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Persistence diagrams

Edelsbrunner, Letscher, Zomorodian 2000

Persistent homology takes a filtered space X = {X; | t € R} and returns a bar-
code of intervals [p, ) C R or a persistence diagram of points (p, q) € R%.
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Persistence diagrams

Using commutative algebra (Zomorodian, Carlsson 2003).

e Discretize the t-variable to integers: t =0,1,2,...

e Present X as an increasing sequence:

X: XoCXiCXoC...

Apply a homology functor H = H(—; k) to obtain a persistence module:

HX): H(Xo) — H(X1) = H(X) — ...

Observe that H(X) is a graded module over the polynomial ring k[z],
where z acts by shifting to the right.

Decompose this graded module as a direct sum of cyclic submodules.

e Summands z°k[z]/(z"*) are recorded as intervals [s, t).

Summands z°k[z] are recorded as intervals [s, +00).
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Interleaving of Persistence Modules

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} — {diagrams} is 1-Lipschitz.
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Interleaving of Persistence Modules

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

The map {persistence modules} — {diagrams} is 1-Lipschitz.

Relators

The metrics on the two spaces are defined in terms of ‘relators’.
e Two persistence modules may be related by an interleaving.
e Two diagrams may be related by a matching.

Every relator, of each type, has a size associated with it. The metrics are defined
by finding the infimum of the size of relators between a given pair of objects.
(Compare the geodesic distance in a Riemannian manifold.)

Stability theorem (Cohen-Steiner, Edelsbrunner, Harer 2007)

If two persistence modules admit an e-interleaving, then their persistence dia-
grams admit an e-matching.
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Interleaving of Persistence Modules

Definition

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

¢t 2 Ve — Wi et We — Viye

such that [various conditions].

The [various conditions] require the diagrams

v vt+2€ tsI:
> Vt+25 Vs+e — Vt+e
Ptte
Ptte
5+e s—> Wt+e ? Wt+2e
Wite t Wr+2€

to commute for all s < t.
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Interleaving of Persistence Modules

Let V,W be persistence modules. An e-interleaving between V. W is a pair
(P, W) where & = (¢¢) and W = (¢;) are collections of maps

¢t 2 Ve — Wi et We — Viye

such that [various conditions].

Interleavor categories (Chazal, dS, Glisse, Oudot 2016)

An e-interleaved pair of modules (V, W, ® W) is ‘the same thing’ as a persistence
module defined over the set | = R x {0, €} (two copies of the real line) with the
partial order

< i =
(s,a) < (t,b) & s=t !fa b
st+e<t ifa#b

R x {0, ¢}: >

PtaVitaVi0a9:0:9:8
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Interleaving of Persistence Modules

Interleavings for classical persistence modules

Two classical persistence modules V, W are e-interleaved iff the following functor
extension problem has a solution:

Vect
v W
R SRx{0,J+——R
Here R x {0, ¢} has the partial order

s<t ifa=»b

(s,a)S(tab)‘i’{s_i_ESt ifa#b
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Interleaving Metrics on Functor Categories

Interleavings for generalized persistence modules over a poset

Two persistence modules VW : P — C are Q-interleaved iff the following
functor extension problem has a solution:

P

P——PUqgP<——P
Here P Ugq P has the partial order

s<t ifa=»b

(S"")S(t’b)@{nsgt ifab

where 2 : P — P is a translation.
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Interleaving Metrics on Functor Categories

Translations (Bubenik, dS, Scott 2015)

Transp is the poset of functions Q2 : P — P that are order-preserving and satisfy
x < Qx for all x € P.

Superlinear Families

A superlinear family is a 1-parameter family of translations of P
(Qc | € €[0,00))

such that
QeIQeg S QEl+€2

for all €1, €2 € [0, 00).

Sublinear Projections

A sublinear projection is a map 7 : Transp — [0, 0] such that

(1) < 7(Q1) + 7(22)

for all Q1,5 € Transp.
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Interleaving Metrics on Functor Categories

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Qe [ € € [0, 00))

such that
Qquz S Q€1+€2

for all €1, €2 € [0, 00).

Examples of superlinear famlies

e P=R,
Q(t)=t+e.

e P = {compact intervals in the real line},
Qc([a,b]) = [a— €, b+¢].

e P = {closed subsets of a metric space X},
Q(V) = Ve = {x € X such that d(x, V) < €}.
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Interleaving Metrics on Functor Categories

Superlinear Families

A superlinear family is a 1-parameter family of translations of P

(Qe [ € € [0, 00))

such that
Qelﬂez S Q€1+€2

for all €1, €2 € [0, 00).

Interleaving distance (Bubenik, dS, Scott 2015)

Given a superlinear family (€¢) of translations of P, we define the interleaving
distance
di(V, W) = inf (¢ | V, W are Q.-interleaved)

between generalized persistence modules V, W : P — C.
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Interleaving Metrics on Functor Categories

Sublinear Projections

A sublinear projection is a map 7 : Transp — [0, co] such that

7('(9192) < 71'(91) + W(Qz)

for all 1, € Transp.

Interleaving distance (Bubenik, dS, Scott 2015)

Given a sublinear projection family 7 : Transp — [0, o0], we define the interleav-
ing distance

di(V, W) = inf (7(2) | V,W are Q-interleaved)

between generalized persistence modules V, W : P — C.
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Interleaving Metrics on Functor Categories

Suppose V., W : P — C and H : C — D are functors. Then

di(va HW) < di(Vv W)

for any superlinear family or sublinear projection.

Proof.
An Q-interleaving of V, W gives an Q-interleaving of HV, HW:

P
l v
PUP oo yc—5D
| «
P




Interleaving Metrics on Functor Categories

Interleavings for generalized persistence modules over a poset

Two persistence modules VW : P — C are Q-interleaved iff the following
functor extension problem has a solution:

P

P——PUqgP<——P
Here P Ugq P has the partial order

s<t ifa=»b

(S"")S(t’b)@{nsgt ifab

where 2 : P — P is a translation.
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Interleaving Metrics on Functor Categories

Interleavings for generalized persistence modules over an arbitrary category

Two persistence modules VW : D — C are A-interleaved iff the following
functor extension problem has a solution:

7N

D—)A(—D

Here A is a cospan. The two functors /i, l, are full-and-faithful. Every object
of A is of the form h(d) or h(d).

Bubenik, dS, Scott

Interleaving and Gromov—Hausdorff distance: arXiv:1707.06288
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Interleaving Metrics on Functor Categories

Example: dynamical system interleavings

Let D be the category defined by the directed graph

®

Thus D has one object and morphisms {0,1,2,3,...}.
e Functors D — Top are discrete dynamical systems.
Let A, be the category with two objects ; and e, and morphisms

Mor(e1,e1) = Mor(e1,e1) = {0,1,2,3,...}
Mor(e1,,) = Mor(ez, 1) ={n,n+1,n+2,n+3,...}

with addition as composition.

e A,-interleavings are shift-equivalences.

Vin de Silva Pomona College Metrics on Functor Categories & Reeb Graph Operations



Interleaving Metrics on Functor Categories

Categories with a flow (dS, Munch, Stefanou 2018)

Interleaving distance defined on categories with a coherent [0, co)-action.

o Functor categories C*, equipped with a superlinear family (Q.) on P.

e Poset S of subsets of a metric space X; ‘thickening’ action on S:
A A ={x e X |d(x,A) <e}

Interleaving distance = Hausdorff distance.
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Reeb Graphs & Reeb Cosheaves

Reeb graphs
e An R-space (X, f) is a topological space X with a map f : X — R.
o An R-space is a Reeb graph if each f7(t) is finite.

Reeb functor

o The Reeb functor converts a (constructible) R-space into a Reeb graph:
(X, ) — ((X/~),F)

where x ~ y iff x,y are in the same component of the same levelset of f.
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Reeb Graphs & Reeb Cosheaves

]E() X [a,(), al] ]El X [al, az] ]E2 X [az, a3] Eg X [a3, a4 IE4 X [a4, a5

S E
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Reeb Graphs & Reeb Cosheaves

1

Eo X ao, a1] E1 X [al, a2] E2 X [ag, 0.3] E3 X [a3, a4] E4 X [a4, (Z5]
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Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, C.

o A Reeb graph gives rise to a functor F = mof ~! : Int — Set that is
constructible and satisfies the cosheaf condition for unions of intervals.

Set




Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, C.

o A Reeb graph is the same thing as a functor F = mof ~! : Int — Set that is
constructible and satisfies the cosheaf condition for unions of intervals.

Set




Reeb Graphs & Reeb Cosheaves

Reeb cosheaves (dS, Munch, Patel 2016)

o Let Int denote the poset of open intervals, C.

o A Reeb graph is the same thing as a functor F = mof ~! : Int — Set that is
constructible and satisfies the cosheaf condition for unions of intervals.

M(HH
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Reeb Graphs & Reeb Cosheaves

Reeb functor (two versions)

o The Reeb functor converts a (constructible) R-space into a Reeb graph:
(X, £) — ((X/~), )
where x ~ y iff x,y are in the same component of the same levelset of f.
or
o The Reeb functor converts a constructible R-space into a Reeb cosheaf:
F(I) = mof (1)
Gl C ) =m0 [F1(1) € F(I)]
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting
Qc(l) = I° = “e-neighbourhood of "

Reeb interleaving distance (dS, Munch, Patel 2016)

An e-interleaving between F, G is given by two families of maps

¢ F(1) = G(I9), 4 :G(I) — F(I9)

which are natural with respect to inclusions / C J, and such that for all /

Ve oy = F[I C 1],  ¢se 0thy = G[I C I*].
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2¢) of functors Int — Int by setting
Qc(l) = I° = “e-neighbourhood of "

Reeb interleaving distance (dS, Munch, Patel 2016)

An e-interleaving between F, G is given by two families of maps

o F(1) = G(I), 1 :G(l) — F(I)

which are natural with respect to inclusions / C J, and such that for all /

Ve oy = F[I C 1],  ¢se 0thy = G[I C I*].

Stability Theorem

If f,g: X = R with ||f — g||cc < € then di(F,G) <e.

Universal Reeb Metric (Bauer, Landi, Mémoli 2018)

The universal metric d,(F, G) is the largest that satisfies the stability theorem.
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.

d+e
d c+e
c b+e
b
a
a—¢
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.

iz
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Reeb Graphs & Reeb Cosheaves

Translation operators on Int

We define a 1-parameter semigroup (£2) of functors Int — Int by setting

Qc(l) = I° = “e-neighbourhood of "

Cosheaf Smoothing Theorem

If F: Int — Set is a (constructible) cosheaf, then so is FQ, : Int — Set.

Corollary: Reeb Smoothing

There is a 1-parameter semigroup of ‘smoothing’ operations on Reeb graphs.
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Reeb smoothing algorithm by Dmitriy Smirnov & Song Yu

epsilon = 0.14
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Reeb space operations

Reeb graphs
e An R-space (X, f) is a topological space X with a map f : X — R.
o An R-space is a Reeb graph if X is a graph and each f=%(t) is finite.

Reeb functor

o The Reeb functor converts a (constructible) R-space into a Reeb graph:
(X, ) — ((X/~),F)

where x ~ y iff x,y are in the same component of the same levelset of f.
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Reeb space operations

o A B-space (X, f) is a topological space X with a map f : X — B.
o A B-space is a Reeb B-space if each f~'(t) is finite.

Reeb functor

o The Reeb functor converts a (constructible) B-space into a Reeb B-space:
(X, ) — ((X/~),F)

where x ~ y iff x, y are in the same component of the same fiber of f.
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Reeb space operations

Example: Universal Cover

Let B be a (locally well-behaved) topological space. Then
Path(B, bo) = {paths v : [0,1] — B with v(0) = bo }
is a B-space with respect to the evaluation map
e : Path(B, bo) — B; v — y(1).

Then

Univ(B) = Reeb [ Path(B, o), ] ‘

is the universal cover of B.
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Reeb space operations

Example: Universal Reeb Metric (Bauer, Landi, Mémoli 2018)

Let X = (X,f) and Y = (Y, g) be Reeb graphs.
e A relator for X, Y is an (R x R)-space
w5 RxR
such that

Reeb [W,p1 o F] = (X, f),
Reeb [W,p20 F] 2 (Y, g).

e The deviation of a relator

dev(W) = jgev|P1(F(W)) — p2(F(w))|

measures how far F(W) deviates from the diagonal.

e The universal distance between X, Y is defined

du(X,Y) = inf (dev(W) | W is a relator for X, Y)
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Reeb space operations

Let B be a topological semigroup with operation ©. J

Reeb B-space convolutions

The mo-convolution of Reeb spaces

x-5B, vY-5B

is defined to be
(X,f)*(Y,g) =Reeb [X x Y, f ®g]

Reeb graph convolutions

(X,f)*(Y,8) =Reeb [X x Y, f + g]
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Reeb space operations

Reeb graph convolutions

(X,f)*(Y,g) = Reeb [X>< Y,f—i—g]

e The o-smoothing of a Reeb graph X = (X, f) is given by the formula

X% =X *[—0a,0].

The intervals [—o, o], for o > 0, form a semigroup under .
e More generally, the convolution of intervals is their Minkowski sum:

[m1—0’1,m1+0'1]*[m2—0'2,m2+0'2]:[m—O',m-l-O']

where m = my + m» and o = o1 + o>.

e The merge-tree and split-tree of X are given by the formulas

Merge(X) = X * [0, +00), Split(X) = X * (—o0,0].

e Thus X x[—R, R], when R >> 0, combines the merge and split trees of X.
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Reeb space operations

Metric properties of Reeb graph smoothing
Let X, Y be Reeb graphs. Then

di(XU7YU) Sdl(X) Y)7 dU(XUa YU) SdU(X: Y)

and
di(vad) < dU(X>XU) <o

for all ¢ > 0.
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Reeb space operations

Metric properties of Reeb graph smoothing

Let X, Y be Reeb graphs. Then

di(XU7YU) Sdl(X) Y)7 du(XU, YU) SdU(X? Y)

and
di(vad) < dU(X>XU) <o

for all ¢ > 0.

Analogy: Gaussian kernel smoothing

Is there a theory of mg signal processing?
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