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Persistence diagrams

Edelsbrunner, Letscher, Zomorodian 2000

Persistent homology takes a filtered space X = {Xt | t ∈ R} and returns a bar-
code of intervals [p, q) ⊂ R or a persistence diagram of points (p, q) ∈ R2.
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Persistence diagrams

Using commutative algebra (Zomorodian, Carlsson 2003).

• Discretize the t-variable to integers: t = 0, 1, 2, . . .

• Present X as an increasing sequence:

X : X0 ⊂ X1 ⊂ X2 ⊂ . . .

• Apply a homology functor H = H(−; k) to obtain a persistence module:

H(X) : H(X0)→ H(X1)→ H(X2)→ . . .

• Observe that H(X) is a graded module over the polynomial ring k[z],
where z acts by shifting to the right.

• Decompose this graded module as a direct sum of cyclic submodules.

• Summands z sk[z]/(z t−s) are recorded as intervals [s, t).

• Summands z sk[z] are recorded as intervals [s,+∞).
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Interleaving of Persistence Modules

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} → {diagrams} is 1-Lipschitz.

Relators

The metrics on the two spaces are defined in terms of ‘relators’.

• Two persistence modules may be related by an interleaving.

• Two diagrams may be related by a matching.

Every relator, of each type, has a size associated with it. The metrics are defined
by finding the infimum of the size of relators between a given pair of objects.
(Compare the geodesic distance in a Riemannian manifold.)

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

If two persistence modules admit an ε-interleaving, then their persistence dia-
grams admit an ε-matching.
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Interleaving of Persistence Modules

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

The [various conditions] require the diagrams

Vs

v st //

φs

!!

Vt

v tt+2ε
//

φt

""

Vt+2ε Vs+ε

v s+ε
t+ε
// Vt+ε

φt+ε
""

Ws+ε
w s+ε
t+ε

// Wt+ε

ψt+ε

<<

Ws
w s
t

//

ψs

<<

Wt
w t
t+2ε

//

ψt

<<

Wt+2ε

to commute for all s < t.
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Interleaving of Persistence Modules

Definition

Let V,W be persistence modules. An ε-interleaving between V,W is a pair
(Φ,Ψ) where Φ = (φt) and Ψ = (ψt) are collections of maps

φt : Vt →Wt+ε ψt : Wt → Vt+ε

such that [various conditions].

Interleavor categories (Chazal, dS, Glisse, Oudot 2016)

An ε-interleaved pair of modules (V,W,Φ,Ψ) is ‘the same thing’ as a persistence
module defined over the set I = R×{0, ε} (two copies of the real line) with the
partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

s + ε ≤ t if a 6= b

R× {0, ε}: //

�� �� �� �� �� �� �� �� �� //

?? ?? ?? ?? ?? ?? ?? ?? ??
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Interleaving of Persistence Modules

Interleavings for classical persistence modules

Two classical persistence modules V,W are ε-interleaved iff the following functor
extension problem has a solution:

Vect

R

V

::

// R× {0, ε}

OO

R

W

dd

oo

Here R× {0, ε} has the partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

s + ε ≤ t if a 6= b
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Interleaving Metrics on Functor Categories

Interleavings for generalized persistence modules over a poset

Two persistence modules V,W : P → C are Ω-interleaved iff the following
functor extension problem has a solution:

C

P

V

;;

// P ∪Ω P

OO

P

W

cc

oo

Here P ∪Ω P has the partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

Ωs ≤ t if a 6= b

where Ω : P→ P is a translation.
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Interleaving Metrics on Functor Categories

Translations (Bubenik, dS, Scott 2015)

TransP is the poset of functions Ω : P→ P that are order-preserving and satisfy
x ≤ Ωx for all x ∈ P.

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Ωε | ε ∈ [0,∞))

such that
Ωε1 Ωε2 ≤ Ωε1+ε2

for all ε1, ε2 ∈ [0,∞).

Sublinear Projections

A sublinear projection is a map π : TransP → [0,∞] such that

π(Ω1Ω2) ≤ π(Ω1) + π(Ω2)

for all Ω1,Ω2 ∈ TransP.
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Interleaving Metrics on Functor Categories

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Ωε | ε ∈ [0,∞))

such that
Ωε1 Ωε2 ≤ Ωε1+ε2

for all ε1, ε2 ∈ [0,∞).

Examples of superlinear famlies

• P = R,
Ωε(t) = t + ε.

• P = {compact intervals in the real line},
Ωε([a, b]) = [a− ε, b + ε].

• P = {closed subsets of a metric space X},
Ωε(V ) = V ε = {x ∈ X such that d(x ,V ) ≤ ε}.
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Interleaving Metrics on Functor Categories

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Ωε | ε ∈ [0,∞))

such that
Ωε1 Ωε2 ≤ Ωε1+ε2

for all ε1, ε2 ∈ [0,∞).

Interleaving distance (Bubenik, dS, Scott 2015)

Given a superlinear family (Ωε) of translations of P, we define the interleaving
distance

di(V,W) = inf (ε | V,W are Ωε-interleaved)

between generalized persistence modules V,W : P→ C.
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Interleaving Metrics on Functor Categories

Sublinear Projections

A sublinear projection is a map π : TransP → [0,∞] such that

π(Ω1Ω2) ≤ π(Ω1) + π(Ω2)

for all Ω1,Ω2 ∈ TransP.

Interleaving distance (Bubenik, dS, Scott 2015)

Given a sublinear projection family π : TransP → [0,∞], we define the interleav-
ing distance

di(V,W) = inf (π(Ω) | V,W are Ω-interleaved)

between generalized persistence modules V,W : P→ C.
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Interleaving Metrics on Functor Categories

Functoriality

Suppose V,W : P→ C and H : C→ D are functors. Then

di(HV,HW) ≤ di(V,W)

for any superlinear family or sublinear projection.

Proof.

An Ω-interleaving of V,W gives an Ω-interleaving of HV,HW:

P

��

V

##
P ∪Ω P // C

H // D

P

OO

W

;;
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Interleaving Metrics on Functor Categories

Interleavings for generalized persistence modules over a poset

Two persistence modules V,W : P → C are Ω-interleaved iff the following
functor extension problem has a solution:

C

P

V

;;

// P ∪Ω P

OO

P

W

cc

oo

Here P ∪Ω P has the partial order

(s, a) ≤ (t, b)⇔

{
s ≤ t if a = b

Ωs ≤ t if a 6= b

where Ω : P→ P is a translation.

Vin de Silva Pomona College Metrics on Functor Categories & Reeb Graph Operations



Interleaving Metrics on Functor Categories

Interleavings for generalized persistence modules over an arbitrary category

Two persistence modules V,W : D → C are ∆-interleaved iff the following
functor extension problem has a solution:

C

D

V
??

I1

// ∆

OO

D

W
``

I2

oo

Here ∆ is a cospan. The two functors I1, I2 are full-and-faithful. Every object
of ∆ is of the form I1(d) or I2(d).

Bubenik, dS, Scott

Interleaving and Gromov–Hausdorff distance: arXiv:1707.06288
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Interleaving Metrics on Functor Categories

Example: dynamical system interleavings

Let D be the category defined by the directed graph

• qq

Thus D has one object and morphisms {0, 1, 2, 3, . . . }.

• Functors D→ Top are discrete dynamical systems.

Let ∆n be the category with two objects •1 and •2 and morphisms

Mor(•1, •1) = Mor(•1, •1) = {0, 1, 2, 3, . . . }
Mor(•1, •2) = Mor(•2, •1) = {n, n + 1, n + 2, n + 3, . . . }

with addition as composition.

• ∆n-interleavings are shift-equivalences.
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Interleaving Metrics on Functor Categories

Categories with a flow (dS, Munch, Stefanou 2018)

Interleaving distance defined on categories with a coherent [0,∞)-action.

Examples

• Functor categories CP, equipped with a superlinear family (Ωε) on P.

• Poset S of subsets of a metric space X ; ‘thickening’ action on S:

A 7→ Aε = {x ∈ X | d(x ,A) ≤ ε}

Interleaving distance = Hausdorff distance.

commute. We say that a, b are weakly ε-interleaved if there exists a weak ε-interleaving
(ϕ,ψ) of a and b. The interleaving distance with respect to T for a pair of objects
a, b in C is defined to be

d(C,T )(a, b) = inf{ε ≥ 0 | a, b are weakly ε-interleaved}.
If a and b are not weakly interleaved for any ε, we set d(C,T )(a, b) = ∞.

We use the term “weakly” to distinguish Defn. 2.4 from the interleavings in the
restricted setting, Defn. 3.2, which will be further discussed in Sec. 3.1.

Theorem 2.6. d(C,T ) is an extended pseudometric on obj C.

Proof. For the sake of brevity in this proof, we write d = d(C,T ). It is clear by definition
that d is symmetric. Setting ϕ = ψ = ua gives a 0-interleaving of a with itself, hence
d(a, a) = 0 for any object a in C.

Next, we show that the triangle inequality holds. Let a, b, c ∈ C. If either d(a, b) =
∞ or d(b, c) = ∞, then trivially d(a, c) ≤ d(a, b) + d(b, c). Now, suppose that for some
0 ≤ ε, ζ < ∞, the objects a, b are ε-interleaved via (ϕ,ψ) and the objects b, c are
ζ-interleaved via (ϕ′, ψ′). Define ϕ′′ : a → Tε+ζc and ψ′′ : c → Tε+ζa by

a Tεb TεTζc Tε+ζc
ϕ

ϕ′′

Tεϕ′ µε,ζ,c
and c Tζb TζTεa Tζ+εa

ψ

ψ′′

Tζψ
′ µζ,ε,a

respectively. We claim that (ϕ′′, ψ′′) is an (ε+ ζ)-interleaving of a and c. Showing that
the left half of Dgm. 2.5 commutes means showing

µε+ζ,ε+ζ,a ◦ Tε+ζ [ψ′′] ◦ ϕ′′ = T(0≤2(ε+ζ)),a ◦ ua. (2.7)

Indeed, via functoriality and the definition of interleaving, we have the following com-
mutative diagram with Eqn. 2.7 as the perimeter.

T0a a

Tεb

T2εa TεTεa TεTεa TεT0b TεTζc

TεTεa TεT0Tεa TεT2ζb TεTζTζb Tε+ζc

Tε+2ζTεa TεT2ζTεa TεTζTζTεa Tε+ζTζb

Tε+ζTζTεa

T2(ε+ζ)a Tε+ζTε+ζa

T(0≤2ε),a

T(0≤2(ε+ζ)),a

ua

ϕ
ϕ′′

Tεψ Tεub Tεϕ′

T(2ε≤2(ε+ζ)),a

µε,ε,a

TεuTεa TεT0ψ
TεT(0≤2ζ),b µε,ζ,cTεTζψ

′µε,ε,a

T(ε≤ε+2ζ),Tεa

µε,0,Tεa

Tεµ0,ε

TεT(0≤2ζ),b
TεT2ζψ

Tεµζ,ζ,b

TεTζTζψ µε,ζ,Tζ b

Tε+ζψ
′

Tε+ζ [ψ′′]

µε+2ζ,ε,a

µε,2ζ,Tεa Tεµζ,ζ,Tεa

µε,ζ,Tζ Tεa Tε+ζTζψ

Tε+ζµζ,ε,a

µε+ζ,ζ,Tεa

µε+ζ,ε+ζ,a

7
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Reeb Graphs & Reeb Cosheaves

Reeb graphs

• An R-space (X , f ) is a topological space X with a map f : X → R.

• An R-space is a Reeb graph if each f −1(t) is finite.

Figure 1: The Reeb graph is used to study connected components of levelsets.

1.2 Reeb graphs and Reeb cosheaves

Our starting point is a topological space X equipped with a continuous real-valued function
f : X ! R. We call the pair (X, f) a ‘space fibered over R’ or, more succinctly, an R-space.
For reasons of convenience we will often abbreviate (X, f) simply to f . The context will indicate
whether we are thinking of f as a function or as an R-space.

We can think of an R-space as a 1-parameter family of topological spaces f�1(a), the levelsets
of f . The topology on X gives information on how these spaces relate to each other. For instance,
each levelset can be partitioned into connected components. How can we track these components
as the parameter a varies? An answer is provided by the Reeb graph.

The (geometric) Reeb graph of an R-space f is an R-space f defined as follows. First, we
define an equivalence relation on the domain of f by saying two points x, x0 2 X are equivalent if
they lie on the same levelset f�1(a) and on the same component of that levelset. Let Xf be the
quotient space defined by this equivalence relation, and let f : Xf ! R be the function inherited
from f . This is the Reeb graph. See, for example, Figure 1.

If f is a Morse function on a compact manifold, or a piecewise linear function on a compact
polyhedron, then its Reeb graph is topologically a finite graph with vertices at each critical value
of f . This situation is well studied. These examples are included in a larger class, the constructible
R-spaces, which have similar good behavior. We will say more about this in Section 2. If we work
in greater generality, the quotient X! Xf can be badly behaved. Among other things, we would
need to pay attention to the distinction between connected components and path components.
This is not an issue for constructible R-spaces, where the two concepts lead to the same outcome.

We now indicate an alternate way of recording the information stored in the geometric Reeb
graph. The abstract Reeb graph or Reeb cosheaf of an R-space f is defined to be the
following collection of data (see Figure 2):

• for each open interval I ✓ R, let F(I) be the set of path-components of f�1(I);

• for I ✓ J , let F[I ✓ J ] be the map F(I)! F(J) induced by the inclusion f�1(I) ✓ f�1(J).

Let F denote the entirety of this data. It is easily confirmed that F is a functor (see Section 1.3)
from the category of open intervals to the category of sets. As such, F is sometimes called a
pre-cosheaf on the real line in the category of sets. The important point is that this information,
in the constructible case, is enough to recover the geometric Reeb graph; see Figure 3. The
other important point is that it is sometimes easier to work with the pre-cosheaf than with the
geometric Reeb graph.

4

Reeb functor

• The Reeb functor converts a (constructible) R-space into a Reeb graph:

(X , f ) 7−→ ((X/∼), f )

where x ∼ y iff x , y are in the same component of the same levelset of f .
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Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

• Let Int denote the poset of open intervals, ⊆.

• A Reeb graph gives rise to a functor F = π0f
−1 : Int→ Set that is

constructible and satisfies the cosheaf condition for unions of intervals.

F(I =
⋃

Iα) = colim
[∐

α,β F(Iα ∩ Iβ) ⇒
∐
α F(Iα)

]
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Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

• Let Int denote the poset of open intervals, ⊆.

• A Reeb graph is the same thing as a functor F = π0f
−1 : Int→ Set that is

constructible and satisfies the cosheaf condition for unions of intervals.

( )
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Reeb Graphs & Reeb Cosheaves

Figure 1: The Reeb graph is used to study connected components of levelsets.

1.2 Reeb graphs and Reeb cosheaves

Our starting point is a topological space X equipped with a continuous real-valued function
f : X ! R. We call the pair (X, f) a ‘space fibered over R’ or, more succinctly, an R-space.
For reasons of convenience we will often abbreviate (X, f) simply to f . The context will indicate
whether we are thinking of f as a function or as an R-space.

We can think of an R-space as a 1-parameter family of topological spaces f�1(a), the levelsets
of f . The topology on X gives information on how these spaces relate to each other. For instance,
each levelset can be partitioned into connected components. How can we track these components
as the parameter a varies? An answer is provided by the Reeb graph.

The (geometric) Reeb graph of an R-space f is an R-space f defined as follows. First, we
define an equivalence relation on the domain of f by saying two points x, x0 2 X are equivalent if
they lie on the same levelset f�1(a) and on the same component of that levelset. Let Xf be the
quotient space defined by this equivalence relation, and let f : Xf ! R be the function inherited
from f . This is the Reeb graph. See, for example, Figure 1.

If f is a Morse function on a compact manifold, or a piecewise linear function on a compact
polyhedron, then its Reeb graph is topologically a finite graph with vertices at each critical value
of f . This situation is well studied. These examples are included in a larger class, the constructible
R-spaces, which have similar good behavior. We will say more about this in Section 2. If we work
in greater generality, the quotient X! Xf can be badly behaved. Among other things, we would
need to pay attention to the distinction between connected components and path components.
This is not an issue for constructible R-spaces, where the two concepts lead to the same outcome.

We now indicate an alternate way of recording the information stored in the geometric Reeb
graph. The abstract Reeb graph or Reeb cosheaf of an R-space f is defined to be the
following collection of data (see Figure 2):

• for each open interval I ✓ R, let F(I) be the set of path-components of f�1(I);

• for I ✓ J , let F[I ✓ J ] be the map F(I)! F(J) induced by the inclusion f�1(I) ✓ f�1(J).

Let F denote the entirety of this data. It is easily confirmed that F is a functor (see Section 1.3)
from the category of open intervals to the category of sets. As such, F is sometimes called a
pre-cosheaf on the real line in the category of sets. The important point is that this information,
in the constructible case, is enough to recover the geometric Reeb graph; see Figure 3. The
other important point is that it is sometimes easier to work with the pre-cosheaf than with the
geometric Reeb graph.

4

Reeb functor (two versions)

• The Reeb functor converts a (constructible) R-space into a Reeb graph:

(X , f ) 7−→ ((X/∼), f )

where x ∼ y iff x , y are in the same component of the same levelset of f .

or

• The Reeb functor converts a constructible R-space into a Reeb cosheaf:

F(I ) = π0f
−1(I )

G[I ⊆ J] = π0

[
f −1(I ) ⊆ f −1(J)

]
Vin de Silva Pomona College Metrics on Functor Categories & Reeb Graph Operations



Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (Ωε) of functors Int→ Int by setting

Ωε(I ) = I ε = “ε-neighbourhood of I”

Reeb interleaving distance (dS, Munch, Patel 2016)

An ε-interleaving between F,G is given by two families of maps

φI : F(I )→ G(I ε), ψI : G(I )→ F(I ε)

which are natural with respect to inclusions I ⊆ J, and such that for all I

ψIε ◦ φI = F[I ⊆ I 2ε], φIε ◦ ψI = G[I ⊆ I 2ε].

Stability Theorem

If f , g : X → R with ‖f − g‖∞ ≤ ε then di(F,G) ≤ ε.

Universal Reeb Metric (Bauer, Landi, Mémoli 2018)

The universal metric du(F,G) is the largest that satisfies the stability theorem.
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (Ωε) of functors Int→ Int by setting

Ωε(I ) = I ε = “ε-neighbourhood of I”

Cosheaf Smoothing Theorem

If F : Int→ Set is a (constructible) cosheaf, then so is FΩε : Int→ Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (Ωε) of functors Int→ Int by setting

Ωε(I ) = I ε = “ε-neighbourhood of I”

Cosheaf Smoothing Theorem

If F : Int→ Set is a (constructible) cosheaf, then so is FΩε : Int→ Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.

Vin de Silva Pomona College Metrics on Functor Categories & Reeb Graph Operations



Reeb smoothing algorithm by Dmitriy Smirnov & Song Yu

Vin de Silva Pomona College Metrics on Functor Categories & Reeb Graph Operations



Reeb space operations

Reeb graphs

• An R-space (X , f ) is a topological space X with a map f : X → R.

• An R-space is a Reeb graph if X is a graph and each f −1(t) is finite.

Figure 1: The Reeb graph is used to study connected components of levelsets.

1.2 Reeb graphs and Reeb cosheaves

Our starting point is a topological space X equipped with a continuous real-valued function
f : X ! R. We call the pair (X, f) a ‘space fibered over R’ or, more succinctly, an R-space.
For reasons of convenience we will often abbreviate (X, f) simply to f . The context will indicate
whether we are thinking of f as a function or as an R-space.

We can think of an R-space as a 1-parameter family of topological spaces f�1(a), the levelsets
of f . The topology on X gives information on how these spaces relate to each other. For instance,
each levelset can be partitioned into connected components. How can we track these components
as the parameter a varies? An answer is provided by the Reeb graph.

The (geometric) Reeb graph of an R-space f is an R-space f defined as follows. First, we
define an equivalence relation on the domain of f by saying two points x, x0 2 X are equivalent if
they lie on the same levelset f�1(a) and on the same component of that levelset. Let Xf be the
quotient space defined by this equivalence relation, and let f : Xf ! R be the function inherited
from f . This is the Reeb graph. See, for example, Figure 1.

If f is a Morse function on a compact manifold, or a piecewise linear function on a compact
polyhedron, then its Reeb graph is topologically a finite graph with vertices at each critical value
of f . This situation is well studied. These examples are included in a larger class, the constructible
R-spaces, which have similar good behavior. We will say more about this in Section 2. If we work
in greater generality, the quotient X! Xf can be badly behaved. Among other things, we would
need to pay attention to the distinction between connected components and path components.
This is not an issue for constructible R-spaces, where the two concepts lead to the same outcome.

We now indicate an alternate way of recording the information stored in the geometric Reeb
graph. The abstract Reeb graph or Reeb cosheaf of an R-space f is defined to be the
following collection of data (see Figure 2):

• for each open interval I ✓ R, let F(I) be the set of path-components of f�1(I);

• for I ✓ J , let F[I ✓ J ] be the map F(I)! F(J) induced by the inclusion f�1(I) ✓ f�1(J).

Let F denote the entirety of this data. It is easily confirmed that F is a functor (see Section 1.3)
from the category of open intervals to the category of sets. As such, F is sometimes called a
pre-cosheaf on the real line in the category of sets. The important point is that this information,
in the constructible case, is enough to recover the geometric Reeb graph; see Figure 3. The
other important point is that it is sometimes easier to work with the pre-cosheaf than with the
geometric Reeb graph.

4

Reeb functor

• The Reeb functor converts a (constructible) R-space into a Reeb graph:

(X , f ) 7−→ ((X/∼), f )

where x ∼ y iff x , y are in the same component of the same levelset of f .
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following collection of data (see Figure 2):
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• for I ✓ J , let F[I ✓ J ] be the map F(I)! F(J) induced by the inclusion f�1(I) ✓ f�1(J).

Let F denote the entirety of this data. It is easily confirmed that F is a functor (see Section 1.3)
from the category of open intervals to the category of sets. As such, F is sometimes called a
pre-cosheaf on the real line in the category of sets. The important point is that this information,
in the constructible case, is enough to recover the geometric Reeb graph; see Figure 3. The
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4

Reeb functor

• The Reeb functor converts a (constructible) B-space into a Reeb B-space:
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where x ∼ y iff x , y are in the same component of the same fiber of f .
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Example: Universal Cover

Let B be a (locally well-behaved) topological space. Then

Path(B, b0) =
{

paths γ : [0, 1]→ B with γ(0) = b0

}
is a B-space with respect to the evaluation map

e : Path(B, b0) −→ B; γ 7−→ γ(1).

Then

Univ(B) = Reeb
[

Path(B, b0), e
]

is the universal cover of B.
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Example: Universal Reeb Metric (Bauer, Landi, Mémoli 2018)

Let X = (X , f ) and Y = (Y , g) be Reeb graphs.

• A relator for X ,Y is an (R× R)-space

W
F−→ R× R

such that

Reeb
[
W , p1 ◦ F

] ∼= (X , f ),

Reeb
[
W , p2 ◦ F

] ∼= (Y , g).

• The deviation of a relator

dev(W ) = sup
w∈W

|p1(F (w))− p2(F (w))|

measures how far F (W ) deviates from the diagonal.

• The universal distance between X ,Y is defined

du(X ,Y ) = inf
(

dev(W ) |W is a relator for X ,Y
)
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Let B be a topological semigroup with operation �.

Reeb B-space convolutions

The π0-convolution of Reeb spaces

X
f−→ B, Y

g−→ B

is defined to be
(X , f ) ∗ (Y , g) = Reeb

[
X × Y , f � g

]
Reeb graph convolutions

(X , f ) ∗ (Y , g) = Reeb
[
X × Y , f + g

]
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Reeb graph convolutions

(X , f ) ∗ (Y , g) = Reeb
[
X × Y , f + g

]
Examples

• The σ-smoothing of a Reeb graph X = (X , f ) is given by the formula

Xσ = X ∗ [−σ, σ].

• The intervals [−σ, σ], for σ ≥ 0, form a semigroup under ∗.
• More generally, the convolution of intervals is their Minkowski sum:

[m1 − σ1,m1 + σ1] ∗ [m2 − σ2,m2 + σ2] = [m − σ,m + σ]

where m = m1 + m2 and σ = σ1 + σ2.

• The merge-tree and split-tree of X are given by the formulas

Merge(X ) = X ∗ [0,+∞), Split(X ) = X ∗ (−∞, 0].

• Thus X ∗ [−R,R], when R � 0, combines the merge and split trees of X .
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Metric properties of Reeb graph smoothing

Let X ,Y be Reeb graphs. Then

di(X
σ,Y σ) ≤ di(X ,Y ), du(Xσ,Y σ) ≤ du(X ,Y )

and
di(X ,X

σ) ≤ du(X ,Xσ) ≤ σ

for all σ ≥ 0.

Analogy: Gaussian kernel smoothing

Is there a theory of π0 signal processing?
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