
AMS Special Session on Applied Category Theory

The multiresolution
analysis of flow graphs

Steve Huntsman

Cyber and Communications Technologies (goo.gl/DRnf3e)

5 November 2017

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 2

A control flow graph (CFG) for a tiny program

1 START

2 repeat

3 repeat

4 repeat

5 if b goto 7

6 if b

7 repeat

8 S

9 until b

10 endif

11 until b

12 do while b

13 do while b

14 repeat

15 S

16 until b

17 enddo

18 enddo

19 until b

20 until b

21 HALT

Each S is its own statement or subroutine;
each b is its own Boolean predicate;
branches are colored according to whether or
not their corresponding b evals to > or ⊥

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 3

Another (still small) CFG

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 4

Background and motivation

• Machine code of any program of practical interest is much
larger than examples shown above

• A ray of sunshine: code can be restructured to eliminate
gotos [Zhang and D’Hollander, 2004]

• Effective version of Böhm-Jacopini structured program theorem
• Dovetails with the constructions we discuss here

• Subroutines are programs in their own right
• Recursively (de)compose programs: multiresolution analysis
• Much more interesting when trying to parallelize source or

reverse engineer binary code than when merely parsing Python

• Similar considerations inform myriad other domains where
flow graphs are good process models

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 5

A CFG with no gotos

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 6

A CFG with no gotos

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 7

Definition. A flow graph is a digraph such that:

• There is a unique source
(indegree = 0) vertex and a
unique target (outdegree =
0) vertex

• There is a unique edge
(entry) from the source
vertex and a unique edge
(exit) to the target vertex

• Identifying the source and
target vertices yields a
strongly connected digraph

• Trivial case: entry = exit
• Precludes, e.g. do while

b; goto <num>; enddo

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 8

Single-entry/single-exit regions

• Definition. Let G be a digraph and j , k ∈ V (G ): j dom k iff
every path from a source s in G to k passes through j

• Relation extends to edges; dual relation denoted pdom

• Definition. A single entry/single exit region (SESER) in a
digraph G is an ordered pair of edges (e1, e2) s.t.

• e1 dom e2

• e2 pdom e1

• a cycle in G contains e1 iff it contains e2

• Notes
• SESERs correspond to sub-flow graphs
• (e1, e1) is a degenerate SESER
• A nondegenerate SESER (e1, e2) can also be specified by the

vertex pair (t(e1), s(e2)), where s(·) and t(·) respectively
denote the source and target of an edge

• Very easy to find SESERs in DAGs, but requires some
sophistication in general

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 9

Stretching flow graphs is helpful

• Insert edges into a flow graph as follows:

• becomes

• becomes

• becomes

• becomes

• Lemma. The resulting stretching is well defined

• There is a planar flow graph whose stretching is nonplanar:

stretches to which contains K3,3

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 10

The program structure tree

• Definition. The interior of a SESER (es , et) is the set of
vertices on paths from t(es) that do not encounter t(et)

• Different from flawed definition 6 of [Johnson, Pearson and
Pingali, 1994]: §5 of [Boissinot et al., 2012] illustrates this and
why it matters

• Definition. A nondegenerate SESER (e1, e2) is canonical if
• For any SESER (e1, e

′
2) we have e2 dom e′2

• For any SESER (e′1, e2) we have e1 pdom e′1
• Theorem [easily salvaged from JPP’94]. Interiors of distinct

canonical SESERs are either disjoint or nested
• “Canonical = minimal”
• Inclusion relation induces the program structure tree (PST)

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 11

Stretching, PST, and “coarsening” 1, 2, 3, & 6x

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 12

Stretching, PST, and “coarsening” 1, 3, 5, & 13x

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 13

Introducing categories

• Definition. A category is a collection of objects endowed with
morphisms between them that can be composed like functions

• There is an identity morphism for every object
• Composition is associative
• Category theory = abstract math of systems engineering

• We will encounter some of the most fundamental structures:
• Operadic: objects “plug into each other” like f(m) : Xm → X

• f(m) ◦` g(n) := f (·1, . . . , ·`−1, g(·`, . . . , ·`+n−1), ·`+n, . . . , ·m+n)

• Monoidal (a/k/a tensor): objects and morphisms can be
combined simultaneously

• We’ll actually see two varieties of this: sequential and parallel

• Enriched: objects from another category are like morphisms
• Sub-flow graphs

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 14

The category of flow graphs

• There ought to be one that behaves like Cobn or Tank
• Could have software with a mathematically nice API
• Program analysis transformations should be morphisms

• Unfortunately, categories of digraphs are complicated
• Problem: how to deal with loops [Brown et al. 2008]
• Identifying vertices “should” induce a graph morphism, but

edges must also be preserved, so any edges between identified
vertices induce a loop

• Insofar as loops in a coarse CFG ought to correspond to actual
loops in the program, this behavior is bad

• Solution: treat loops and non-loop edges differently

• Resulting category Dgph is awkward to define but works

• Flow is the full subcategory whose objects are flow graphs

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 15

Coarsening flow graphs

• Definition. For j , k ∈ V , the absorption of k into j is the
morphism induced by identifying j and k and (if k 6= j)
annihilating any loop at j (by mapping it to the vertex j)

• Definition chosen to dovetail with ideas of program abstraction
• Absorbing k ,m into j is equivalent to absorbing m, k into j
• For G ,H ∈ Ob(Flow) with H ⊂ G , define the absorption of H

to be the image of absorbing the interior of H into its source
(considered as a vertex in G )

• Amounts to replacing H w/ single edge from source to target

• Definition. The coarsening }G is obtained by absorbing all of
the sub-flow graphs corresponding to leaves of PST(G )

• Observation: the pullback of a
g◦f−→ c

g←− b is a
id←− a

f−→ b
• In particular, f is the pullback of g ◦ f by g
• We may therefore think of }G somewhat literally as a kind of

pullback of G by the leaves of PST(G )

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 16

The operad of flow graphs

• Let P(n) := {flow graphs with n ordered edges} and define

◦ : P(n)× P(k1)× · · · × P(kn)→ P(k1 + · · ·+ kn)

(G ,G1, . . . ,Gn) 7→ G ◦ (G1, . . . ,Gn)

by replacing the jth edge in G with Gj in the obvious way
• Edge ordering on G ◦ (G1, . . . ,Gn) inherited from constituents

• Theorem. The triple {e, {P(n)}∞n=1, ◦}, where e denotes the
trivial flow graph, forms a operad (in Set)

• ◦ and } are complementary:
• Lemma. If G ∈ P(n) and }Gj = e 6= Gj for j ∈ [n], then
}(G ◦ (G1, . . .Gn)) = G

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 17

Tensoring flow graphs (series)

• Proposition. (Flow,�, e) is a monoidal category, where � is
defined below and the unit object e is the trivial flow graph

• G � G ′: identify exit edge of G with entry edge of G ′

• For f ∈ Flow(G ,Gf ) and f ′ ∈ Flow(G ′,G ′
f ′), we obtain

f � f ′ ∈ Flow(G �G ′,Gf �G ′
f ′) by identifying the output of f

on the exit edge of G with that of f ′ on the entry edge of G ′

• Proposition. For a flow graph G , we can form a category
SubFlowG enriched over Flow as follows:

• Ob(SubFlowG ) := E (G ) (recall this excludes loops);
• For es , et ∈ Ob(SubFlowG ), SubFlowG (es , et) ∈ Ob(Flow) is

the (possibly empty) flow graph with entry es and exit et ;
• The composition morphism is induced by �;
• The identity element is determined by the trivial flow graph

• Unlike Free(G ), SubFlowG is always finite and we can build it

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 18

Tensoring flow graphs (parallel)

• Theorem. (Flow,⊗, e) is a monoidal category, where ⊗ is
defined below and the unit object e is the trivial flow graph

• G ⊗ G ′ := G t G ′/ ∼, where ∼ is mostly obvious but has
messy technical details to account for the cases where entry
and exit edges are either identical or adjacent

• ∼ always identifies entry edges
• ∼ identifies exit edges if interiors are unaffected...
• ...otherwise ∼ collapses a “small” factor to make things work
• Constraints on how to fill in these technical details are

perhaps the main benefit of invoking category theory ab initio

• Let [·] denote an equivalence class under ∼ and set

(f ⊗ f ′)(k) :=

{
[(f (j), 0)] if k = [(j , 0)]

[(f ′(j ′), 1)] if k = [(j ′, 1)]

along with an implied extension to edges

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 19

Denouement

• � corresponds to sequential execution

• ⊗ corresponds to an if (or parallel execution)

• ◦ (e, •, e, e) corresponds to a do while or repeat

• By the structured program theorem and an effective version
thereof, we have a category-theoretical framework for
(de)composing structured programs up to
statement/predicate vertex labels and >/⊥ edge labels

• Exercise: eliminate the “up to” disclaimer

• Requiring that flow graphs exhibit various category-theoretical
desiderata places strong but satisfiable restrictions on them
that can usefully inform the architecture of program analysis
platforms, program synthesizers, compilers, etc.

Approved for public release; distribution unlimited



AMS Special Session on Applied Category Theory The multiresolution analysis of flow graphs 20

Thanks

steve.huntsman@baesystems.com

Approved for public release; distribution unlimited


	Introduction

