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Goal:
Understand meaning of words, phrases, 

sentences, and concepts in natural language.
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You shall know a word by
 the company it keeps.

— John Firth 

(the Yoneda lemma for linguistics)
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Language is compositional and statistical.

Compositional:
red + firetruck

Statistical:
frequency count (red vs. blue firetruck)

Red contributes to the meaning of firetruck.
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An inside-out approach:
Define a monoidal functor from 

a grammar category (pregroups) to a 
meaning category (vector spaces).
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An outside-in approach:

Let statistics serve as a proxy for grammar.

That is, learn "what goes with what" in the language
 given some samples of that language.
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Goal (rephrased): Infer a probability 
distribution on a set of text data.

View language as a 
 quantum-many body problem.
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I. classical to quantum probability

II. a tensor network language model
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Let  be a probability distribution on a finite set .

9



Let  be a probability distribution on a finite set .

Pass from  to the free vector space  by .
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The quantum version of a probability distribution is a density 
operator , which is a self-adjoint, positive semidefinite operator 
with trace one. A density operator is also called a quantum state.
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Every density  on  defines a probability distribution  on  by
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Every density  on  defines a probability distribution  on  by

Given a distribution  on , there is more than one way to define a 
density so that .

Here are two.
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1. A diagonal operator

Note: 
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2. Projection onto a single unit vector 

where 

Again: . 
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We always use the density  where
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Why bother?

Consider a joint distribution . We have marginal 
distributions on  and  by "integrating out."

• The quantum version of  is a density operator on .

• The quantum version of marginalizing is the partial trace.
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The partial trace gives rise to reduced density operators, which 
are the quantum analogues of marginal distributions.
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Reduced densities contain the marginal distributions and more.

The th entry is proportional to the number of shared 
continuations in  between  and .
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This "extra information" captures subsystem interactions.

It is lost by classical marginalization!

It is encoded in the spectral information of the reduced densities.
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The "extra information" contained in reduced densities is encoded 
in their spectral decompositions and is akin to conditional 
probability:
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What can we do with this?
An unsupervised machine learning problem:

Infer a probability distribution  on a set  of 
text data given samples.
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Here's the main idea:

Let  be a set of sequences of length  from a finite alphabet .

Let  be a set of sequences with empirical probability 
distribution .

Consider the state  in . 
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Apply a physics-inspired deterministic algorithm1 to produce a low 
rank tensor factorization of  called a matrix product state.

1 The density matrix renormalization group (DMRG) procedure.
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Each tensor is comprised of eigenvectors of reduced densities 
from  As a result, the model knows which "words" go 
together to form meaningful "expressions" based on the statistics 
of the data.
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