adjacent
 - \sim always identifies entry edges
 - \sim identifies exit edges if interiors are unaffected...
 - ...otherwise \sim collapses a "small" factor to make things work
 - Constraints on how to fill in these technical details are perhaps the main benefit of invoking category theory *ab initio*
 - Let $[\cdot]$ denote an equivalence class under \sim and set

$$(f \otimes f')(k) := \begin{cases} [(f(j), 0)] & \text{if } k = [(j, 0)] \\ [(f'(j'), 1)] & \text{if } k = [(j', 1)] \end{cases}$$

along with an implied extension to edges

Denouement

- 🛛 corresponds to sequential execution
- \otimes corresponds to an if (or parallel execution)
- $\rightarrow \rightleftharpoons \circ$ (e, \bullet, e, e) corresponds to a do while or repeat
- By the structured program theorem and an effective version thereof, we have a category-theoretical framework for (de)composing structured programs up to statement/predicate vertex labels and ⊤/⊥ edge labels
 - Exercise: eliminate the "up to" disclaimer
- Requiring that flow graphs exhibit various category-theoretical desiderata places strong but satisfiable restrictions on them that can usefully inform the architecture of program analysis platforms, program synthesizers, compilers, etc.

Thanks

steve.huntsman@baesystems.com

