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Overview: TPE + functorial clustering = FCE

e Dimensionality reduction is a basic and ubiquitous approach
for understanding high-dimensional data

e Linear archetype: principal components analysis (PCA)
e Most nonlinear dimensionality reduction (NLDR) techniques
are ad hoc, even when motivated by or using theorems
e The NLDR technique of tree-preserving embedding (TPE)
turns out to be functorial
e A category-theoretical classification of hierarchical clustering
schemes gives a recipe for transforming TPE into essentially

all functorial NLDR methods under the aegis of functorial
cluster embedding (FCE)

e Carlsson, G. and Mémoli, F. JMLR 11, 1425 (2010); Found.
Comp. Math. 13, 221 (2013)

e Preceding two bullets essentially the only original material here
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M The quintessential NLDR example

e 2D map results from applying NLDR to a globe surface in 3D
o Different map projections suit varying purposes...
o ...but tradeoffs are inevitable: e.g., topological information (a
nontrivial homology class) must be lost unless the embedding
has a point at infinity
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¥ Interlude

ics > Machine Learning
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

Leland Mclnnes, John Healy, James Melville
(Submitted on § Feb 2018 (v1), last revised 6 Dec 2018 (this version, v2))

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold leaming technique for dimension reduction. UMAP is construsted from a

theoretical framework based in Riemannian geometry and algebraic topelogy. The result is a practical scalable algorithm that applies to real world data.

The UMAP algorithm is competitive with t SNE for visualization quality, and arguably preserves more of the global structure with superior run time
UMAP has no restrictions on embedding dimension, making it viable 2s 2 general purpose dimension

reduction technique for machine learning.

METRIC REALIZATION OF FUZZY SIMPLICIAL SETS

DAVID I. SPIVAK

AssTracT. We discuss fuzzy simplicial sets, and their relationship to (a mild
generalization of) metric spaces. Namely, we present an adjunction between
the categories: a metric realization functor and fuzzy singular complex functor
that generalize the usual geometric realization and singular functors. Finally,
we show how these constructions relate to persistent homology.

The following document is a rough draft and may have (substantial) errors.
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Tree preserving embedding

e For details see Shieh, A. D., et al. PNAS 108, 16916 (2011)

e TPE preserves the single-linkage dendrogram
e = hierarchical clustering of points resulting from merging
cluster pairs with minimum nearest-neighbor distance
e How TPE does it:
o Constrained optimization preserves the SL dendrogram
e Acts directly on dissimilarities: no need for vector data
o Infeasible in practice, but a good greedy approximation exists
e Use an optimal rigid transformation of prior embedding

instead of reembedding at each step
e O(n®) runtime, typical for the class of NLDR algorithms

Embedding SL Dendrogram Before Alignment After Alignment

e
w

o 2 4 8
n

Images from Shieh et al.

Dimension2
20 2 46 8

20 2 4 8
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TPE examples from Shieh et al.

protein sequence d|SS|m|Iar|ty (colors/labels for organism domains)

Non-metric MDS 1-SNE
LTV

2 @

2

‘‘‘‘‘‘‘‘

images of handwritten digits (colors/labels for digits themselves)

TPE PcA -SNE
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B Relevant categories (see Carlsson and Mémoli)

o M'° C MM C M2 objects are finite metric spaces
(X, dx); morphisms are isometries / injective /
distance-nonincreasing maps

e C (“standard clustering algorithm outputs”): objects are
(X, Px), where Px is a partition of X into clusters; morphisms
are f : X — Y s.t. Px refines f*(Py) := {f~}(B): B € Py}
e P (“hierarchical clustering algorithm outputs”): objects are
persistent sets (X, 6x) and morphisms are
f: (X,Hx) — (Y,Qy) s.t. (9)((!‘) < f*(@y(r)) for all r
e Here X is a finite set and x is a map from R>( to the set of
partitions of X s.t. i) r <s = 0x(r) < 0x(s) and ii) for all
r > 0 there exists € > 0 s.t. Ox(r') = Ox(r) for all
r<r' <r+e. A dendrogramis a persistent set (X, fx) s.t.
Ox(t) consists of a single cluster for some t
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M Relevant equivalence relations

e For x,x" € (X,dx) and r > 0:
o x ~, x' iff there exists a sequence x = xg, x1,...,xx = x" of
points in X s.t. dx(xj,xj+1) < rfor0<j< k-1,
e more generally, for any m € Z>, an equivalence relation ~"
obtained by keeping equivalence classes under ~, of cardinality

> m and associating any unaccounted-for points to singleton
equivalence classes;

e For B,B' € Px, R >0 and a linkage function ¢ defining the
distance between clusters, B ~y g B’ iff there exists a
sequence B = By, By, ..., Bx = B’ of clusters in Px s.t.
K(Bijj—i-l) < R for 0 SJ < k—1.
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B Relevant functors

e Standard clustering functor € : M*®* — C
e Functoriality amounts to (X, dx) LN (Y,dy) LN (Y, Py)=
(X, dx) - (X, Px) L2 (Y, Py) w/ typical €(F) = f in Set
o Vietoris-Rips/single-linkage clustering functor R, : M® — C
o R, (X, dx) := (X, Px(r)), where Px(r) is the partition for ~,
e R, (f: X = Y) given by regarding f as a morphism from
(X, Px(r)) to (Y,Py(r))inC
o Vietoris-Rips hierarchical clustering functor R : M&" — P
o R(X,dx) = (X,0x) and where 0x(r) = Px(r) as above
e R(f : X = Y) given by regarding f as a morphism from
(X,0x(r)) to (Y,0y(r)) in P
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B Representable/excisive standard clustering functors

e More general class of standard clustering functors than R,
e Defined in terms of a family Q of finite metric spaces
¢ M — Cis given by €2(X, dx) := (X, Px)
e Here x and x’ belong to the same cluster of Px iff there exists
a sequence X = xp, X1,...,Xx = x' of points in the cluster,
along with {wj}j-‘zl C Q, (aj,8) € w?, and f; € hom(wj, X)
for 0 <j<k—1st fi(oj) =xj—1 and £;(53;) = x;.
o Example: |, = ¢{22(0} where A, (r) denotes the metric
space with m points each at distance r from each other
Theorem: |Q| < 0o = €% = R, 0 I
e 3% is a metric-changing endofunctor (details on next slide)

Uniqueness results also highlight the special nature of R,
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B The metric-changing endofunctor

o 39X, dx) = (X, U(WY))
o Maximal subdominant ultrametric U(Wx)
o W/r/t symmetric Wy : X% = R>q w/ Wx(x,x) =0
o U(Wx)(x,x") == min {maxu—x; ... x=x" Wx (X, Xj+1)}
e |.e., the maximal hop in a minimal path between points
e Algorithm provided in §VI.C of Rammal, Toulouse, and
Virasoro, Rev. Mod. Phys. 58, 765 (1986)
o Wi(x,x') := 0 if x = x/, otherwise equals
inf{A>0:3w € Q¢ € homum(A w,X) st {x,x'} T\ w)}
o Example: for Q = {A,(6)} we have W(x,x') =
inf {A>0:3Xy C X s.t. [Xn| = mA{x,x'} C Xm A dx|x, < A6}
e Find a min-diameter subset with m elements including x and x’
o Generally have to use heuristics
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B Remarks on density proxies and hierarchical clustering

e Density estimates in high dimensions will generally be poor
e Functoriality is a more reasonable desideratum for clustering
than density recognition
e This point of view supports “functorial NLDR" and simple Q

e Theorem: A is the unique hierarchical clustering functor on
MBEe" that satisfies a few mild/natural restrictions

e There are more options on MM

e Let 0%(r) be the partition of (X, dx) w/r/t ~7. Now
9™ MM — P defined by H™(X, dx) := (X,6%) (and the
trivial action on maps) works; clustering amounts to treating
small numbers of co-located “outliers” as singletons

e A particularly useful class of hierarchical clustering functors is
furnished by taking R? := % 0 3%, e.g., hierarchical-functorial
analogue of DBSCAN...
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B Functorial cluster embedding

e Generalization from TPE to FCE is significant yet easy
e Given a hierarchical clustering functor RL . M 5 P, to
elegantly embed (X, dx) in some R"” we merely need to:
 apply 3 to (X, dx);
e perform TPE
o FCE preserves R since TPE preserves &
e |l.e., FCE simply amounts to the observation that TPE is
essentially functorial over M#°" along with the application of
the endofunctor J%
o Example: Q = {A,(6)} leads to a hierarchical-functorial
analogue of “DBSCAN-tree preserving embedding” likely to
enhance the utility of TPE
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M Implementing FCE

e A practical implementation of FCE requires:
1) An algorithm taking the original metric dx as input and
producing a symmetric function of the form W* as output;
2) An algorithm for computing the subdominant ultrametric;
3) An implementation of TPE itself
e Items 2 & 3 are straightforward/available, though existing
implementation of TPE restricts embedding to R?
e Item 1 will generally be NP-hard for a nontrivial choice of Q
e Constrain Q
o Accept approximate solutions (existing TPE implementation
already does this anyway)
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B Implementation notes for Q = {A,(5)}

For m = 3 we can avoid any bottleneck:
o WR(x,x)=inf{A>0:3x" € X s.t. dx | fxxrxry < A6}
takes O(n®) steps—same as subdominant ultrametric and TPE
e For m > 3, let Hi(x) denote the k points closest to x,
including x itself, and approximate W*(x, x') for
m/2 > k = ©(m) by restricting consideration from X to
Hi(x) U Hi(x") in formation of m-element min-diameter sets

o Helpful to precompute a hash table of sets of indices
corresponding to m-element subsets of Hy(x) U Hi(x")

o Can employ greedy approximations, particularly for X ¢ RN
e Some other more esoteric tactics might be considered
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B Conclusion

e Provides principled basis for developing practical
instantiations: focus on approximation of nice algorithms
instead of efficient but ad hoc constructions

o Category theory can help us recognize (what) a good thing
(is) when we see it...

e ...and we can miss good things by not paying attention to the
categorical context

Thanks!

steve.huntsman@baesystems.com
https://bit.ly/35DMQjr
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