Strings for Cartesian Bicategories

M. Andrew Moshier¹

UC Riverside

November 9, 2019

¹Steve Vickers is reporting on closely related joint work at SYCO 6 in Leicester next month.

Motivation

- Partially ordered (or pre-ordered) sets are the basic structures of algebraic logic:
 - A set (of "propositions")
 - An "entailment" relation between them: $p \Rightarrow q$
- Additional logical structure provided by connectives with rules.
- Want to put this onto a category-theoretic footing.
- The idea is to regard morphisms between logics as generalized entailment relations.

Categories of logics

- Two obvious options for making a category of abstract logics:
 - ► Use ⇒ (and connective) preserving functions between objects.

Propositions in one language are directly translated to propositions of another.

- ► Or, since ⇒ (the "identity " of a logic) is itself a relation, generalize these to "entailment" morphisms.
- This becomes interesting because:
 - We discover lots of other models
 - We have a calculus (a way to construct free categories of the right kind)
 - The calculus has an interesting geometric interpretation via string diagrams.
 - There are connections (via the diagrams) to sequent calculus. – [N.B. Related to Alexander Kurz' and my report earlier today.]

The Compact Structure of Pos*

Pos^{*} consists of posets and weakening relations. [We only use this as a reference model.]

Cartesian products of posets are posets, but *not* the categorical product.

- In this category, disjoint union is product and coproduct [Exercise]
- Let $A \otimes B$ denote cartesian product. Then
 - \mathbb{I} (singleton {*}) is unit (up to natural iso) for \otimes
 - \otimes is symmetric, monoidal: $A \otimes B \simeq B \otimes A$, etc.
 - $A \otimes B \simeq B^{\partial} \otimes A^{\partial}$
 - $\mathsf{hom}(A \otimes B, C) \equiv \mathsf{hom}(A, B^{\partial} \otimes C)$
 - $A = A^{\partial \partial}$
- These say that Pos* is a compact closed category.

But wait! There's more.

Cartesian Bicategories

Definition (Carboni & Walter)

- A cartesian bicategory is
 - Poset enriched
 - Symmetric monoidal: \otimes , \mathbb{I} with the usual natural isos
 - \blacktriangleright \otimes is monotonic on hom sets
 - Every object is equipped with a comonoid:

$$\bullet \ \hat{\delta}_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$$

- $\hat{\kappa}_A : A \to \mathbb{I}$
- all morphims are lax homomorphisms for the comonoid:

$$R; \hat{\delta}_B \leq \hat{\delta}_A; (R \otimes R)$$
$$R; \hat{\kappa}_B \leq \hat{\kappa}_A$$

δ̂_A and κ̂_A are maps [they have lower adjoints δ̃_A and κ̃_A].
δ̂_A; δ̃_A = id_A

Pos*, Lat*, DLat*, BA* and Set* are compact cartesian bicategories

In Pos*

- $\blacktriangleright \otimes$ and $\mathbb I$ determine the symmetric monoidal structure.
- Obviously \otimes is monotonic on hom-sets.
- The relations
 - $a \hat{\delta}_A (b, c)$ if and only if $a \le b$ and $a \le c$
 - ▶ a k̂ ★ (all a)

determine cartesian bicategory structure.

• $-^{\partial}$ makes Pos^{*} also compact closed.

Moreover,

- In Set^{*} and BA^{*}, $A^{\partial} \simeq A$.
- In Lat*, DLat* same as in Pos*.

String Diagrams For Symmetric Monoidal Categories (review)

Symmetric monoidal (and compact closed) categories have a coherence theorem based on string diagrams

A diagram of $R: A \otimes B \hookrightarrow C^{\partial} \otimes D:$

Theorem (Joyal & Street)

Two diagrams denote the same morphism in all compact closed categories iff they are homotopically equivalent (in \mathbb{R}^4).

Some Details of Diagrams (review)

Symmetry is "crossed wires". Empty diagram is $\mathbb{I}.$ Unit and counit are "u-turns".

So the compact closed structure is reflected in various equations:

Bicartesian Enrichment

Diagrams for the diagonals

Map axioms

More Axioms (and Lemmas)

Comonoid/monoid

Split monicity axiom for δ

Lax Naturality Axioms and lemmas

Weak Frobenius Axiom (laxity for $\check{\delta}$ wrt $\hat{\delta}$)

Laxity for basic morphisms

Coherence Theorems

Theorem

Let \leq be the least pre-order on string diagrams including the axioms and closed under composition and \otimes (stacking). Then the poset reflection of \leq determines an initial cartesian bicategory (for a given set of basic objects and morphisms).

Theorem

The same construction works for compact closed cartesian bicategories.

Theorem

The same construction also works when \leq is augmented with an inequational theory (a set of pairs of diagrams).

Lattice-like Objects in Cartesian Bicategories

Meets and joins

And object is meet semilattice-like if δ_A is a comap (it is already a map).

That is, there is a morphism \land satisfying

It is easy to show that \land is idempotent, associative and commutative and deflating: $\xrightarrow{}\land \rightarrow \leq \longrightarrow$

• Dually, *A* is join semilattice-like if $\check{\delta}_A$ is a map.

More on Lattices

Lemma

In Pos*:

- A poset P is an actual meet semilattice iff it is meet semilattice-like.
- A poset P is an actual join semilattice iff it is join semilattice-like.

Moreover

- ▶ Boundedness is characterized by $\hat{\kappa}_A$ being a comap (\top) or $\check{\kappa}_A$ being a map (\bot).
- What about distributivity?

Distributivity

Lemma

A lattice-like object in a cartesian bicategory is distributive, i.e., \land distributes over δ (the map corresponding to comap \lor), if and only if

The proof is entirely "stringy". That is, we use only string rewriting in the initial bicartesian category of string diagrams.

Complementedness

Lemma

In Pos^{*}, if an object is a distributive lattice, then it is complemented if and only if

Remark

- This condition is dual to the Frobenius Law (FL) for the bialgebra (δ, δ, κ, κ).
- If FL holds for all objects, the bicartesian category is a regular allegory (objects ares "discrete").
- "Complemented distributive lattice" is dual to "discrete".

Other Examples and Constructions

Examples

- Compact pospaces by taking *closed weakening relations* as morphisms. Then maps are bijective with continuous monotonic functions.
- Proximity lattices (not quite discussed yesterday).
- Rel all objects satisfy Frobenius Law

Constructions

- Map-comma: Objects are maps into a base poset B. Morphisms are lax homomorphisms.
- Karoubi envelope of a given cartesian bicategory (Steve Vickers is investigating these for particular applications).
- ► (Pos*)^{A^{op}} "presheaves" over the base Pos*?

Thanks