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Grothendieck’s own
idea of “topos theory
and étale cohomology.”

Born during Serre’s talk
April 21, 1958.

(Plus “Deligne has proved a beautiful result” and “a little trouble with
universes.”)

Serre and Grothendieck, 1958
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André Weil

A. Utterly unified view of mathematics.

B. Utter disdain for “purity of method.”

C. The architect (not sole founder) of
20th century geometrized arithmetic.
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The Weil conjectures 1949

.

Ns counts solutions to a given Diophantine equation over degree s
extension of finite field Fq. Generated by a Zeta function:

Z(t) = exp (
∞∑
s=1

Ns
ts

s
) =

P1(t)P3(t) · · ·P2n−1(t)
P0(t)P2(t) · · ·P2n(t)

Bravura Eulerian analysis, Hilbert-Zariski bi-rational geometry,
Betti-Lefschetz topology – to stunning arithmetic effect.

Ties deep arithmetic to the Betti numbers of complex manifolds.

Suggests proving it by a “fixed point theorem” for Galois actions in
cohomology of varieties over finite fields.
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Too beautiful not to be true.

Weil knew the conjectures as such were one
of his greatest achievements.

It is true.

Proved stunning special cases.

But cohomology of varieties over finite fields
made no concrete sense.

Lefschetz theorem relies on continuity of R,
Impossible for unordered, countable Fq.

Weil did not believe such cohomology was
possible. It was an analogy, not a method.
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Grothendieck 1985:

Serre explained the Weil conjectures to me in cohomological
terms around 1955 and only in these terms could they possibly
“‘hook” me. No one had any idea how to define such a
cohomology and I am not sure anyone but Serre and I, not
even Weil if that is possible, was deeply convinced such a
thing must exist. [R& S, p. 840]

AG J-P.
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Serre and Grothendieck defined cohomology of a topological space X
either by fiber bundles or by sheaves on X.

Two kinds of covering space for X, which Grothendieck would
redefine.

Sheaf covering S1.
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Monday April 21, 1958 Alexander Grothendieck went to the
Séminaire Henri Cartan

to hear Jean-Pierre Serre’s new ground breaking definition of
1-dimensional cohomology groups H1(X,G) on algebraic spaces X
(for arbitrary algebraic groups G).

The buses were on strike.
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Serre 2001 recounts: “At the end of the talk, Grothendieck told me
‘this will certainly work for all dimensions!’ I found this very
optimistic.”

Why was Grothendieck so sure? What persuaded him at that time?

Nearby on that day:

Repairing windows
smashed by antisemitic
rioters in lead up
to the Algerian coup.
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Of course, Grothendieck knew Serre’s results in the talk.

But Serre did not believe it would work in all dimensions!

My reflexes as a topologist told me it would be necessary
to deal with higher homotopy groups π2, π3, . . . etc [far too
hard]. What came later showed Grothendieck was right.
(2001)
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Serre was persuaded by the time he finished writing up the talk in
September 1958:

One may ask if it is possible to define the higher coho-
mology groups Hq(X,G) . . . in all dimensions (q ≥ 0).

Grothendieck has shown this is indeed the case (unpub-
lished). It even seems these new cohomology groups, when
G is finite, give the «true cohomology» needed to proveWeil’s
Conjectures. On this subject see the Introduction to [12].

Serre specifies that Grothendieck’s reasons were not published.

Only related to Grothendieck’s 1958 ICM talk, Edinburgh.
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What did Grothendieck see

— during Serre’s talk — to persuade him
Serre’s idea would prove the Weil Conjectures?

Not some algebra Serre had missed. Certainly not some arithmetic
Serre had missed.

Grothendieck saw generalized topology.
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Since 1955 (Kansas) and 1957 (Tōhoku) Grothendieck had his
approach to cohomology in topology:

1. Sheaves of sets on a topological space X are étalé spaces, “pasted
together” as colimits of open subsets of X.

2. Sheaves on X have all colimits (unions, quotients), and finite
limits (products, equalizers).

3. Finite limit diagrams define Abelian group sheaves on X, and
these define the derived functor cohomology of X.

He was entirely certain this was the correct view of cohomology.

It was his nature to be entirely certain of things.
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During Serre’s talk Grothendieck saw:

1. Étalé spaces on a generalized topological space X could be
“pasted together” as colimits of Serre’s unramified covers of
open subsets of X.

2. These sheaves of sets on X will have all colimits, finite limits.
3. Finite limit diagrams will define Abelian group sheaves on X,

and these define the derived functor cohomology of X.

Serre’s unramified covers = think of unramified algebraic Riemann
surfaces. But of any dimension, and over any alg. closed k.
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Serre identified the Weil sheaves.

People credit Grothendieck with defining cohomology by covering
maps rather than open covers.

That was Serre’s idea – as Grothendieck was quick to say.

Grothendieck’s idea was that every “category of sheaves” has intrinsic
cohomology in all dimensions, computable by derived functors. And
Serre had identified the Weil sheaves.

(Serre used fiber bundles, not sheaves, but the translation was routine
for him and Grothendieck.)
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Every category of sheaves has cohomology

Deligne (1998, p. 16):

In his articles Kansas and Tôhoku, Grothendieck had shown
that, for any category of sheaves, there is a notion of coho-
mology groups.

That is cohomology groups Hq(X,G) for all q ≥ 0.

Deligne did not mean just categories of sheaves on topological spaces.
Tôhoku expressly included module categories for group cohomology.

Deligne meant Grothendieck’s abstract idea: any AB5 Abelian
category with a set of generators.
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Serre’s unramified covers (lightly modified) give “Weil cohomology.”

By 1961, replace Galois actions, by actions in any category. This
defines a topos, and each topos has an intrinsic cohomology.

Grothendieck says, once you think of topology the right way—by
functorial cohomology—a topos is essentially the same as an
“old-style topological space.”

Important detail: Grothendieck in principle preferred homotopy to
cohomology, from the start, as you see in SGA1. But could not make
it work very generally.



References

Serre’s unramified covers (lightly modified) give “Weil cohomology.”

By 1961, replace Galois actions, by actions in any category. This
defines a topos, and each topos has an intrinsic cohomology.

Grothendieck says, once you think of topology the right way—by
functorial cohomology—a topos is essentially the same as an
“old-style topological space.”

Important detail: Grothendieck in principle preferred homotopy to
cohomology, from the start, as you see in SGA1. But could not make
it work very generally.



References

Serre’s unramified covers (lightly modified) give “Weil cohomology.”

By 1961, replace Galois actions, by actions in any category. This
defines a topos, and each topos has an intrinsic cohomology.

Grothendieck says, once you think of topology the right way—by
functorial cohomology—a topos is essentially the same as an
“old-style topological space.”

Important detail: Grothendieck in principle preferred homotopy to
cohomology, from the start, as you see in SGA1. But could not make
it work very generally.



References

Serre’s unramified covers (lightly modified) give “Weil cohomology.”

By 1961, replace Galois actions, by actions in any category. This
defines a topos, and each topos has an intrinsic cohomology.

Grothendieck says, once you think of topology the right way—by
functorial cohomology—a topos is essentially the same as an
“old-style topological space.”

Important detail: Grothendieck in principle preferred homotopy to
cohomology, from the start, as you see in SGA1. But could not make
it work very generally.



References

Topos lectures, Buffalo 1973

The 1973 lectures stress a two-part idea of topos which Grothendieck
notes does not entirely agree with the collective work Topos theory
and étale cohomology SGA 4. (Seminar 1963-64, print 1972.)

A category theoretic idea and a geometric idea.

He stresses that he cannot yet make the
geometric idea precise.

The categorical and the geometric ideas
both match Serre’s unramified coverings,
seen through the lens of Kansas and Tôhoku.
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Topos lectures, Buffalo 1973

Currently recovered 33 hours total.

Scheduled for 10 hours, the introductory lectures ran 16. Then 17
hours of smaller group research discussion survive on tape.

Also lectured 30 hours on algebraic geometry, and 20 on algebraic
groups. Elementary exposition of his viewpoints.

He said the only mathematics he was thinking about was topos.
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Topos: The categorical idea, Buffalo 1973.

A generalized topological space.

The essential property of the category of sheaves [of sets] on
a topological space, which I have tried to convey, is that it
shares essentially all exactness properties of the category of
sets—at least those expressed by direct limits with arbitrary
indexing diagrams and by finite inverse limits.

So the notion of a topos E should be that E shares the exact-
ness properties of the category of sets, insofar as direct limits
and finite inverse limits go. Moreover for technical reasons
one has to assume that in E has a small subset, not as big as
the whole universe we are working in, which is generating.
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Topos: The categorical idea, Buffalo 1973.

The yoga one finally gets to is essentially the following: the
category of sheaves on a topological space is just as good,
with a grain of salt, as far as exactness properties are con-
cerned, as the category of sets.

The grain of salt is that this is true for all commutation rela-
tions, exactness properties, involving arbitrary direct limits
(which may be infinite) and also inverse limits provided we
take only finite inverse limits.
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Topos: the categorical idea Buffalo 1973.

Grothendieck eventually gives Giraud axioms, and sites: So here is
the notion of a topos, which is slightly technical.

Well I think it is kind of intuitive though, to take the vague notion which
intuitively makes more sense: all direct limits, finite inverse limits.

I have a tendency to forget which properties Giraud uses.
• Locally small category with small generating set.
• All finite limits.
• All small coproducts, disjoint, and stable.
• Stably effective equivalence relations.
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Topos: the whole idea Buffalo 1973.

The intuition is the following: viewing objects of a topos as
being something like étalé spaces over the final object of the
topos, and the induced topos over an object as just the object
itself. That is I think the way one should handle the situation.

It’s a funny situation because in strict terms, you see, the
language which I want to push through doesn’t make sense.
But of course there are a number of mathematical statements
which substantiate it.

Don’t make sense: 1) all objects are étalé spaces, 2) objects are
induced topoi.
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Objects of a topos are étalé spaces over the final object

So every f : Y → X in a topos shows Y as étalé space over X.

AG intended a major generalization of topological “étalé space.”

His favorite example is the topos of G-sets for a group, say G = Z/4.

•

•

•

•

•• •

Each orbit is an étalé space over every quotient of it. This is Not
standard terminology today.
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Objects of a topos are étalé spaces over the final object

Étale sheaves put Galois orbits over points of a scheme.

•
•
•
•

Étalé space for a fourth root. Arrows show Galois action on a fiber.

Thus the idea of topos as a generalized topological space was born,
between 4 and 6 pm Monday, April 21, 1958.
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Milne Étale Cohomology p. 156:

Any sheaf F on Xet can be represented by an espace étalé, F̃
provided F̃ is allowed to be an algebraic space [in the sense
of Knutson] rather than a scheme.

Leads quickly to Artin stacks, moduli spaces, large problems, so that I
do not see where it has been pursued in Grothendieck’s geometric
direction.

Étale sites were the origin of this idea, but by 1973 Grothendieck
meant if more generally.
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Back to Buffalo 1973: Geometry and algebra.

Grothendieck says of every topos:

When we speak about a topos there are always two intuitions.
We think of the topos as something like a generalized topolog-
ical space, embodied through the category of sheaves E. But
in fact we think of the topos as being something still different
from E, the space which is ‘underneath’ so to say.
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I think more and more, by the way, that
in the language of topoi one should really
distinguish between the category and the
geometrical object which one has in mind.
One has to make this abuse of language
because otherwise one will always be
a little torn. Never mind.
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There is a little trouble with universes

July 12, 1973, the last day of the Buffalo workshop, Grothendieck said:

There is a little trouble with universes because one has to
add such a strong axiom to set theory. Once one adds the
axiom one is in a way happy because one has a lot of leeway
to do category theory. For example Deligne has just proved
a beautiful theorem on Weil’s conjectures and I guess he has
used large cardinals.

You have all these topoi, all this general nonsense, and you
have to use universes.
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Do Weil’s conjectures depend on this axiom?

So therefore the question arises [he and Duskin laugh] do
Weil’s conjectures depend on this axiom? Everybody would
be convinced of course they don’t. But Samuel thought about
introducing galaxies smaller than universes. . . .

One has to be careful with injectives and such homological
algebra, to see if you can construct them in this context.

I think there is mathematics behind all of this.

−30−
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SGA VI: IV.Le lecteur qui ignorerait le langage des sites et topos
pourra remplacer partout lesdits objets par des espaces topologiques
ordinaires, les objets du topos étant alors remplacés par des ouverts de
ces espaces; mais nous lui conseillons néanmoins, de préférence, de
s’assimiler le langage des topos, qui fournit un principe d’unification
extrêment commode
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L’ensemble des deux séminaires consécutifs SGA4 et SGA 5 (qui
pour moi sont comme un seul “séminaire”) développe à partir du
néant, à la fois le puissant instrument de synthèse et de découverte que
représente le langage des topos, et l’outil parfaitement au point, d’une
efficacité parfaite, qu’est la cohomologie étale.

Cet ensemble représente la contribution la plus profonde et la plus
novatrice que j’aie apportée en mathématiques, au niveau d’un travail
entièrement mené à terme.

(RetS 373 note 88)
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