
Open Systems in Classical Mechanics

Adam Yassine
Advisor: Dr. John Baez

University of California, Riverside

November 4, 2017



Table of Contents

1 Spans in Classical Mechanics

2 The categories Symp and SympSurj

3 The Hamiltonian

4 Main Result



Table of Contents

1 Spans in Classical Mechanics

2 The categories Symp and SympSurj

3 The Hamiltonian

4 Main Result



Table of Contents

1 Spans in Classical Mechanics

2 The categories Symp and SympSurj

3 The Hamiltonian

4 Main Result



Table of Contents

1 Spans in Classical Mechanics

2 The categories Symp and SympSurj

3 The Hamiltonian

4 Main Result



Background

Open systems are systems that have external interactions
whereas a closed system does not have such interactions.



Physicists like to study closed systems as well as be able to
write Hamiltonians and equations of motion.

We can study open systems where the “outside world” decides
the location of the left and right rocks, which affects the position
of the middle rock.
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decides the location of the upper left and right rock.
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Spans in Classical Mechanics

Definition
A span from M to M ′ in a category C is an object S in C with a
pair of morphisms f ∶S →M and g∶S →M ′. M and M ′ are
known as feet and S is known as the apex of the span.

M M ′

S

gf



Remark
The advantage of spans is that we can build bigger systems by
by “gluing” together smaller systems.



The composition of spans is done using a pullback. Spans are
composable if the right foot of one is the same as the left foot
of the other.
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Using the framework of category theory, we formalize the
heuristic principles that physicists employ in constructing the
Hamiltonians for classical systems as sums of Hamiltonians of
subsystems.



Definition (Poisson Manifold)

A Poisson manifold is a manifold M endowed with a {⋅, ⋅} such
that for any f, g, h ∈ C∞(M) and a, b ∈ R with ordinary
multiplication of functions, the following hold:

1 Antisymmetry {f, g} = −{g, f}

2 Bilinearity

{f, ag + bh} = a{f, g} + b{f, h}

3 Jacobi Identity

{f,{g, h}} + {{g, h}, f} + {h,{f, g}} = 0.

4 Leibniz Law

{fg, h} = {f, h}g + f{g, h}
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Symplectic Manifold

Definition (Symplectic Manifold)

A Poisson manifold of even dimension M equipped with a
closed nondegenerate 2−form ω satisfying {f, g} = ω(vf , vg)
where vf is the vector field with vf(h) = {h, f} is a symplectic
manifold.

Example

Let R2n have standard coordinates (x1, ...xn, y1, ...yn), the
2−form

ω =
n

∑
i=1

dxi ∧ dyi

is closed and nondegenerate.
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Definition (Poisson map)

Let (M,{⋅, ⋅}M) and (N,{⋅, ⋅}N) be Poisson manifolds. We say
that a map

Φ∶M → N

is a Poisson map if, for any f, g ∈ C∞(N)

{f, g}N ○Φ = {f ○Φ, g ○Φ}M .



Definition
The category of whose objects are symplectic manifolds and
morphisms are Poisson maps is called Symp.

Definition
Tha subcategory SympSurj of Symp has symplectic
manifolds as objects and morphisms are surjective Poisson
maps.
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Theorem (A.Y.)

The morphisms of SympSurj are pullbackable in Symp.



Definition
A map of spans is a morphism j∶S → S′ in a category C

between apices of two spans

M M ′

S

gf

M M ′

S′

g′f ′

such that both the following triangles commute. In particular,
when j is an isomorphism, we have an isomorphism of
spans.

M M ′

S

S′

gf

g′f ′

≅ j



Theorem
Given a category C and a subcategory D such that every
cospan in D is pullbackable in C, then there exists a category
Span(C, D) consisting of objects in D and whose morphisms
are isomorphism classes of spans in D and composition is
done using pullbacks in C.
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S ×M′ S
′

f g

f ′ g′

πS′πS
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Remark
Now because pullbacks are unique up to isomorphism, we
need to take isomorphism classes of spans to obtain a
category.



Example

We can apply the theorem to the case C = Symp and
D = SympSurj as well as using the fact that the composition of
surjective Poisson maps is surjective Poisson, to get that
Span(Symp, SympSurj) is a category.



Definition
Let M be a symplectic manifold of dimension 2n. We define a
Hamiltonian to be a smooth function, H, with

H ∶M → R.



1 In physics, the Hamiltonian corresponds to the total energy
of the system.

2 Often, the Hamiltonian is the sum of the kinetic energies of
the all the particles,K, plus the potential energies of all the
particles,V in the system. H =K + V.
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We are now ready to state the main result, which will allow us
to study Hamiltonian mechanics using category theory.



Theorem
There is a category HamSy where

• objects are symplectic manifolds
• a morphism from M to M ′ is an isomorphism class of

spans

M M ′

S

where the legs are surjective Poisson maps, together with
a map H ∶S → R called the Hamiltonian.

• we compose morphisms as follows:
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Theorem (Continued)

M M ′ M ′′

S S′

S ×M′ S
′

R

πS′

H H′

H′′

πS

We have the following
morphisms
H ○ πS ∶S ×M ′ S′ → R
and
H ′ ○ πS′ ∶S ×M ′ S′ → R.
So we define the Hamiltonian
on the pullback as

H ′′ =H ○ πS +H ′ ○ πS′ .
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Proof of Main Theorem

We use the theory of decorated cospans, developed in Fong’s
thesis:

• B. Fong,The Algebra of Open and Interconnected
Systems, Ph.D. thesis, University of Oxford, 2016.

We adapt it to spans by working with the opposite categories.

https://arxiv.org/pdf/1609.05382.pdf
https://arxiv.org/pdf/1609.05382.pdf
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