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Dual Relations

Given a topological space extended with
I an equivalence relation or partial order, what is the

algebraic structure dual to the quotient of the space?
I a non-deterministic computation (relation), what is the dual

structure of pre- and post-conditions?
Given an algebraic structure extended with

I relations, what is the topological dual?

Given an (in)equational calculus of logical operations extended
with

I a Gentzen-style consequence relation, what is its dual
semantics for which it is sound and complete?



A Motivating Example: Cantor Space
Cantor Space C : Excluded middle third subspace of the unit
interval.
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...

...
...

...
...

Equivalence relation ≡ glues together the endpoints of the
gaps.

Dual of C: Free Boolean algebra FrBA(N) over countably many
generators.

How is ≡ reflected in FrBA(N)?
Does this give rise to [0,1] as the dual of (FrBA(N), . . .)?

This talk concentrates on the first question.
The second question is the subject of another talk.



Example: Priestley Spaces

Consider C equipped with natural order ≤.

I Two clopens a,b are in the dual of ≤ if ↑a ⊆ b
I The reflexive elements ↑a ⊆ a are the upper clopens
I (C,≤) is the coinserter of C wrt to ≤
I The dual of (C,≤) is the distributive lattice of reflexive

elements
I The dual of (C,≤) is the inserter of the dual of C wrt to

the dual of ≤

These are examples of general phenomena that require
topological relations.

I Every compact Hausdorff space is a quotient of a Stone
space

I Priestley spaces (the duals of distributive lattices) are
strongly order separated ordered Stone spaces.



Example: Stralka’s Ersatzkette

Suppose we start with an ordered Stone space that is not a
Priestley space?

Consider C equipped with partial order v only linking the left to
the right endpoint of each gap. (Stralka’s example of a
non-Priestley ordered Stone space).

Our analysis gives a new argument why (C,v) is not a
Priestley space: The dual of v is the two element lattice, which
is not dual to (C,v)

Stralka (1980)



Algebraic Example: Sequent Calculi

Relations in DL (distributive lattices) are essentially sequent
cacluli:

Taking subobjects of products in DL amounts to

0R0 1R1
aRb a′Rb′

(a ∧ a′)R(b ∧ b′)
aRb a′Rb′

(a ∨ a′)R(b ∨ b′)

while weakening

a′ ≤ a aRb b ≤ b′

a′Rb′

turns out arise naturally from the duality theory.

Again, an example of general phenomenon:
I “An A-relation for a category A of ordered algebras is a

sequent calculus”



The Dual of a Relation in the Case of Homming into 2

Let 2
− : X → Aop be, for example, one of the functors

2
− : Pos→ Posop

2
− : Stone→ BAop

2
− : BA→ Stoneop

2
− : Pri→ DLop

2
− : DL→ Priop

The extension to binary relations is a functor

2 : Rel(X )→ Rel(A)
R 7→ { (a,b) | R[a] ⊆ b }

We will see later why 2 is an equivalence of categories
whenever 2

− is



Relations

Let U : C → Pos be a category (with some good properties ...)

Definition: A relation R : A # B in C is a
- sub-object R ⊆ A× B that is also
- an order-preserving map Aop × B → 2

where 2 = {0 < 1}

Remark: Also called monotone or weakening (closed) relations

Examples: Stone-relations, BA-relations, Priestley-relations,
DL-relations, ...

These requirements arise from the interplay of spans and
cospans in Pos.



Relations as Spans and Cospans

Relations can be tabulated as
spans and as cospans
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with

xRy ⇔ ∃w . x ≤ pw & qw ≤ y xRy ⇔ jx ≤C ky

For spans the ≤ is not essential, it is for cospans:

I The order ≤C of C encodes the relation R
I C necessarily encodes a weakening relation



Relations as Equivalence Classes of (Co)Spans
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Different spans, and different cospans, can represent the same
relation

Each equivalence class has a normal form as a span and as a
cospan.

I The span-normal form of a cospan as the ‘ordered
pullback’ of the cospan

I The cospan-normal form of a span is the ‘ordered pushout’
of the span



Exact Squares

Exact squares were introduced by Hilton in the context of
abelian categories and generalised by Guitart to 2-categories.
We apply these ideas to order enriched categories
A diagram in Pos
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is called exact if Rel(p,q) = Rel(j .k).
Proposition: Comma and cocomma squares in Pos are exact

Define: Rel(Pos) is the ordered category of spans (or cospans)
modulo exact squares



Concretely Order-Regular Categories

Generalise Rel(Pos) to Rel(C) for suitable categories C
In concretely-order regular categories relations behave as in
Pos
Definition: U : C → Pos is concretely-order regular if

I U is order faithful (injective and order-reflecting on
homsets)

I C has and U preserves finite weighted limits
I C has and U preserves Onto-Embedding factorisations

The last item can be replaced by “existence of exact
cocommas” and the last two items can be replaced by
”existence of enough exact squares”

Define: Rel(C) to have equivalence classes of weakening
closed spans as morphisms. Composition is defined by
order-pullback and Onto-Embedding factorization.



Main Theorem 1

If
U : X → Pos and V : A → Pos are concretely-order

regular categories
F : X → A and G : A → X are a dual equivalence
preserving exact squares

Then
F and G extend to an equivalence of categories of relations

Rel(A)
Rel(F )

-- Rel(X )co

Rel(G)

mm



Main Theorem 2

If
U : X → Pos and V : A → Pos are concretely-order

regular categories
F : X → A and G : A → X are a dual adjunction
preserving exact squares and mapping surjections to

embeddings
Then

F and G extend to an adjunction of framed bicategories of
relations

(§A)co
§F

,, §X
§G

mm

We cannot replace §A, §X by Rel(A),Rel(X ) because the
unit and the counit of the extended adjunction are only natural
wrt to maps, not wrt relations



Framed Bicategories

Shulman’s framed bicategories are particular double categories
in which the ‘vertical’ arrows behave like maps and the
‘horizontal’ arrows like relations

Framed bicategories organise themselves in a 2-category

2-categories come with a native notion of adjunction

Spelling out the details, one finds that this notion of adjunction
requires naturality only wrt to vertical arrows (maps)
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Conclusion

Extend Stone duality from maps to relations
In preparation: Extending zero-dimensional dualities to
continuous dualities
What we have done:

category theory of cat’s enriched over cat’s enriched over 2
examples with dualising object 2

Future work:
(more of the above)
many-valued valuations: general dualising poset of truth

values (replacing 2)
many-valued relations: enrich over lattice of truth values

(replacing 2)
Other dualising objects could lead to new results for
many-valued logic?
Ask me for a preprint if you are interested ...


