TOWARDS OPERADIC PROGRAMMING
A PRELIMINARY REPORT

DMITRY VAGNER

09 NOVEMBER 2019

STRING DIAGRAMS

we represent an arrow

by a box

and a composite of arrows

a f b g
e — 0

[Jo)

by a string diagram

(=)

WIRING DIAGRAMS

What about the composition process itself?
g : hom(x,y) x hom(y,z) — hom(x,2)

visually, this maps the string diagram expression

to a single box expression

we visualise this transformation with a wiring diagram

GENERIC COMPOSITIONS

for any n : N, there is an n-ary composition chainy

100 O

hom(Xo, X1) X -+ X hom(Xp—_1,Xn) — hom(Xo, Xn)

of type

special case when n =0, 1:

—f3— : x— hom(x, x)

* — 1y

@ : hom(x,y) — hom(x,y)

f=f

COHERENCE

We can encapsulate all composition laws by the condition
ignore intermediary boxes

m associativity:

m unitality:

COMPOSITIONALITY OPERADS

Given a type T of objects, define a typed operad Chainy
m objects are given by abstract boxes, i.e. pairs ((x,y)) : T?

X O y
m foreacht=to,...,ty] : NList T, precisely one arrow

chaing: ({to, t2)), ({tr, &), .., ({tnn, tn)) = ((to, tn))

100 O

chainy, is the polymorphic version of chaing

We say Chain; is thin, which has the consequence:
all arrow diagrams commute

CATEGORY AS CHAIN-ALGEBRA

Given an operad algebra (think functor, homomorphism, ...)
A : Chainy — Set
can canonically define a category A

obAET

Axy) £ A((X,Y)))
SX,Y,Z = A(Chain[x,y,z])
1, £ A(chain[X])

The thinness of Chainr implies the coherence condition
...which in turn implies associativity and unitality

6]

LEVEL SHIFT

This invokes a level-shift in perspective:

/

objects/ objects
compositions thinness

/

coherence

types

homs arrows

COMPOSITION THEORIES TO CATEGORICAL STRUCTURES

Given a compositional gadget, rather than asking

what (typically, known) categorical structure do instances
of this gadget assemble themselves into?

one can instead ask
what are the ways | am allowed stitch instances of these
gadgets to form composite gadgets?

then, if such stitchings form an operad, we can conclude

the categorical structure for these gadgets is given by al-
gebras over this stitching operad

from this perspective, we can retcon the following view
a category is the natural structure for housing the com-
positional theory of univariate maps

CASE STUDY: OPEN DYNAMICAL SYSTEMS

Given (multi-port) boxes for dynamical systems, e.g.

We want to form compositions like

4 \

WIRING DIAGRAMS FOR OPEN SYSTEMS

m boxes X are pairs (X~,X*) where X* are typed finite sets
m wiring diagrams X — Y are typed bijections

X +YT Xty
satisfying no passing wires:

e(YNHNY =92

this avoids closed loops:

NESTING WIRING DIAGRAMS

Nesting is visually simple...just erase intermediary boxes

(. J

X - Lo >y Xt +2- 2t - A > XT
Wl T(id Vt)+id " /u

Xt+Y —— XT+Yt+Z- A
id +¢—

DEFINING ASSOCIATIVITY

VT +2Z-
T(id V 6F)+id
V4 XT+Z-

id +(id v ¢*)+id

id 4o VI Xt +YT+2-

%m +ep—

. oy
V++Y++27 id +¢t+id

VE+Y ———— VXt Y™
(id vo*)+id
Tid +o~
VT 4+ X—

T(),

V-

PROVING ASSOCIATIVITY

CATEGORICAL STRUCTURES TO COMPOSITION THEORIES

broad goal:
define operads whose algebras are categorical structures

milestone:
Spivak, Schultz, Rupel: String diagrams for traced and
compact categories are oriented 1-cobordisms

specific goal:
define an operad whose algebras are SMC’s

can automatically produce all kinds of relations
e.g. the interchange law

fFsfle@sd)=0Fe9) s (feg)

FLows: WIRING DIAGRAMS FOR SMCs

m Boxes §3 are still pairs (X—,X™) of typed finite sets
m Aflow @ is given by

> slots—a poset (s, <) of boxes

» screen—a box (t_,t)

> wires—a typed finite set w

and, letting

st=> sy and to<si<tg
S:S

a span of typed bijections

w
NS
t_+s, s_+t,
satisfying the progress condition
d_ < by

FLOW EXAMPLE

m the slot poset {s < s’ <s”}
m the wires {a,b,j,m,p,y,z}
m enumerating ports from top to bottom, the wiring is
|l a b m p y z
d_ | to— Y- Sor S+ S, So. Si
b | so— S s,_ S ST tor bt

SPAN ALGEBRA

Given span @, can define sub-span ,®y via pullback.

can conceive of the total span ¢ as a matrix of subspans

{aq)y a(bz}
bq)y b¢z

SPAN ALGEBRA

m composition behaves like matrix multiplication
m spans with roof @ behave like zero mapso: x —y
m sums are biproducts; in particular, given two maps

f:S—>T
g:S—>T

we can form a flattened sum (which we’'ll still denote as +)

s Y,sys I o7 2,7

COMPOSING FLOWS—FORMALISING NESTING

Given flows defined by the spans

¢Zt7+S+ —>t+—|—S,
w:V,+t+ —>V+—|—t7

We want a composite flow given by a span
w:V_+SL =V, +S_
do this component-wise, e.g. s, ws_ is given by the flattened sum
s:Ps. +[s, Pe [t Ve |t Ps |

+ [s: P Jfe. Ve J[e- PeJ[e, Pe e Ve][, s]

the progress condition forces this to converge!
Qo <A <Qy---

must terminate in a finite poset (Noetherian condition)

THE IDRIS LANGUAGE

Idris is a Haskell-family language with dependent types

m programs consist of mathematical functions

-- first a type signature

-- and then the program specification
function : domain -> codomain
function argument = value

> W N o

where types are first class citizens

-- function returning a type
AsInt : Bool -> Type

AsInt True = Int

AsInt False = String

-- function whose type depends on its argument
getStrOrInt : (isInt : Bool) -> AsInt isInt
getStrOrint True = 7

getStrOrint False = "seven"

O O N O U B~ W N A

RECURSIVELY DEFINED TYPE FAMILIES

-- first, recall the inductive definition of naturals

data Nat : Type where
Z : Nat
S : Nat -> Nat

-- finite sets

data Fin : Nat -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)

-- fixed length vectors

data Vect : Nat -> Type -> Type where
Nil : Vect o a

(::) : a -> Vect k a -> Vect (S k) a

-- heterogeneous vectors
-- these model strictified Cartesian products
data HVect : Vect k Type -> Type where

Nil : HVect []

(::) : t -> HVect ts -> HVect (t::ts)

POLYMORPHISM

-

parametric polymorphism: defined for all types

-- find the length of a list
length : List a -> Nat
length = foldr (const S) Z

ad-hoc polymorphism: defined for featureful types

-- multiply a list of monoid elements
mconcat : Monoid m => List m -> m
mconcat = foldr (<>) mempty

Haskell/ldris equip types with such features via
instantiating them as typeclasses/interfaces

FLOWS IN IDRIS: INITIAL ATTEMPTS

-- abstract box
record Box where

;
2

3 constructor BoxIt

4 imports : Vect k Type

5 exports : Vect j Type

6

;7 -- filled in box with semantics

s fill : Box -> Type

o fill box = (HVect $ imports box) -> (HVect $ exports box)
10

n -- flow

> record Flow where

13 constructor FlowIt

1% screen : Box

15 slots : Vect k Box

16 wires : Type

17 leftWire : wires -> im screen :+: exs slots

18 rghtWire : wires -> ex screen :+: ims slots

THE DESIRED FUNCTION

we want a function of type

1 animate : (phi : Flow)
5 -> HVect (fill <$> slots phi)
3 =5 (fill $ screen phi)

Even better: polymorphic filling and animation
fill : {v : SMC} -> Box -> Obj V

animate : {V : SMC}
-> (phi : Flow)
-> HVect (fill <$> slots phi)
=S (fill $ screen phi)

...but getting stuff to compile is hard

o s W N o

1 interval : (i, j : Nat) -> Vect (i + (j + k)) a -> Vect j a
> interval 1 j xs = take j (drop i xs)

must hard-code associativity!

ROADMAP

m formally prove that flows form an operad

m ascertain (and if so prove) if flow algebras really do
correspond to strict symmetric monoidal categories
(or some adjacent truth)

m define flows in the cartesian and cocartesian cases
m implement generic compositions in the category Idris

m implement generic compositions polymorphically for any
instance of the symmetric monoidal category interface
(importing the lovely CT library developed by StateBox)

m implement the above proofs themselves

m create a front-end GUI for specifying flows, and allow users
to “fillin” slots to specify programs

