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Abstract Stock and flow diagrams are already an important tool in epidemiology,
but category theory lets us go further and treat these diagrams as mathematical
entities in their own right. In this chapter we use communicable disease models
created with our software, StockFlow.jl, to explain the benefits of the categorical
approach. We first explain the category of stock-flow diagrams and note the clear
separation between the syntax of these diagrams and their semantics, demonstrating
three examples of semantics already implemented in the software: ODEs, causal loop
diagrams, and system structure diagrams. We then turn to two methods for building
large stock-flow diagrams from smaller ones in a modular fashion: composition
and stratification. Finally, we introduce the open-source ModelCollab software for
diagram-based collaborative modeling. The graphical user interface of this web-
based software lets modelers take advantage of the ideas discussed here without any
knowledge of their categorical foundations.
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1 Introduction

Mathematical modeling of infectious disease at scale is important, but challenging.
There are many benefits to the modeling process extending from taking diagrams as
mathematical formalisms in their own right with the help of category theory. Stock
and flow diagrams are widely used in infectious disease modeling, so we illustrate
this point using these. However, rather than focusing on the underlying mathematics,
we informally use communicable disease examples created with our software, called
StockFlow.jl [32], to explain the benefits of the categorical framework. Readers
interested in the mathematical details may refer to our earlier paper [7].

Many compartmental modelers regard diagrams offering a visual characterization
of structure—e.g., susceptible, infective and recovered stocks and transitions between
them—as broadly accessible but informal steps towards a mathematically rigorous
formulation in terms of ordinary differential equations (ODEs). However, ODEs
are typically opaque to non-modelers—including the interdisciplinary members of
the teams that typically are required for impactful models. By contrast, the System
Dynamics modeling tradition places a premium on engagement with stakeholders
[15], and offers a modeling approach centered around diagrams. This approach
commonly proceeds in a manner that depicts model structure using successively
more detailed models. The process starts with a “causal loop diagram” illustrating
causal connections and feedback loops (Figure 6). It then often proceeds to a “system
structure diagram”, which distinguishes stocks from flows but still lacks quantitative
information. The next step is to construct a stock and flow diagram—or henceforth,
“stock-flow diagram” (Figure 1). This diagram is visually identical to the system
structure diagram, but it also includes formulae, values for parameters, and initial
values of stocks.

The stock–flow diagram is treated as the durable end result of this modeling
process, since it uniquely specifies a system of first-order ODEs. System Dynamics
modeling typically then alternates between assessing scenario outcomes resulting
from numerically integrating the ODEs, performing other analyses (e.g., identifying
location or stability of equilibria), and elaborating the stock-flow diagram—such
as by adding elements to it, often borrowed from other models, or “stratifying”
it by breaking large stocks (compartments) into smaller ones that differ in some
characteristics.

While each of the types of diagrams in the System Dynamics tradition is recom-
mended by visual accessibility, development ofmodels using the traditional approach
suffers from a number of practical shortcomings.

1. Monolithic models: Stock-flowmodels are traditionally built up in a monolithic
fashion, leading ultimately to a single large piece of code. In larger models, this
inhibits independent simultaneous work by multiple modelers. Lack of model
modularity further prevents effective reuse of particular model elements. If
elements of other models are used, they are commonly copy-and-pasted into the
developing model, with the source and destination then evolving independently.
Such separation can lead to a proliferation of conceptually overlappingmodels in
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which a single conceptual change (e.g., addition of a new asymptomatic infective
compartment) requires corresponding updates in several successive models.

2. Curse of stratification dimensionality: While stratification is a key tool for
representing heterogeneity and multiple lines of progression in compartmental
models, stratification commonly requires modifications across the breadth of
a model—stocks, flows, derived quantities, and many parameters. When that
stratification involves multiple dimensions of heterogeneity, it can lead to a pro-
liferation of terms in the ODEs. For example, rendering a model characterizing
both COVID-19 into a model also characterizes influenza would require that
each COVID-19 state to be replicated for each stage in the natural history of
influenza. Represented visually, this stratification leads to a multi-dimensional
lattice, commonly with progression proceeding along several dimensions of the
lattice. Because of the unwieldy character of the diagram, much of the structure
of the model is obscured. Adding, removing, or otherwise changing dimensions
of heterogeneity routinely leads to pervasive changes across the model.

3. Privileging ODE semantics: The structure of causal loop diagrams, sys-
tem structure diagrams and stock-flow diagrams characterizes general state
and accumulations, transitions and posited causal relations—including induced
feedbacks—amongst variables. Nothing about such a characterization restricts
its meaning to ordinary differential equations; indeed, many other interpretations
and uses of these diagrams are possible. However, existing software privileges
an ODE interpretation for stock-flow diagrams, while sometimes allowing for
secondary analyses in ad hoc way—for example, identifying causal loops asso-
ciated with the model, or verifying dimensional homogeneity in dimensionally
annotated models. Conducting other sorts of analyses—such as computation
of eigenvalue elasticities or loop gains, analysis as a stochastic transition sys-
tem, or other methods such as particle filtering [4, 18, 25, 28], particle MCMC
[3, 19, 24] or Kalman filtered [13, 27] systems—typically requires bespoke
software for reading, representing and analyzing stock-flow models.

4. Divergence ofmodel representations: Although the evolution from causal loop
diagrams to system structure diagrams to stock-flow models is one of successive
elaboration and informational enrichment, existing representations treat these as
entirely separate characterizations and fail to capture the logical relationships
between them. Such fragmentation commonly induces inconsistent evolution.
Indeed, inmany projects, the evolution of stock-flowdiagrams renders the earlier,
more abstract formulations obsolete, and the focus henceforth rests on the stock-
flow diagrams.

What is less widely appreciated is that beyond their visual transparency and ca-
pacity to be lent a clear ODE semantics, both stock-flow diagrams themselves and
their more abstract cousins possess a precise mathematical structure—a correspond-
ing grammar, as it were. This algebraic structure, called the “syntax” of stock-flow
diagrams, can be characterized using the tools of a branch of mathematics called
category theory [12, 17]. Formalizing the syntax of stock-flow diagrams lends pre-
cise meaning to the process of “composing” such models (building them out of
smaller parts), stratifying them, and other operations. Explicitly characterizing the
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syntax in software also allows for diagrams to be represented, manipulated, com-
posed, transformed, and flexibly analyzed in software that implements the underlying
mathematics.

Formalizing the mathematics of diagram-based models using category theory
and capturing it in software offers manifold benefits. This paper discusses and
demonstrates just a few:

1. Separation of syntax and semantics. Category theory gives tools to separate
the formal structure, or “syntax”, of diagram-based models from the uses to
which they are put, or “semantics”. This separation permits great flexibility
in applying different semantics to the same model. With appropriate software
design, this decoupling can allow the same software to support a diverse array
of analyses, which can be supplemented over time.

2. Reuse of structure. The approaches explored here provide a structured way
to build complex diagrams by composing small reusable pieces. With software
support, modeling frameworks can allow for saving models and retrieving them
for reuse as parts of many different models. For example, a diagram representing
contact tracing processes can be reused across diagrams addressing different
pathogens.

3. Modular stratification. A categorical foundation further supports a structured
way to build stratified dynamical systems out of modular, reusable, largely
orthogonal pieces. In contrast to the global changes commonly required to a
diagram and the curse of dimensionality that traditionally arises when strati-
fying a diagram, categorically-founded stratification methods allow for crisply
characterizing a stratified diagram as built from simpler diagrams, one for each
heterogeneity or progression dimension.

The balance of the chapter is structured as follows. Section 2 describes the cate-
gorical formulation of stock-flow diagrams. Section 3 explains how the categorical
approach allows for decoupling the syntax and semantics of such diagrams. Section
4 introduces the hallmark of the categorical approach: the ability to build larger
stock-flow diagrams from smaller pieces by composition. Section 5 discusses an-
other key application of the categorical approach: stratification. Section 6 introduces
ModelCollab: a web-based graphical user interface that allows users to build and run
stock-flow models using the category-theoretic ideas we have introduced without
requiring expertise in the mathematics. Finally, in Section 7 we close with some
reflections on the significance and evolution of the methods described here. The
code for examples in this paper can be found in the Appendix1.

1 The code can also be found in the GitHub repository https://github.com/Xiaoyan-Li/
applicationStockFlowMFPH.

https://github.com/Xiaoyan-Li/applicationStockFlowMFPH
https://github.com/Xiaoyan-Li/applicationStockFlowMFPH
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2 The Syntax of Stock-Flow Diagrams

In this section, we illustrate the categorical method of representing stock-flow dia-
grams, whichwe can think of as characterizing the syntax of such diagrams. Section 3
of our previouswork [7] introduced themathematics underlying stock-flow diagrams.
In this paper, we show how to encode an instance of a familiar stock-flow diagram—
namely, the Susceptible-Exposure-Infectious-Recovered or “SEIR” model with an
open population [2]—using the categorical method.

Fig. 1: The stock-flow diagram of the open population SEIR model

Figure 1 shows the stock-flow diagram for the SEIRmodel. The blue boxes labeled
S, E, I and R are “stocks”. The letter N is a “sum variable”, and there are blue “links”
to it from the stocks on which it depends. The orange arrows are “flows”. Note that
some flows go between stocks, while others enter a stock from outside the model, or
leave a stock to go outside the model. The latter two cases are indicated with small
“clouds”.

There are one or more blue links to each flow from the stocks and/or sum variables
on which it depends. For each flow there is also a “flow variable” drawn in purple,
which indicates the rate of that flow. Each flow variable is determined by some
function of the stocks and/or sum variables that are connected to that flow variable
by blue links. These functions are defined below the diagram inFigure 1. For example,
the flow describing infection, called inf, has a flow variable vinf determined by the
function 5inf.

Fig. 2 The schema for stock-
flow diagrams
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The SEIR model is just one example of a stock-flow diagram. To formalize their
general structure we use the so-called “schema" for stock-flow diagrams, shown in
Figure 2. It consists of boxes, called “objects”, and arrows between boxes, called
“morphisms”. In an “instance” of this schema, we choose a set for each object and
a function between such sets for each morphism. Other types of diagrams, such as
causal loop diagrams, have their own schemas (see Section 3.2), and in fact there
is a general theory of schemas [12, 30]. For now we consider only the schema for
stock-flow diagrams. In this schema:

1. The objects S and F represent the stocks and flows, respectively.
2. The objects I and O represent the inflows and outflows. The morphisms S is←−

I ifn−−→ F are used to describe which stocks are downstream of a given flow, while
the morphisms S os←− O ofn−−→ F are used to describe which stocks are upstream of
a given flow. This structure allow for flows that go between two stocks, but also
flows that enter a stock from outside the model or leave a stock and go outside
the model.

3. The object V represents “auxiliary variables”, sometimes termed “dynamic
variables”. These are variables whose value is an instantaneous function of the
current model state. The morphism F fv−→ V indicates that the rate of each flow
depends on one auxiliary variable. This relation is usually left implicit, not
drawn, in the stock-flow diagram.

4. The object LV represents “variable links”: that is, links from stocks to auxiliary
variables. The morphisms S lvs←−− LV lvv−−→ V indicate that any variable link goes
from a stock to an auxiliary variable.

5. The objectsSV andLS represent “sumvariables” and “sum links”. Sumvariables
are a special type of auxiliary variable introduced in [7] to make composing
stock-flow diagrams easier. A sum variable is simply the sum of the stocks
linked to them by sum links. The arrows S lss←−− LS lssv−−→ SV indicate that any
sum link goes from a stock to a sum variable.

6. The objectLSV represents “sum variable links”: that is, links from sum variables
to auxiliary variables. The arrows SV lsvsv←−−− LSV lsvv−−−→ V indicate that any sum
variable link goes from a sum variable to an auxiliary variable.

An “instance” � of a schema assigns a finite set � (X) to each object X of the
schema and a function � (0) : � (X) → � (Y) to each morphism X

0−→ Y of the
schema. So, an instance of the schema for stock-flow diagrams consists of:

1. A finite set of stocks � (S) and a finite set of flows � (F).
2. A finite set of inflows � (I), a finite set of outflows � (O), and functions

� (is) : � (I) → � (S), � (ifn) : � (I) → � (F)

� (os) : � (O) → � (S), � (ofn) : � (O) → � (F).

3. A finite set of auxiliary variables � (V) and a function
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� (fv) : � (F) → � (V).

4. A finite set of variable links � (LV) and functions

� (lvs) : � (LV) → � (S), � (lvv) : � (LV) → � (V).

5. A finite set of sum variables � (SV), a finite set of sum links � (LS), and
functions

� (lss) : � (LS) → � (S), � (lssv) : � (LS) → � (SV).

6. A finite set of sum variable links � (LSV) and functions

� (lsvsv) : � (LSV) → � (SV), � (lsvv) : � (LSV) → � (V).

A “stock-flow diagram” is a pair (�, q) consisting of an instance � and, for each
auxiliary variable {, a continuous function q{ : R� (lvv)−1 ({) × R� (lsvv)−1 ({) → R.
In Section 3.1 we explain how in the ODE semantics for stock-flow diagrams, the
function q{ specifies how the value of the variable { depends on the stocks and sum
variables that link to it.

Given an inflow 8 ∈ � (I) we say the stock � (is) (8) is “downstream” from the
flow � (ifn) (8). Similarly, given an outflow > ∈ � (O) we say the stock � (os) (>) is
“upstream” from the flow � (ofn) (>). In practice, we only want stock-flow diagrams
where the functions � (ifn) and � (ofn) are injective. This constraint ensures that
each flow has at most one downstream stock and at most one upstream stock. Also
in practice we attach to each stock, flow, auxiliary variable or sum variable an
“attribute” which serves as its name. This naming relies on the theory of attributes
developed by Patterson, Lynch and Fairbanks [26].

When a stock-flowdiagram is implemented in software, it is encoded as a categori-
cal database [26]. Figure 3 shows the categorical database representing the stock-flow
diagram for the SEIR model shown in Figure 1. In this categorical database, each
object X in the schema for stock-flow diagrams is represented by a database table.
The row indices within this table consist of the elements of the set � (X) associated
to the object X. Thus, if the set � (X) has = elements, then the table has = rows. In
database parlance, each such row is associated with a “primary key” given in the first
column of that table. For example, since there are four stocks in the SEIR model,
the object S in the schema for stock-flow diagrams maps to the set {1, 2, 3, 4}, and
the table for the object S has four rows numbered 1, 2, 3, 4. By contrast, the table for
the object F has eight rows, reflecting the fact that there are eight flows in the SEIR
model.

The table for any object X has one column for each morphism coming out of X,
which describes the function associated to that morphism. For example, the table for
the object LV has one column “lvs” describing the function� (lvs) : � (LV) → � (S)
mapping each variable link to a stock (as a “foreign key” giving the key of that stock
in the “S” table), and one column “lvv” describing the function � (lvv) : � (LV) →
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Fig. 3: The categorical database structure representing the stock-flow diagram asso-
ciated with the SEIR model

� (V) mapping each variable link to a variable (similarly specified by a foreign key).
Besides this, the tables for S, F,V and SV have an extra column giving names for the
stocks, flows and variables and sum variables, rather than foreign keys. Technically,
these names are handled using the theory of attributes mentioned above.

This capacity to encode stock-flow diagrams in a mathematically precise and
transparent fashion confers diverse benefits. To list a few, these include the capacity
to compose such diagrams (see Section 4), to soundly transform such diagrams for
optimization, and to parallelize them. But one of the most foundational benefits is the
capacity to perform different types of analysis on such diagrams—that is, to interpret
a given diagram using various choices of “semantics”. The next section discusses
that benefit in greater detail.

3 The Semantics of Stock-Flow Diagrams

The capacity to interpret stock-flow diagrams in different ways is achieved by sepa-
rating the syntax from the semantics of such diagrams. Matters of syntax concern the
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forms that such diagrams can take. In particular, the rules governing what counts as a
legitimate stock-flow diagram—what can connect to what—are largely specified by
the schema discussed in the previous section. But the syntax of stock-flow diagrams is
distinct from the interpretation given to these diagrams. A given stock-flow diagram
can be interpreted in different ways, each lending that diagram some meaning. Some
of these interpretations involve dynamic simulations that solve equations specified
by the diagram, whilst others describe static features of the diagram—for example,
extracting algebraic equations specifying the equilibria of the system in terms of the
parameters.

In this section, we introduce three choices of semantics for stock-flow diagrams
that have been implemented in StockFlow.jl [7, 32]: ordinary differential equations,
and a pair of semantics that extract from a stock-flow diagram the associated causal
loop diagram and system structure diagram.

3.1 ODEs (Ordinary Differential Equations)

Astock-flowdiagram is traditionally used to represent a continuous-time, continuous-
state dynamical system [31]: a system of ODEs that describes the evolution of each
real-valued stock. While this addresses an important subclass of dynamical systems,
this convention has needlessly restricted analysis potential and crimped the flexibil-
ity of supporting software by privileging a single interpretation of the syntax of the
stock-flow diagrams. In this project, we mathematically decouple the choice of the
stock-flow diagram (the syntax) from the choice of its interpretation (the semantics).
As we shall see in this subsection, this approach readily supports the traditional inter-
pretation of a stock-flow diagram in terms of ODEs. But as subsequent subsections
illustrate, this interpretation is no longer required, or even privileged.

The decoupling of syntax and semantics afforded by the categorical approach
is achieved by use of a structure-preserving map, called a “functor”, sending each
stock-flow diagram to its interpretation, or meaning. The choice of different such
functors allows for different interpretations.

“Functorial semantics”—the idea of treating semantics as a functor—goes back
to Lawvere’s work [16] in the early 1960s. It has grown into a powerful method for
specifying and analyzing the semantics of programming languages. By now, it has
also been applied to many diagrammatic modeling languages, including Petri nets,
electrical circuit diagrams and chemical reaction networks, and others [5, 6, 10].
Thus, the time is ripe for applying functorial semantics to stock–flow diagrams.

To do this, we need to define a category of stock-flow diagrams, which in essence
means precisely defining not only these diagrams, as we have done above, but also
maps between them. Using the methods of our previous paper [7] we can define such
a category, called StockFlow, and also a functor

StockFlow Dynam{
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from this category to a category of ODEs and maps between those. Here, for sim-
plicity, we simply explain how this functor sends any stock-flow diagram to an ODE.

For any stock B ∈ � (S), the set of its inflows is � (is)−1 (B). Thus, this stock is
downstream from precisely the flows in � (ifn) (� (is)−1 (B)). Similarly, this stock
is upstream from precisely the flows in � (ofn) (� (os)−1 (B)). We denote as q{
the continuous function describing the value of each auxiliary variable { ∈ � (V)
as a function of the stocks and sum variables linked to it, so q{ : R� (lvv)−1 ({) ×
R� (lsvv)−1 ({) → R. Then, the function describing the rate of the flow 5 ∈ � (F) is
q (� (fv) ( 5 )) . The ordinary differential equation of the stock B can then be defined as
follows:

¤B =
∑

5 ∈� (ifn) (� (is)−1 (B))
q (� (fv) ( 5 )) −

∑
5 ∈� (ofn) (� (os)−1 (B))

q (� (fv) ( 5 )) , (1)

Furthermore the value of each sum auxiliary variable is the sum of the values of
the stocks it links to. For example, the value of the sum variable # is defined as
# = ( + � + � + ' in the SEIR model.

We can easily understand the functor mapping from a stock-flow diagram to the
ODEs by the slogan: the time derivative of the value of each stock equals the sum of
its inflows minus the sum of its outflows.

For example, the SEIR stock-flow diagram (Figure 1) gives the following set of
ODEs:

¤( = `# − V �
#
( − X(

¤� = V
�

#
( − �

Clatent
− X�

¤� = �

Clatent
− �

Crecovery
− X�

¤' =
�

Crecovery
− X'

(2)

The solutions can be calculated and plotted out directly using the StockFlow.jl
software, as in Figure 4.

It is notable that the ODE semantics mapping is more general than illustrated
above: we can also map the syntax of “open” stock-flow diagrams (to be discussed
in Section 4) to “open” dynamical systems. This supports composition of models.

3.2 Causal Loop Diagrams

In this section, we define a semantics for stock-flow diagrams that maps any such
diagram into a particularly simple kind of causal loop diagram. In SystemDynamics,
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a “causal loop diagram” is a graph where each node represents a variable and each
edge represents a way in which one variable can directly influence another [31]. The
edges are typically labelled with ± signs called “polarities” that indicate whether
an increase in the source variable tends to increase or decrease the target variable,
ceteris paribus. From these we can compute signs for loops of edges, which describe
positive or negative feedback loops.

Here we consider a simplified variant of causal loop diagram which is simply
a graph: the polarities for edges are not included. The problem of interpreting a
stock-flow diagram as a fully annotated causal loop diagram is left for future work.

Figure 5 depicts the schema for causal loop diagrams. It is just the schema for what
category theorists call “graphs” (that is, directed multigraphs allowing self-loops).
There is an object E for edges, an object N for nodes, and morphisms B, C : E → N
sending each edge to its source and target node, respectively. Thus, an instance CL
of this schema is simply a finite set CL(N) of nodes, a finite set CL(E) of edges, and
maps CL(B),CL(C) : CL(E) → CL(N) sending each edge to its source and target
node.

There is in fact a way to translate any stock-flow diagram (�, q) into a causal
loop diagram CL. It works as follows:

1. The set of nodes CL(N) is the disjoint union of the set of stocks, the set of sum
variables, and the set of auxiliary variables (which includes such a variable for
each flow). Explicitly,

CL(N) B G(S) t G(SV) t G(V).

2. The set of edges CL(E) is given by

CL(E) := G(LV) t G(LS) t G(LSV) t G(I) t G(O).

3. Each edge coming from a variable link ℓ ∈ G(LV) has source G(lvs) (ℓ) and
target G(lvv) (ℓ). The source and target of edges coming from sum links and sum
variable links are defined similarly. Each edge coming from an inflow 8 ∈ G(I)
has the auxiliary variable G(fv)G(ifn) (8) as its source and the stock � (is) (8) as

Fig. 4 An example solution
of the ODEs of the SEIR
stock-flow diagram
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Fig. 5 The schema for causal
loop diagrams

its target. Note that the auxiliary variable G(fv)G(ifn) (8) represents the flow for
which 8 is the inflow. Similarly, each edge coming from an outflow > ∈ G(O)
has the stock � (os) (>) as its source and the auxiliary variable G(fv)G(ofn) (>)
as its target.

Using this procedure, the SEIR stock-flow diagram in Figure 1 gives rise to the
causal loop diagram in Figure 6. Here, following tradition, we have labeled some of
the nodes by flows rather than their corresponding auxiliary variables, e.g. “birth”
rather than “vbirth”. Since the map G(fv) : G(F) → G(V) is usually one-to-one, this
does not create ambiguities in practice.

Fig. 6 The causal loop dia-
gram of the SEIR model

Just as with stock-flow diagrams, we use the data structure of a categorical
database to encode causal loop diagrams in the software. Figure 7 shows an example:
the categorical database for the SEIR causal loop diagram.

3.3 System Structure Diagrams

In SystemDynamics [31], a system structure diagram is a purely qualitative version of
a stock-flow diagram. It lacks the quantitative information provided by the functions
q{ that describe how each auxiliary variable { depends on the quantities linked to it.
Whilemany uses of system structure diagrams further annotate links in such diagrams
with polarities, we reserve for future work the problem of automatic derivation of
such polarities. For now, we therefore define a “system structure diagram” to be
simply an instance � of the schema for stock-flow diagrams, as explained in Section
2.

There is a semantics for stock-flow diagrams that maps them to system structure
diagrams: it simply maps any stock-flow diagram (�, q) to the system structure
diagram �. In fact one can construct a category StockFlow of stock-flow diagrams,
a category SystemStructure of system structure diagrams, and a functor
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Fig. 7 The categorical
database structure repre-
senting the SEIR causal loop
diagram

StockFlow SystemStructure�

that maps any stock-flow diagram (�, q) to the system structure diagram �.
Likewise, the semantics described in Section 3.2 gives a functor

StockFlow CausalLoop�

from the category of stock-flow diagrams to a suitable categoryCausalLoop. But note
that the causal loop diagram associated to a stock-flow diagram (�, q) depends only
on �: the functions q{ play no role here, though they would for the more elaborate
and more commonly used causal loop diagrams with edges labeled by polarities.
Thus, our causal loop and system structure semantics for stock-flow diagrams fit into
a so-called “commutative diagram” of functors between categories:

StockFlow

SystemStructure

CausalLoop

�

�

�

In essence, this diagram says that to turn a stock-flow diagram (�, q) into a causal
loop diagram in the manner explained in Section 3.2, we can first extract the system
structure diagram � and then turn that into a causal loop diagram.

This commutative diagram illustrates a general fact: rather than the various se-
mantics for a given form of syntax being separate from each other, like isolatedwalled
gardens, they are often related in fruitful ways. Category theory lets us formalize
these relationships, and category-based software lets us apply them in practical ways.
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4 Composing Open Stock-Flow Diagrams

We can build larger stock-flow diagrams by gluing together smaller ones. To achieve
this goal, we need “open” stock-flow diagrams. An example is shown in Figure 8. It
consists of a stock-flow diagram together with some extra data describing interfaces
at which we can compose this diagram to other stock-flow diagrams.

Fig. 8: An example of an open stock-flow diagram

More precisely, an open stock-flow diagram consists of an “apex” together with a
finite collection of “feet” and “legs”. The “apex” is any stock-flow diagram (�, q).
Each “foot” is also a stock-flow diagram, and it comes with a “leg”, which is a
map of stock-flow diagrams from the foot to (�, q). However, we require that the
feet are stock-flow diagrams of a restricted sort: they can contain only stocks, sum
variables and sum links. We enforce this restriction because we want to glue together
stock-flow diagrams only by identifying certain stocks in one diagram with stocks in
another diagram; however, doing this properly may require identifying certain sum
variables and sum links as well.

Fig. 9 The schema for inter-
faces

We call these restricted stock-flow diagrams “interfaces”. Just as there is a schema
for stock-flow diagrams, there is a schema for interfaces, shown in Figure 9. An
interface, say - , is precisely an instance of this schema. It thus consists of:
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1. a finite set - (S) of stocks,
2. a finite set of sum variables - (SV), a finite set of sum links - (LS), and functions

- (lss) : - (LS) → - (S), - (lssv) : - (LS) → - (SV).

In our previous paper [7] we explain how to compose open stock-flow diagrams.
Briefly, we use the mathematics of “decorated cospans” [9]—a general category-
theoretic framework for the composition of open systems. However, to implement
this in code in StockFlow.jl we also take advantage of a closely related framework,
“structured cospans” [5, 6]. The reason is that structured cospans have already
been systematically implemented in the Catlab.jl package [26], which serves as the
foundation underlying our implementation of StockFlow.jl. StockFlow.jl is one of the
newer members of the AlgebraicJulia ecosystem [1], which provides computational
support for applied category theory via Catlab.jl.

Two other twists are also worth noting, if only for cognoscenti. Firstly, in Stock-
Flow.jl we actually use decorated or structured “multicospans” [21, 29] instead of
cospans. The difference is that multicospans can have multiple legs and feet, as
shown for example in Figure 8, while cospans have exactly two. Secondly, Stock-
Flow.jl applies the flexible graphical syntax of undirected wiring diagrams [11] to
compose these multicospans.

However, users do not need to understand these technicalities to use our software.
The key ideas can be understood from an example. Figure 8 shows an open stock-flow
diagramwith three legs and feet: this is an SEIRmodel with three interfaces contain-
ing the stocks S,E and I, respectively. Figure 10 shows an example of composition
in which this open stock-flow diagram is glued to another open stock-flow diagram,
an SVEI model, along all three interfaces. The result of composition is yet another
open stock-flow diagram, but in this particular case there are no interfaces left, so
it amounts to an ordinary stock-flow diagram. The composite diagram describes an
SEIRV model. Like any other diagram, diagrams that result from such composition
can be mapped to alternative semantic domains. For example, the bottom right plot
in Figure 10 then shows a solution of the system of ODEs to which the composite
stock-flow diagram is mapped using ODE semantics.



16 John C. Baez, Xiaoyan Li, Sophie Libkind, Nathaniel D. Osgood, Eric Redekopp

Fig. 10: Composing SEIR and SVEI models to obtain an SEIRV model

5 Stratifying Typed System Structure Diagrams

Just as we introduced open stock-flow diagrams to permit composition of models,
we now introduce typed diagrams to support stratification of models. Recall from
Section 1 that “stratifying” a model involves breaking stocks into smaller stocks that
differ in some characteristics. For example, we might take the simple SEIR model
shown in Figure 1 and subdivide each stock into two groups of different sexes, or
three groups of different ages, or both. This subdivision is a common and important
procedure for refining models in epidemiology.

However, stratification also requires introducing new flows, new auxiliary vari-
ables, new links, and so on. For example, consider the flow “inf” from the “Exposed”
stock to the “Infectious” stock in the SEIR model. If we stratify this model by break-
ing each stock into two sexes, we also need to replace this flow with two separate
flows, one for each sex. Furthermore, since the rate of this flow is given by an auxil-
iary variable, we must replace that variable by two separate variables if we wish to
allow the two sexes to have different rates of infection—which indeed is the whole
point of stratifying the model in this way.

The challenge is to carry out all these steps in a mathematically well-defined
way that can be cleanly implemented in software. Libkind et al. recently did this
for a related diagrammatic modeling language that has also been implemented in
the AlgebraicJulia ecosystem: Petri nets [20]. The key was to introduce “typed”
Petri nets and use pullbacks, a standard construction in category theory [17]. How-
ever, their approach to stratification has the potential to be generalized to many
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other diagrammatic modeling languages. Here we adapt their approach to stock-flow
diagrams.

To begin, it is important to realize that when we stratify a model described by a
stock-flow diagram (�, q), we do not expect that all the functions q{ associated to
auxiliary variables { can be copied over from the original model in an automatic way.
Indeed, the point of stratification is to let these functions depend on the “stratum”,
e.g. the sex, the age group, and so on. Thus, in the approach we take here, we
first stratify not the whole stock-flow diagram (�, q) but only its underlying system
structure diagram � (as defined in Section 3.3). To promote the stratified system
structure diagram to a stock-flow diagram, the user must then choose functions for
the auxiliary variables. In future work, we can enable an approach where most, but
not all, of the original functions are automatically reused.

How do we stratify system structure diagrams? A first naive thought would be to
take a “product” of two system structure diagrams:

1. The original system structure diagram that we wish to stratify. We call this the
“aggregate model” and denote it as (aggregate.

2. A system structure diagram describing the strata (e.g., age groups or sexes) that
we wish to use in stratifying the aggregate model. We call this the “strata model”
and denote it as (strata.

The product of these two, denoted (aggregate×(strata, is a system structure diagram for
which a stock is an ordered pair (G, H) consisting of a stock G in the aggregate model
(aggregate and a stock H in the strata model (strata. Similarly a flow in the product is
an ordered pair of flows, one from each model—and so on for inflows, outflows,
auxiliary variables, and all the other objects in the schema for stock-flow diagrams.

In fact, category theory has a general notion of “product” [17] applicable to any
category, and (aggregate × (strata is a product in the category SystemStructure. One
consequence is that it comes with maps as follows:

(aggregate × (strata (aggregate

(strata

?1

?2

Given any ordered pair (G, H) of stocks, flows, etc. in the product (aggregate×(strata,
the maps ?1 and ?2 pick out the components of this ordered pair:

?1 (G, H) = G, ?2 (G, H) = H.

Unfortunately, the product (aggregate × (strata often contains more stocks, flows,
etc. than we really want. The solution is to keep only the ordered pairs (G, H) where
G and H have the same “type”. To do this, we introduce a third stock-flow diagram
(type, called the “type system”, together with maps
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(aggregate

(strata (type

Caggregate

Cstrata

We obtain the desired stratified model (stratified by taking a “pullback” in the
category StockFlow. The pullback is a particular stock-flow diagram equipped with
maps making the following square commute:

(stratified (aggregate

(strata (type

?1

?2 Caggregate

Cstrata

The pullback is defined so that a stock in (stratified is an ordered pair (G, H) consisting
of a stock G in the aggregate model (aggregate and a stock H in the strata model (strata
that both map to the same stock in the type system (type. In other words, the pair
(G, H) satisfies

(Caggregate)S (G) = (Cstrata)S (H).

Similarly, a flow in (stratified is a pair consisting of a flow in the aggregate model and
a flow in the strata model that both map to the same flow in the type system—and so
on for inflows, outflows, auxiliary variables, and all the other objects in the schema
for stock-flow diagrams. As before, the maps ?1 and ?2 pick out the components of
these ordered pairs:

?1 (G, H) = G, ?2 (G, H) = H.

All this and more follows from the general theory of pullbacks, which works in any
category [17]. That is why this approach to stratification works so generally.

Beforewe turn to examples of stratification, let us briefly explain themaps between
system structure diagrams that appear as arrows in the above diagram. Technically
these maps are the morphisms in the category SystemStructure, and they play an
important role in the theory. But what are these maps like?

Given system structure diagrams G and H, a map U : G→ H consists of functions
sending all the stocks, flows, inflows, outflows, auxiliary variables, etc. for G to the
corresponding items for H. We use US : G(S) → H(S) to denote the function on
stocks, UF : G(F) → H(F) to denote the function on flows, and so forth. But we
require that these functions be structure-preserving. For example, if UF maps a flow
5 ∈ G(F) to a flow 5 ′ ∈ H(F), then we require that UF must map the upstream of 5
to the upstream of 5 ′, and map the downstream of 5 to the downstream of 5 ′. For
details, see [7].
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Figure 11 shows an example of such a map U from the SEIR system structure
diagram (top) to the SIR system structure diagram (bottom). To show themap clearly,
we have coloured the components of the SEIR diagram according to the colour of
the component in the SIR diagram to which they are mapped. Notice that U maps
the flow inf2 of the SEIR diagram to the flow inf1 of the SIR diagram. Thus, we
require that U maps the upstream stock of inf2 to the upstream stock of inf1, and the
downstream stock of inf2 to the downstream stock of inf1.

Fig. 11 An example of a map
(morphism) from the SEIR
system structure diagram
to the SIR system structure
diagram

Now let us turn to examples of stratification. Figure 12 shows a system structure
diagram (type that can serve as a type system for stratified infectious disease models.
This system structure diagram has just one stock, Pop, which represents all the kinds
of populations. It has five flows, representing five different types of flows in the
infectious disease models we wish to build:

1. the birth flow,
2. the death flow,
3. the flow for new (incident) infections,

Fig. 12 A stock-flow diagram
(type serving as a type system
for infectious disease models
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4. the aging flow representing the transition from one age group to its immediately
older group,

5. the first order delay flow based on the schema of the system structure diagrams.

To support a clearer visualization, these flows are drawn using five different colours.
The type system (type has five auxiliary variables corresponding to these five flows—
but for simplicity, we do not depict these auxiliary variables. It also has three sum
auxiliary variables:

1. N, representing the total population of the whole model,
2. NS, representing the population of a specific subgroup,
3. NI, representing the count of infectious persons of a specific subgroup.

Finally, the type system (type has nine links.
Figure 13 shows four system structure diagrams “typed” by (type: that is, equipped

with maps to (type. The first two are infectious disease models which can serve as
aggregate models (aggregate: an SEIR model and an SIS (Susceptible–Infectious–
Susceptible) model. The second two can serve as strata models (strata: a sex strata
model and an age strata model. The “typing” of these four stock-flow diagrams—that
is, their maps to (type—are indicated by colours following the colouring scheme of
Figure 12.

(a) Typed SEIR disease model (b) Typed SIS disease model

(c) Typed age strata model (d) Typed sex strata model

Fig. 13: Four examples of typed stock-flow diagrams
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In Figure 14 we show the results of pullback-based stratification for each com-
bination of an aggregate model (either the SEIR model or SIS model) and a strata
model (either the age strata model and sex strata model). A stratified model (stratified
is generated by taking the pullback of each of the four combinations of an aggregate
model and a strata model. These four stratified models are the age-stratified SEIR
model, age-stratified SIS model, sex-stratified SEIR model and sex-stratified SIS
model.

More generally, we can define many other system structure diagrams (aggregate to
serve as aggregate models for infectious disease [2]. Similarly, we can define many
different system structure diagrams (strata to serve as strata models characterizing
the structure and patterns of progression associated with different types of stratifi-
cation: not only sex and age but also by socioeconomic or employment status, and
geographical stratification including mobility amongst regions, mobility amongst
regions from a home base in a particular region, etc. Once an aggregate model and
strata model are chosen along with their typings Caggregate : (aggregate → (type and
Cstrata : (strata → (type, our code can automatically construct a stratified model by tak-
ing a pullback. For example, we can generate an SEIR age-stratified system structure
diagram by calculating the pullback of the SEIR model and an age strata model.

Fig. 14: Examples of four stratified models
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Moreover, we can build stratified models with multiple dimensions by taking
repeated pullbacks of multiple stock-flow diagrams. For example, we can build an
age-and-sex stratified SEIR model by such an iterated pullback involving strata
models for each of two dimensions—sex and age. The result is shown in Figure
15. Similar approaches can be used to model progression of multiple comorbidities
and behavioural risk factors—a form of stratification that, done by hand, would be
subject to a combinatorial explosion of detail [23].

As mentioned, the stratified models here are built based on system structure
diagrams, with the goal of simplifying the stratification process and avoiding the
need to consider the functions in the stock-flow diagrams. Fully stratified stock-flow
diagrams are then generated by assigning functions to each auxiliary variable of the
stratified system structure diagram. Figure 16 shows a solution of an example SIS
model stratified by sex.

Fig. 15: Example of building an SEIR model stratified in multiple dimensions
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Fig. 16 Solutions of the ODE
semantics for a sex-stratified
SIS model

6 ModelCollab: A Graphical Real-time Collaborative
Compositional Modeling Tool

While the modular modeling approaches explored in this chapter make ubiquitous
use of category theory, use of the resulting functionality—for example, the ability
to compose and stratify diagrams, or to interpret them through differing analyses—
does not require knowledge of that foundation. Impactful infectious disease model-
ing is typically conducted in interdisciplinary teams, and securing timely, ongoing
feedback about model structure and emergent behaviour from non-modeler team
members is key to both model refinement and organizational learning from model-
ing. Often tacit knowledge of non-modeling team members concerning the system
under study (say, evidence for episodic reemergence of a communicable disease in
certain demographic segments despite prevention and control efforts) is only elicited
once team members have a chance to comment on visualizations of model structure
and summaries of model dynamics. Often interpretation of such dynamics is greatly
enhanced through reasoning about the relationship between observed behaviour and
the diagram structure—for example, through recognizing that an increase in a vari-
able over time reflects a situation where inflow is greater than outflow, explaining an
invariant value of a state variable in terms of a balance between inflows and outflows,
or reasoning about exponential change in terms of driving feedback loops.

Partly for these reasons, the System Dynamics tradition of modeling has long
prized the use of visual modeling software that keeps the attention of modelers—and
other team members—on diagrams depicting model structure. While such software
does support communication across interdisciplinary team members, it suffers both
from the disadvantages of traditional treatment of such models discussed in the
introduction and a limit to being modified—and often viewed—by only a single user
at a time.

Here we describe open-source, visual, collaborative, categorically-rooted,
diagram-centric software for building, manipulating, composing, and analyzing Sys-
tem Dynamics models. This web-based software, named ModelCollab, is designed
for real-time collaborative use across interdisciplinary teams. The graphical user
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interface allows the user to interactively conduct the types of categorically-rooted
operations discussed without any knowledge of their categorical foundations. This
software is at an early stage, and currently supports only a subset of the options made
possible by the StockFlow.jl framework on which it rests. But its development is pro-
gressing rapidly, and we anticipate an expansion to eventually handle a far larger set
of operations. We describe use of some of the early features of this system, bearing
in mind that multiple users will commonly be using the system simultaneously.

ModelCollab provides a modal interface for adding diagram components to a
Canvas used to display the diagram being assembled. Different concurrent users
can be present in different modes at the same time. For example, within “Stock"
mode, the user can click on the canvas to add a Stock, and similarly for “Flow",
“Auxiliary Variable", “Sum Variable" modes. “Connect" mode is used to establish
links indicating dependencies, such as those for auxiliary and sum variables. The
interface abstraction level sometimes exceeds that of StockFlow.jl; for example, flows
within the graphical interface are shown as depending directly on other variables
in the diagram, rather than only via connections with a distinct auxiliary variable.
Through this interface, larger diagrams can be created; for example, Figure 17 depicts
an SEIR diagram built in the system.

Fig. 17: An SEIR diagram built in ModelCollab

As in online collaborative software such as Google Docs, diagrams can be ac-
cessed on an ongoing basis by multiple parties once they have been created in
ModelCollab. It is also possible to persist diagrams in other forms within the system.
The interface allows export of diagrams through a menu item, with that diagram then
being downloaded to the invoking user’s local computer as a JSON [8] file. Beyond
exporting, the system offers a structured means of “publishing" diagrams to a simple
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“Diagram Library" once they have attained a sufficient level of maturity to be worth
sharing. Such published diagrams can then be reused by others.

A foundationally important component ofModelCollab functionality is the ability
to compose diagrams. Like other diagram assembly operations within ModelCollab,
this operation is performed graphically. As a first step, the user can add previously
published diagrams into the model canvas, where this imported diagram (henceforth
referred to as the “subdiagram”) is visually distinguished from the surrounding
diagram being assembled, as is depicted in 18.

More than one such published diagram can be imported, in which case each
is distinguished by a different colour. For example, Figure 19 shows the results
of importing a second subdiagram, which lies beneath the first imported subdia-
gram. Beyond these subdiagrams, the canvas will commonly contain a surrounding
diagram.

Fig. 18: ModelCollab: Results of importing a single previously published diagram
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Fig. 19: ModelCollab: Results of importing a second diagram

Just after being imported, the two subdiagrams are independent of one another;
while this is sometimes appropriate, often the user will recognize ways in which the
process depicted in a specific imported subdiagram is coupled with the processes
depicted by the surrounding diagram, or in the other imported subdiagrams. Such
coupling is represented by composition of the diagrams via the interface. Through
user interface actions, a user can elect to identify (unify) a stock or sum dynamic
variable with a variable of the same type in a subdiagram. Such identification of pairs
of variables may be performed between variables in an outer canvas diagram and
in a subdiagram, or (alternatively) between two variables in different subdiagrams.
For example, 20 graphically illustrates the results of identification of a stock V of
the upper and lower diagrams. By entering “Identify" mode from the ModelCollab
menu, the user can indicate with a pair of successive clicks the pair of stocks to be
identified.
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Fig. 20: ModelCollab: Example of two subdiagrams composed by identifying stock
S

Figure 21 shows the results of using the “Identify" mode of ModelCollab to
identify not just additional stock I between the two diagrams, but also sum variable
N.

Fig. 21: ModelCollab: Example of two subdiagrams composed by identifying both
stocks S and I and sum variable N
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Once built, ModelCollab supports rendering the definition of a diagram in code
form. Specifically, the system offers a “Get code" menu item that produces a file
containing Julia code to create the current diagram using calls to StockFlow.jl. If
desired, such code could then be used to interactively manipulate the models from a
Julia codebase or within a Jupyter notebook.

Beyond operating on syntactic constructs in the form of diagrams, ModelCollab
provides an interface to interpret diagrams according to a menu-chosen semantics.
At the time of writing, the software only supports ODE semantics (see Figure 22),
but implementation of the other semantics discussed in section 3 is planned within
the near future.

Fig. 22: ModelCollab: Example of using the “Semantics" menu to elect to interpret
the diagram (the syntax) as an ODE

Interpretation of a diagram by ODE semantics involves numerical integration
of that diagram over a user-specified timeframe. Outputs from that simulation are
currently rendered and downloaded as a PNG image file; Figure 23 shows an example.
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Fig. 23: ModelCollab: Example of results of interpreting the composed diagrams
(the syntax) with ODE semantics

The current ModelCollab software represents a modest step towards realizing
the promise of compositional approaches for the broader modeling community.
There are several priorities anticipated for rollout in the near future. Putting aside
additions requiring changes for StockFlow.jl itself (some of which are discussed
below), planned features include support for pullback-based stratification and addi-
tional semantic domains. Furthermore, a scenario-based interface is being planned
that will provide persistent options to interpret the model using different semantics
and settings, and support other users in observing and annotating the output from
semantic-based interpretation long after it is first produced. Support is also planned
for the type of seamless version control standard in many real-time collaborative
systems and indications of the presence of the pointers of different concurrent users.
Finally, role-based security, authentication and authorization systems are planned
to formalize permission-based enablement of diagram use, sharing and modes of
interaction.

7 Conclusion

This chapter demonstrates some of the modeling benefits secured when one takes
diagrams seriously. Specifically, we have offered a brief look at some of the charac-
teristics of categorical treatment of stock-flow diagrams, while offering a nod to other
related diagrams within the diagram-centric System Dynamics modeling tradition.
While our treatment has been informal and has only touched on a small subset of the
consequences of a categorical foundation for diagrams, we have highlighted several
benefits: the capacity to promote modularity and reuse via diagram composition, to
sidestep model opacity arising from the curse of dimensionality afflicting stratified
models via a modular stratification, and better supporting the needs of interdisci-
plinary stakeholders via the capacity to interpret the same diagrams through the
lens of varying semantic domains. Some of these benefits—such as those involving
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semantics mapping stock-flow diagrams to system structure diagrams or causal loop
diagrams—describe relationships between different types of diagrams not previously
formalized. Other outcomes of providing a firm mathematical basis for stock-flow
models have been noted in passing. For example, such a formalization offers the
ability to soundly transform a diagram whilst maintaining invariant its mathematical
meaning, such as for optimization or parallelization of model simulation. As another
example, the formalization can also allow the use of maps between diagrams that
coarse-grain model structure. There are diverse other opportunities for exploiting
this categorical formalization of mathematical structure.

While it offers promise, this work remains at the earliest stages of exploiting
such opportunities extending from categorifying stock-flow diagrams. StockFlow.jl
and ModelCollab require many important extensions to substantively address the
challenges of practical modeling. Key priorities include providing support for up-
stream/downstream composition based on “half-edge” flows emerging from a dia-
gram, supporting methods for hierarchical composition of diagrams (such as those
pioneered by our colleague N.Meadows [22]), adding full support for causal loop di-
agrams and system structure diagrams, and supporting the augmentation of multiple
types of diagrams with dimensional information [14] and use of such information
in stock-flow diagram composition, stratification and additional semantic domains.
There is further a need and opportunity to develop additional semantic domains for
use with stock-flow models. These include those associated with different numerical
simulations, such as stochastic transition systems, stochastic differential equations
and difference equations, as well as those associated with computational statistics
techniques. We seek to follow each such advance in the formalisms for stock-flow
models by successive implementation in StockFlow.jl and ModelCollab.

At a time where health dynamic modeling is in greater demand and more needed
than ever, formalizing its categorical foundation confers benefits key to addressing
the team-based modeling needs of the 21st century. We enthusiastically welcome
collaboration with colleagues interested in exploring opportunities to transforma-
tionally enable health modeling by tapping the power of category theory.
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Appendix: Code of Examples

The code below can be reached in the GitHub repository at: https://github.
com/Xiaoyan-Li/applicationStockFlowMFPH.

[1]: using StockFlow

using Catlab
using Catlab.CategoricalAlgebra
using LabelledArrays
using OrdinaryDiffEq
using Plots

using Catlab.Graphics
using Catlab.Programs
using Catlab.WiringDiagrams

using Catlab.Graphics.Graphviz: Html
using Catlab.Graphics.Graphviz

1 SEIR Model

1.1 Syntax: Define the SEIR Stock-Flow Diagram
Builds the stock-flow diagram of the SEIR model:

[2]: # define the functions of the auxiliary variables
f_birth(u,uN,p,t)=p.µ*uN.N(u,t)
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f_incid(u,uN,p,t)= p.β*u.S*u.I/uN.N(u,t)
f_inf(u,uN,p,t)=u.E/p.tlatent
f_rec(u,uN,p,t)=u.I/p.trecovery
f_deathS(u,uN,p,t)=u.S*p.δ
f_deathE(u,uN,p,t)=u.E*p.δ
f_deathI(u,uN,p,t)=u.I*p.δ
f_deathR(u,uN,p,t)=u.R*p.δ

[2]: f_deathR (generic function with 1 method)

[3]: seir=StockAndFlow(
(:S=>(:birth,(:incid,:deathS),(:v_incid,:v_deathS),:N),

:E=>(:incid,(:inf,:deathE),(:v_inf,:v_deathE),:N),
:I=>(:inf,(:rec,:deathI),(:v_incid, :v_rec,:

↪→v_deathI),:N),
:R=>(:rec,:deathR,:v_deathR,:N)),

(:birth=>:v_birth,:incid=>:v_incid,:inf=>:v_inf,:rec=>:
↪→v_rec,:deathS=>:v_deathS,:deathE=>:v_deathE,:deathI=>:
↪→v_deathI,:deathR=>:v_deathR),

(:v_birth=>f_birth,:v_incid=>f_incid,:v_inf=>f_inf,:
↪→v_rec=>f_rec,:v_deathS=>f_deathS,:v_deathE=>f_deathE,:
↪→v_deathI=>f_deathI,:v_deathR=>f_deathR),

(:N=>(:v_birth,:v_incid))
);

We can also plot the SEIR stock-flow diagram using the function Graph() as below.
This stock-flow diagram is the same as the upper figure. Although the software
plotted diagrams may be not as good as the upper figure, it will be improved in the
future.

[4]: Graph(seir)

[4]:

S

v_incid

v_deathS
N

E

v_inf

v_deathE

I

v_rec

v_deathI

R v_deathR

v_birth
birth

incid

inf

rec

deathS

deathE

deathI

deathR
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1.2 Semantics: ODEs
1.2.1 Define the constant parameter values and the initial values for the stocks

Time unit: Month

[5]: # define parameter values and initial values of stocks
# define constant parameters
p_measles = LVector(

β=49.598, µ=0.03/12, δ=0.03/12, tlatent=8.0/30,␣
↪→trecovery=5.0/30

)
# define initial values for stocks
u0_measles = LVector(

S=90000.0-930.0, E=0.0, I=930.0, R=773545.0
);

1.2.2 Solve the ODEs and plot the results

[6]: prob_measles = ODEProblem(vectorfield(seir),u0_measles,(0.
↪→0,120.0),p_measles);

sol_measles = solve(prob_measles,Tsit5(),abstol=1e-8);
plot(sol_measles)

[6]:

1.3 Semantics: Causal Loop Diagrams
Convert the SEIR stock-flow diagram to a causal loop diagram:

[7]: seir_causalLoop=convertToCausalLoop(seir);

[8]: Graph(seir_causalLoop)
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[8]:

S

incid

deathS
N

E

inf

deathE

I

rec

deathI

R deathR

birth

1.4 Semantics: System Structure Diagrams
Convert the SEIR stock-flow diagram to a system structure diagram:

[9]: seir_structure=convertStockFlowToSystemStructure(seir);

[10]: Graph(seir_structure)

[10]:

S

v_incid

v_deathS
N

E

v_inf

v_deathE

I

v_rec

v_deathI

R v_deathR

v_birth
birth

incid

inf

rec

deathS

deathE

deathI

deathR

2 Composition

2.1 Open population SVE model
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[11]: f_vacc(u,uN,p,t)=u.S*p.α
f_deathV(u,uN,p,t)=u.V*p.δ
f_incidv(u,uN,p,t)=p.β*u.V*u.I*(1.0-p.e)/uN.N(u,t)

sve=StockAndFlow(
(:S=>(:F_NONE,:vacc,:v_vacc,:N),

:V=>(:vacc,(:deathV,:incidv),(:v_deathV, :v_incidv),:
↪→N),

:E=>(:incidv,:F_NONE,:V_NONE,:N),
:I=>(:F_NONE,:F_NONE,:v_incidv,:N)),

(:vacc=>:v_vacc,:deathV=>:v_deathV, :incidv=>:v_incidv),
(:v_vacc=>f_vacc,:v_deathV=>f_deathV,:

↪→v_incidv=>f_incidv),
(:N=>:v_incidv)

)

Graph(sve)

[11]:

S v_vacc N

V

v_deathV

v_incidv

EI

vacc

deathV

incidv

2.2 Composition
2.2.1 Define the composition UWD-algebra

[12]: seirv_uwd = @relation (S,E,I) begin
seir(S,E,I)
sve(S,E,I)

end;
display_uwd(seirv_uwd)

[12]:

seir

S

E I

sve
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2.2.2 Define the common parts (feet) to be composed of

[13]: footS=foot(:S, :N, :S=>:N)
Graph(footS;schema="C0")

[13]:
S N

[14]: footE=foot(:E, :N, :E=>:N)
Graph(footE;schema="C0")

[14]:
E N

[15]: footI=foot(:I, :N, :I=>:N)
Graph(footI;schema="C0")

[15]:
I N

2.2.3 Composition
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[16]: # open SEIR and SVE stock & flow diagram with the feet␣
↪→defined before

open_seir=Open(seir, footS, footE, footI)
open_sve=Open(sve, footS, footE, footI)
# Compose those two models according the UWD-algebra
open_seirv = oapply(seirv_uwd, [open_seir, open_sve])
# the composed closed stock & flow diagram is the apex of␣

↪→the open stock & flow diagram
seirv = apex(open_seirv)
Graph(seirv)

[16]:

S

v_incid

v_deathS

v_vacc

N

E

v_inf

v_deathE

I

v_rec

v_deathI

v_incidv

R v_deathR

V

v_deathV

v_birth
birth

incid

inf

rec

deathS

deathE

deathI

deathR

vacc

deathV

incidv

2.2.4 Solve the ODEs of the SEIRV model

Time Unit: days

[17]: p_seirv = LVector(
β=49.598/30, µ=0.03/365, δ=0.03/365, tlatent=8.0,␣

↪→trecovery=5.0, α=0.01, e=0.9
)
# define initial values for stocks
u0_seirv = LVector(

S=10000.0-1.0, E=0.0, I=1.0, R=0.0, V=0.0
);

prob_seirv = ODEProblem(vectorfield(seirv),u0_seirv,(0.0,100.
↪→0),p_seirv);

sol_seirv = solve(prob_seirv,Tsit5(),abstol=1e-8);
plot(sol_seirv)

[17]:
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3 Introduction of Stratification

3.1 Stratification
Stratification is based on system structure diagrams. Stratified stock-flow diagrams
are then generated by assigning a function to each auxiliary variable of the stratified
system structure diagram.

We generate a stratified system structure diagram Sstratified by taking the pullback of
an aggregate population infectious disease system structure diagram (Saggregate and
a strata system structure diagram Sstrata, which are both mapped to the same system
structure diagram Stype:

Sstratified Saggregate

Sstrata Stype

p1

p2 taggregate

tstrata

The map taggregate : Saggregate → Stype assigns a type to each part of the system
structure diagram Saggregate. The allowed types are described by the type system
Stype. Similarly, the map tstrata assigns a type to each part of the system structure
diagram Sstrata.

In applications, we can define different system structure diagrams Saggregate
to represent different infectious disease models (or more generally, com-
partmental models), e.g., the SEIR (Susceptible-Exposed-Infectious-Recovered)
model, SIR (Susceptible-Infectious-Recovered) model, SIS (Susceptible-Infectious-
Susceptible) model, etc. Similarly, the strata system structure diagrams Sstrata are
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consist of multiple different strata models, e.g., the age strata, the sex strata, the re-
gion strata, etc. Then, a stratified model can be build by calculating the pullback of
a disease model Saggregate and a strata model Sstrata. For example, we can generate
a SEIR age stratified system structure diagram by calculating the pullback of the
SEIR disease model and the age strata model.

In this project, we built two strata models (age strata model and sex strata model),
and two disease models (SEIR model and SIS model) as examples. Four stratified
models were generated by calculating the pullback of the four different combination
of the two strata models and two disease models. Those four models are an age
stratified SEIR model, an age stratified SIS model, a sex stratified SEIR model and
a sex stratified SIS model. These are shown in Figure 14.

3.1.1 Define the typed system structure diagram

First, we need to define the type system Stype. In this system structure diagram, each
component represents a type.

The type system used in this project is shown above. From this we can see there is
only one type of stock, which represents the population. There are five flows from
this stock to itself, which represent five different flow types in the infectious disease
models under consideration:

• the birth flow

• the death flow

• the incident infections flow

• the aging flow which represents the flow of aging from one age group to the
older group

• the first order delay flow

There should also be five auxiliary variables corresponding to these five flows. For
simplicity our system structure diagram does not show these auxiliary variables.
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The system structure diagram Stype shown above also has three sum auxiliary vari-
ables:

• N: the total population of the whole model

• NS: the total population of a specific subgroup

• NI: the total count of infectious people across a specific subgroup

Finally, each link in Stype represents a type of link. However, since we can easily
determine a link’s type by the types of its source and target, we did not label the
links’ types by colours.

We define the typed stock-flow diagram:

[18]: S_type=StockAndFlowStructure(
(:Pop=>((:births, :newInfectious, :firstOrderDelay, :

↪→aging),(:deaths, :newInfectious, :firstOrderDelay, :
↪→aging),(:v_deaths, :v_newInfectious, :v_firstOrderDelay, :
↪→v_aging),(:NS,:NI,:N))),

(:deaths=>:v_deaths, :births=>:v_births, :
↪→newInfectious=>:v_newInfectious, :firstOrderDelay=>:
↪→v_firstOrderDelay, :aging=>:v_aging),

(:N=>:v_births, :NI=>:v_newInfectious, :NS=>:
↪→v_newInfectious)

);

We can also plot the typed diagrams. The typed system structure diagram is the
same as the upper figure. At first, we need to define the function of plotting out the
typed diagrams and some needed help functions:

[19]: # Functions for graphing typed stock & flow diagrams
colors_vflow = ["antiquewhite4","antiquewhite", "gold",␣

↪→"saddlebrown", "slateblue", "blueviolet", "olive"]
colors_s = ["deeppink","darkorchid","darkred","coral"] # red␣

↪→series
colors_sv = ["cornflowerblue","cyan4","cyan","chartreuse"] #␣

↪→green and blue series

flatten(fname::Symbol) = "$fname"

function flatten(fname::Tuple)
names = split(replace(string(fname), "("=>"", ")"=>"", ":

↪→"=>""), ",")
for i in 1:length(names)

name = strip(names[i])
if name[1:2] == "id"
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continue
end
return name

end
return "id"

end

def_stock(typed_StockFlow::ACSetTransformation, colors) =
(p,s) -> ("s$s", Attributes(:label=>sname(p,s) isa Tuple␣

↪→where T ? Html(replace(string(sname(p,s)), ":"=>"", "," =>␣
↪→"<BR/>", "("=>"", ")"=>"")) : "$(sname(p,s))",

:shape=>"square",
:color=>"black",
:style=>"filled",
:

↪→fillcolor=>colors[typed_StockFlow[:S](s)]))

def_auxiliaryV(typed_StockFlow::ACSetTransformation, colors)=
(p, v) -> ("v$v", Attributes(:label=>vname(p,v) isa Tuple␣

↪→where T ? Html(replace(string(vname(p,v)), ":"=>"", "," =>␣
↪→"<BR/>", "("=>"", ")"=>"")) : "$(vname(p,v))",

:
↪→shape=>"plaintext",

:
↪→fontcolor=>colors[typed_StockFlow[:F](incident(p,v,:fv)...
↪→)]))

def_auxiliaryV(colors = colors_vflow)=
(p, v) -> ("v$v", Attributes(:label=>vname(p,v) isa Tuple␣

↪→where T ? Html(replace(string(vname(p,v)), ":"=>"", "," =>␣
↪→"<BR/>", "("=>"", ")"=>"")) : "$(vname(p,v))",

:
↪→shape=>"plaintext",

:
↪→fontcolor=>colors[incident(p,v,:fv)...]))

def_sumV(typed_StockFlow::ACSetTransformation, colors) =
(p, sv) -> ("sv$sv", Attributes(:label=>svname(p,sv) isa␣

↪→Tuple where T ? Html(replace(string(svname(p,sv)), ":
↪→"=>"", "," => "<BR/>", "("=>"", ")"=>"")) :␣
↪→"$(svname(p,sv))",
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:shape=>"circle",
:color=>"black",
:

↪→fillcolor=>colors[typed_StockFlow[:SV](sv)],
:style=>"filled"))

def_flow_V(typed_StockFlow::ACSetTransformation, colors)=
(p, us, ds, v, f) -> begin
labelfontsize = "6"
colorType = colors[typed_StockFlow[:F](f)]
color = "$colorType"*":invis:"*"$colorType"
arrowhead = "none"
splines = "ortho"
return ([us, "v$v"],Attributes(:label=>"", :

↪→labelfontsize=>labelfontsize, :color=>color, :
↪→arrowhead=>arrowhead, :splines=>splines)),

(["v$v", ds],Attributes(:
↪→label=>Html(flatten(fname(p,f))), :
↪→labelfontsize=>labelfontsize, :color=>color, :
↪→splines=>splines))

end

def_flow_noneV(typed_StockFlow::ACSetTransformation, colors)=
(p, us, ds, f) -> begin

colorType = colors[typed_StockFlow[:F](f)]
color = "$colorType"*":invis:"*"$colorType"
([us, ds],Attributes(:label=>Html(flatten(fname(p,f))),␣

↪→:labelfontsize=>"6", :color=>color))
end

def_flow_V(colors = colors_vflow)=
(p, us, ds, v, f) -> begin
labelfontsize = "6"
colorType = colors[f]
color = "$colorType"*":invis:"*"$colorType"
arrowhead = "none"
splines = "ortho"
return ([us, "v$v"],Attributes(:label=>"", :

↪→labelfontsize=>labelfontsize, :color=>color, :
↪→arrowhead=>arrowhead, :splines=>splines)),
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(["v$v", ds],Attributes(:
↪→label=>Html(flatten(fname(p,f))), :
↪→labelfontsize=>labelfontsize, :color=>color, :
↪→splines=>splines))

end

def_flow_noneV(colors = colors_vflow)=
(p, us, ds, f) -> begin

colorType = colors[f]
color = "$colorType"*":invis:"*"$colorType"
([us, ds],Attributes(:label=>Html(flatten(fname(p,f))),␣

↪→:labelfontsize=>"6", :color=>color))
end

# Plot the typed stock & flow diagram
Graph_typed(typed_StockFlow::ACSetTransformation,␣

↪→colors_vflow = colors_vflow, colors_s = colors_s,␣
↪→colors_sv = colors_sv; schema::String="C", type::
↪→String="SFVL", rd::String="LR") =␣
↪→Graph(dom(typed_StockFlow),

make_stock = def_stock(typed_StockFlow, colors_s),␣
↪→make_auxiliaryV=def_auxiliaryV(typed_StockFlow,␣
↪→colors_vflow), make_sumV=def_sumV(typed_StockFlow,␣
↪→colors_sv),

make_flow_V=def_flow_V(typed_StockFlow, colors_vflow),␣
↪→make_flow_noneV=def_flow_noneV(typed_StockFlow,␣
↪→colors_vflow),schema=schema, type=type, rd=rd

);

Now, let’s plot the typed diagram:

[20]: Graph_typed(id(S_type))

[20]:
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Pop

v_deaths

v_newInfectious

v_firstOrderDelay

v_aging

N

NI

NS

v_births

deaths

births

newInfectious

firstOrderDelay

aging

[21]: # eliminate the attribute of name to enable pass the natural␣
↪→check

S_type = map(S_type, Name=name->nothing);

Since the typed disease model (e.g., SEIR model) and typed strata model (e.g., age
strata, sex strata) are homomorphisms (with ACSetTransformation data structure)
from disease (e.g., SEIR) system structure diagrams or the strata system structure
diagrams to the type system structure diagram. To define the ACSetTransformation
easily, we extract the parts of each components of the type system structure diagram
as follows:

[22]: s, = parts(S_type, :S)
sv_N, sv_NI, sv_NS = parts(S_type, :SV)
lsn_NS, lsn_NI, lsn_N = parts(S_type, :LS)
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f_deaths, f_births, f_newInfectious, f_firstOrderDelay,␣
↪→f_aging = parts(S_type, :F)

i_births, i_newInfectious, i_firstOrderDelay, i_aging =␣
↪→parts(S_type, :I)

o_deaths, o_newInfectious, o_firstOrderDelay, o_aging =␣
↪→parts(S_type, :O)

v_deaths, v_births, v_newInfectious, v_firstOrderDelay,␣
↪→v_aging = parts(S_type, :V)

lv_deaths, lv_newInfectious, lv_firstOrderDelay, lv_aging =␣
↪→parts(S_type, :LV)

lsv_N_births, lsv_NI_newInfectious, lsv_NS_newInfectious =␣
↪→parts(S_type, :LSV);

3.1.2 Define the typed infectious disease aggregate population system struc-
ture diagrams

Define the typed SEIR aggregate population system structure diagram
[23]: # the id flow of each stock maps to the aging flow in the␣

↪→S_type daigram in this example
S_seir=StockAndFlowStructure(

(:S=>((:birth,:id_S),(:incid,:deathS,:id_S),(:v_incid,:
↪→v_deathS,:v_idS),(:N,:NS)),

:E=>((:incid,:id_E),(:inf,:deathE,:id_E),(:v_inf,:
↪→v_deathE,:v_idE),(:N,:NS)),

:I=>((:inf,:id_I),(:rec,:deathI,:id_I),(:v_incid, :
↪→v_rec,:v_deathI,:v_idI),(:N,:NS,:NI)),

:R=>((:rec,:id_R),(:deathR,:id_R),(:v_deathR,:
↪→v_idR),(:N,:NS))),

(:birth=>:v_birth,:incid=>:v_incid,:inf=>:v_inf,:rec=>:
↪→v_rec,:deathS=>:v_deathS,:deathE=>:v_deathE,:deathI=>:
↪→v_deathI,:deathR=>:v_deathR,

:id_S=>:v_idS,:id_E=>:v_idE,:id_I=>:v_idI,:id_R=>:
↪→v_idR),

(:N=>:v_birth,:NS=>:v_incid,:NI=>:v_incid)
);

define the typed SEIR model, which is a ACSetTransformation map from the Sseir
model to the Stype model.
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[24]: t_seir=ACSetTransformation(S_seir, S_type,
S = [s, s, s, s],
SV = [sv_N, sv_NS, sv_NI],
LS = [lsn_N, lsn_NS, lsn_N, lsn_NS, lsn_N, lsn_NS, lsn_NI,␣

↪→lsn_N, lsn_NS],
F = [f_births, f_newInfectious, f_firstOrderDelay,␣

↪→f_firstOrderDelay, f_deaths, f_deaths, f_deaths, f_deaths,␣
↪→f_aging, f_aging, f_aging, f_aging],
I = [i_births, i_aging, i_newInfectious, i_aging,␣

↪→i_firstOrderDelay, i_aging, i_firstOrderDelay, i_aging],
O = [o_newInfectious, o_deaths, o_aging,␣

↪→o_firstOrderDelay, o_deaths, o_aging, o_firstOrderDelay,␣
↪→o_deaths, o_aging, o_deaths, o_aging],
V = [v_births, v_newInfectious, v_firstOrderDelay,␣

↪→v_firstOrderDelay, v_deaths, v_deaths, v_deaths, v_deaths,␣
↪→v_aging, v_aging, v_aging, v_aging],
LV = [lv_newInfectious, lv_deaths, lv_aging,␣

↪→lv_firstOrderDelay, lv_deaths, lv_aging, lv_newInfectious,␣
↪→lv_firstOrderDelay, lv_deaths, lv_aging, lv_deaths,␣
↪→lv_aging],
LSV = [lsv_N_births, lsv_NS_newInfectious,␣

↪→lsv_NI_newInfectious],
Name = name -> nothing

)

@assert is_natural(t_seir)
Graph_typed(t_seir)

[24]:
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Define the typed SIS aggregate population system structure diagram
[25]: S_sis=StockAndFlowStructure(

(:S=>((:births,:id_S,:newRecovery),(:deathS,:id_S,:
↪→newInfectious),(:v_deathS,:v_idS,:v_newInfectious),(:N,:
↪→NS)),

:I=>((:newInfectious,:id_I),(:deathI,:id_I,:
↪→newRecovery),(:v_deathI,:v_idI,:v_newRecovery),(:N,:NS,:
↪→NI))),

(:births=>:v_births,:deathS=>:v_deathS,:deathI=>:
↪→v_deathI,:newInfectious=>:v_newInfectious,:newRecovery=>:
↪→v_newRecovery,:id_S=>:v_idS,:id_I=>:v_idI),

(:N=>:v_births, :NI=>:v_newInfectious, :NS=>:
↪→v_newInfectious)

)

t_sis=ACSetTransformation(S_sis, S_type,
S = [s, s],
SV = [sv_N, sv_NI, sv_NS],
LS = [lsn_N, lsn_NS, lsn_N, lsn_NS, lsn_NI],
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F = [f_births, f_deaths, f_deaths, f_newInfectious,␣
↪→f_firstOrderDelay, f_aging, f_aging],
I = [i_births, i_aging, i_firstOrderDelay,␣

↪→i_newInfectious, i_aging],
O = [o_deaths, o_aging, o_newInfectious, o_deaths,␣

↪→o_aging, o_firstOrderDelay],
V = [v_births, v_deaths, v_deaths, v_newInfectious,␣

↪→v_firstOrderDelay, v_aging, v_aging],
LV = [lv_deaths, lv_aging, lv_newInfectious, lv_deaths,␣

↪→lv_aging, lv_firstOrderDelay],
LSV = [lsv_N_births, lsv_NI_newInfectious,␣

↪→lsv_NS_newInfectious],
Name = name -> nothing

)

@assert is_natural(t_sis)
Graph_typed(t_sis)

[25]:
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3.1.3 Define the typed strata system structure diagrams

Define the aging strata system structure diagram by three age groups: Child,
Adult and Senior

[26]: S_age_strata=StockAndFlowStructure(
(:Child=>((:births,:newInfectiousChild,:id_C),(:

↪→deathsChild,:newInfectiousChild,:agingChild,:id_C),(:
↪→v_deathsChild,:v_newInfectiousChild,:v_agingChild,:
↪→v_id_C),(:NI_Child,:NS_Child,:N)),

:Adult=>((:agingChild,:newInfectiousAdult,:id_A),(:
↪→deathsAdult,:newInfectiousAdult,:agingAdult,:id_A),(:
↪→v_deathsAdult,:v_newInfectiousAdult,:v_agingAdult,:
↪→v_id_A),(:NI_Adult,:NS_Adult,:N)),

:Senior=>((:agingAdult,:newInfectiousSenior,:id_S),(:
↪→deathsSenior,:newInfectiousSenior,:id_S),(:v_deathsSenior,:
↪→v_newInfectiousSenior,:v_id_S),(:NI_Senior,:NS_Senior,:
↪→N))),

(:births=>:v_births,:newInfectiousChild=>:
↪→v_newInfectiousChild,:newInfectiousAdult=>:
↪→v_newInfectiousAdult,:newInfectiousSenior=>:
↪→v_newInfectiousSenior,

:id_C=>:v_id_C,:id_A=>:v_id_A,:id_S=>:v_id_S,
:agingChild=>:v_agingChild,:agingAdult=>:

↪→v_agingAdult,
:deathsChild=>:v_deathsChild,:deathsAdult=>:

↪→v_deathsAdult,:deathsSenior=>:v_deathsSenior),
(:N=>:v_births, :NI_Child=>(:v_newInfectiousChild,:

↪→v_newInfectiousAdult,:v_newInfectiousSenior), :NS_Child=>(:
↪→v_newInfectiousChild,:v_newInfectiousAdult,:
↪→v_newInfectiousSenior),

:NI_Adult=>(:v_newInfectiousChild,:
↪→v_newInfectiousAdult,:v_newInfectiousSenior), :NS_Adult=>(:
↪→v_newInfectiousChild,:v_newInfectiousAdult,:
↪→v_newInfectiousSenior),

:NI_Senior=>(:v_newInfectiousChild,:
↪→v_newInfectiousAdult,:v_newInfectiousSenior), :
↪→NS_Senior=>(:v_newInfectiousChild,:v_newInfectiousAdult,:
↪→v_newInfectiousSenior))

)

t_age_strata=ACSetTransformation(S_age_strata, S_type,
S = [s,s,s],
SV = [sv_N, sv_NI, sv_NS, sv_NI, sv_NS, sv_NI, sv_NS],
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LS = [lsn_NI, lsn_NS, lsn_N, lsn_NI, lsn_NS, lsn_N,␣
↪→lsn_NI, lsn_NS, lsn_N],
F = [f_births, f_newInfectious, f_newInfectious,␣

↪→f_newInfectious, f_firstOrderDelay, f_firstOrderDelay,␣
↪→f_firstOrderDelay, f_aging, f_aging, f_deaths, f_deaths,␣
↪→f_deaths],
I = [i_births, i_newInfectious, i_firstOrderDelay,␣

↪→i_aging, i_newInfectious, i_firstOrderDelay, i_aging,␣
↪→i_newInfectious, i_firstOrderDelay],
O = [o_deaths, o_newInfectious, o_aging,␣

↪→o_firstOrderDelay, o_deaths, o_newInfectious, o_aging,␣
↪→o_firstOrderDelay, o_deaths, o_newInfectious,␣
↪→o_firstOrderDelay],
V = [v_births, v_newInfectious, v_newInfectious,␣

↪→v_newInfectious, v_firstOrderDelay, v_firstOrderDelay,␣
↪→v_firstOrderDelay, v_aging, v_aging, v_deaths, v_deaths,␣
↪→v_deaths],
LV = [lv_deaths, lv_newInfectious, lv_aging,␣

↪→lv_firstOrderDelay, lv_deaths, lv_newInfectious, lv_aging,␣
↪→lv_firstOrderDelay, lv_deaths, lv_newInfectious,␣
↪→lv_firstOrderDelay],
LSV = [lsv_N_births, lsv_NI_newInfectious,␣

↪→lsv_NI_newInfectious, lsv_NI_newInfectious,␣
↪→lsv_NS_newInfectious, lsv_NS_newInfectious,␣
↪→lsv_NS_newInfectious, lsv_NI_newInfectious,␣
↪→lsv_NI_newInfectious, lsv_NI_newInfectious,␣
↪→lsv_NS_newInfectious, lsv_NS_newInfectious,␣
↪→lsv_NS_newInfectious, lsv_NI_newInfectious,␣
↪→lsv_NI_newInfectious, lsv_NI_newInfectious,␣
↪→lsv_NS_newInfectious, lsv_NS_newInfectious,␣
↪→lsv_NS_newInfectious],
Name = name -> nothing

)

@assert is_natural(t_age_strata)
Graph_typed(t_age_strata)

[26]:
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Define the sex strata system structure diagram by two sub-groups: Female and
Male

[27]: S_sex_strata=StockAndFlowStructure(
(:F=>((:birthsF,:newInfectiousF,:id_F),(:deathsF,:

↪→newInfectiousF,:id_F),(:v_deathsF,:v_newInfectiousF,:
↪→v_idF),(:NI_F,:NS_F,:N)),
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:M=>((:birthsM,:newInfectiousM,:id_M),(:deathsM,:
↪→newInfectiousM,:id_M),(:v_deathsM,:v_newInfectiousM,:
↪→v_idM),(:NI_M,:NS_M,:N))),

(:birthsF=>:v_birthsF,:birthsM=>:v_birthsM,:
↪→newInfectiousF=>:v_newInfectiousF,:newInfectiousM=>:
↪→v_newInfectiousM,:id_F=>:v_idF,:id_M=>:v_idM,

:deathsF=>:v_deathsF,:deathsM=>:v_deathsM),
(:N=>(:v_birthsF,:v_birthsM), :NI_F=>(:v_newInfectiousF,:

↪→v_newInfectiousM), :NS_F=>(:v_newInfectiousF,:
↪→v_newInfectiousM),

:NI_M=>(:v_newInfectiousF,:
↪→v_newInfectiousM), :NS_M=>(:v_newInfectiousF,:
↪→v_newInfectiousM))

)

t_sex_strata=ACSetTransformation(S_sex_strata, S_type,
S = [s,s],
SV = [sv_N, sv_NI, sv_NS, sv_NI, sv_NS],
LS = [lsn_NI, lsn_NS, lsn_N, lsn_NI, lsn_NS, lsn_N],
F = [f_births, f_births, f_newInfectious, f_newInfectious,␣

↪→f_firstOrderDelay, f_firstOrderDelay, f_deaths, f_deaths],
I = [i_births, i_newInfectious, i_firstOrderDelay,␣

↪→i_births, i_newInfectious, i_firstOrderDelay],
O = [o_deaths, o_newInfectious, o_firstOrderDelay,␣

↪→o_deaths, o_newInfectious, o_firstOrderDelay],
V = [v_births, v_births, v_newInfectious, v_newInfectious,␣

↪→v_firstOrderDelay, v_firstOrderDelay, v_deaths, v_deaths],
LV = [lv_deaths, lv_newInfectious, lv_firstOrderDelay,␣

↪→lv_deaths, lv_newInfectious, lv_firstOrderDelay],
LSV = [lsv_N_births, lsv_N_births, lsv_NI_newInfectious,␣

↪→lsv_NI_newInfectious, lsv_NS_newInfectious,␣
↪→lsv_NS_newInfectious, lsv_NI_newInfectious,␣
↪→lsv_NI_newInfectious, lsv_NS_newInfectious,␣
↪→lsv_NS_newInfectious],
Name = name -> nothing

)

@assert is_natural(t_sex_strata)
Graph_typed(t_sex_strata)

[27]:
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3.1.4 Build the stratified models

Firstly, we define the two functions of generating the stratified models and typed
stratified models:

[28]: stratify(typed_models...) =␣
↪→ob(pullback(collect(typed_models)))

typed_stratify(typed_models...) =
compose(legs(pullback(collect(typed_models)))[1],␣

↪→typed_models[1]);

Build the age stratified models The SEIR age stratified model:
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[29]: seir_age = stratify(t_seir, t_age_strata)
Graph_typed(typed_stratify(t_seir, t_age_strata))

[29]:
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The SIS age stratified model:

[30]: sis_age = stratify(t_sis, t_age_strata)
Graph_typed(typed_stratify(t_sis, t_age_strata))

[30]:
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Build the sex stratified models The SEIR sex stratified model:

[31]: seir_sex = stratify(t_seir, t_sex_strata);
Graph_typed(typed_stratify(t_seir, t_sex_strata))

[31]:
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The SIS sex stratified model:
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[32]: sis_sex = stratify(t_sis, t_sex_strata);
Graph_typed(typed_stratify(t_sis, t_sex_strata))

[32]:

S
F

v_newInfectious
v_newInfectiousF

v_deathS
v_deathsF

N
N

NS
NS_F

I
F

v_newRecovery
v_idF

v_deathI
v_deathsF

NI
NI_F

S
M

v_newInfectious
v_newInfectiousM

v_deathS
v_deathsM NS

NS_M

I
M

v_newRecovery
v_idM

v_deathI
v_deathsM

NI
NI_M

v_births
v_birthsF

v_births
v_birthsM

births

births

newInfectious
newInfectious

newRecovery

newRecovery

deathS

deathI

deathS

deathI

3.2 Build the stratified model with multiple strata (e.g., both age
and sex strata)

We can build the stratified model with multiple dimensions (e.g., by age and sex)
by calculating the pullback of the diseease model and multiple strata models. We
create an example to stratify the SEIR model by both sex and age dimensions in this
project. It is notable that when combine multiple strata model together to calculate
the pullback, we may need to add some extra components to the strata models to
accomodate to the other strata models. For example, we need to add an id flow of
aging of each stock to the sex strata model to keep the aging flows in the stratified
results.
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[33]: S_sex_strata_withAge=StockAndFlowStructure(
(:F=>((:birthsF,:newInfectiousF,:id_F,:agingF),(:

↪→deathsF,:newInfectiousF,:id_F,:agingF),(:v_deathsF,:
↪→v_newInfectiousF,:v_idF,:v_agingF),(:NI_F,:NS_F,:N)),

:M=>((:birthsM,:newInfectiousM,:id_M,:agingM),(:
↪→deathsM,:newInfectiousM,:id_M,:agingM),(:v_deathsM,:
↪→v_newInfectiousM,:v_idM,:v_agingM),(:NI_M,:NS_M,:N))),

(:birthsF=>:v_birthsF,:birthsM=>:v_birthsM,:
↪→newInfectiousF=>:v_newInfectiousF,:newInfectiousM=>:
↪→v_newInfectiousM,:id_F=>:v_idF,:id_M=>:v_idM,

:deathsF=>:v_deathsF,:deathsM=>:v_deathsM,:agingF=>:
↪→v_agingF,:agingM=>:v_agingM),

(:N=>(:v_birthsF,:v_birthsM), :NI_F=>(:v_newInfectiousF,:
↪→v_newInfectiousM), :NS_F=>(:v_newInfectiousF,:
↪→v_newInfectiousM),

:NI_M=>(:v_newInfectiousF,:
↪→v_newInfectiousM), :NS_M=>(:v_newInfectiousF,:
↪→v_newInfectiousM))

)

t_sex_strata_withAge=ACSetTransformation(S_sex_strata_withAge,␣
↪→S_type,
S = [s,s],
SV = [sv_N, sv_NI, sv_NS, sv_NI, sv_NS],
LS = [lsn_NI, lsn_NS, lsn_N, lsn_NI, lsn_NS, lsn_N],
F = [f_births, f_births, f_newInfectious, f_newInfectious,␣

↪→f_firstOrderDelay, f_firstOrderDelay, f_deaths, f_deaths,␣
↪→f_aging, f_aging],
I = [i_births, i_newInfectious, i_firstOrderDelay,␣

↪→i_aging, i_births, i_newInfectious, i_firstOrderDelay,␣
↪→i_aging],
O = [o_deaths, o_newInfectious, o_firstOrderDelay,␣

↪→o_aging, o_deaths, o_newInfectious, o_firstOrderDelay,␣
↪→o_aging],
V = [v_births, v_births, v_newInfectious, v_newInfectious,␣

↪→v_firstOrderDelay, v_firstOrderDelay, v_deaths, v_deaths,␣
↪→v_aging, v_aging],
LV = [lv_deaths, lv_newInfectious, lv_firstOrderDelay,␣

↪→lv_aging, lv_deaths, lv_newInfectious, lv_firstOrderDelay,␣
↪→lv_aging],
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LSV = [lsv_N_births, lsv_N_births, lsv_NI_newInfectious,␣
↪→lsv_NI_newInfectious, lsv_NS_newInfectious,␣
↪→lsv_NS_newInfectious, lsv_NI_newInfectious,␣
↪→lsv_NI_newInfectious, lsv_NS_newInfectious,␣
↪→lsv_NS_newInfectious],
Name = name -> nothing

)

@assert is_natural(t_sex_strata_withAge)
Graph_typed(t_sex_strata_withAge)
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[34]: seir_sex_age = stratify(t_seir, t_sex_strata_withAge,␣
↪→t_age_strata)
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Graph_typed(typed_stratify(t_seir, t_sex_strata_withAge,␣
↪→t_age_strata))

[34]:
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3.3 Solve the stratified model
We can assign the functions to the auxiliary variables and convert stratified sys-
tem structure diagrams to stock-flow diagrams. Then, we can map the stock-flow
diagrams to the ODEs, and solve it.

[35]: sis_sex_flatten=rebuildSystemStructureByFlattenSymbols(sis_sex);
↪→

Define the function for each auxiliary variable, and map to stock-flow diagram:

[36]: f_birthF(u,uN,p,t)=p.µF*uN.NN(u,t)
f_birthM(u,uN,p,t)=p.µM*uN.NN(u,t)

f_infF(u,uN,p,t)= p.βF*u.SF*(p.ff*uN.NINI_F(u,t)/uN.
↪→NSNS_F(u,t)+p.fm*uN.NINI_M(u,t)/uN.NSNS_M(u,t))

f_infM(u,uN,p,t)= p.βM*u.SM*(p.mf*uN.NINI_F(u,t)/uN.
↪→NSNS_F(u,t)+p.mm*uN.NINI_M(u,t)/uN.NSNS_M(u,t))

f_recF(u,uN,p,t)=u.IF/p.trecoveryF
f_recM(u,uN,p,t)=u.IM/p.trecoveryM

f_deathSF(u,uN,p,t)=u.SF*p.δF
f_deathIF(u,uN,p,t)=u.IF*p.δF
f_deathSM(u,uN,p,t)=u.SM*p.δM
f_deathIM(u,uN,p,t)=u.IM*p.δM

29



v_sis_sex=(:v_birthsv_birthsF=>f_birthF, :
↪→v_birthsv_birthsM=>f_birthM, :
↪→v_newInfectiousv_newInfectiousF=>f_infF, :
↪→v_newInfectiousv_newInfectiousM=>f_infM,

:v_newRecoveryv_idF=>f_recF, :v_newRecoveryv_idM=>f_recM, :
↪→v_deathSv_deathsF=>f_deathSF, :
↪→v_deathIv_deathsF=>f_deathIF, :
↪→v_deathSv_deathsM=>f_deathSM, :
↪→v_deathIv_deathsM=>f_deathIM);

Convert the system structure diagram to the stock-flow diagram:

[37]: sis_sex_SF=convertSystemStructureToStockFlow(sis_sex_flatten,v_sis_sex);
↪→

Solve the ODEs of the converted stock-flow diagram:

[38]: p_sis_sex = LVector(
βF=0.5, βM=0.6, µM=0, µF=0.03/365/2.0, δM=0.05/365/2.0,␣

↪→δF=0.01/365/2.0, trecoveryM=5.0, trecoveryF=5.0,
ff=0.5, fm=0.5, mf=0.5, mm=0.5

)
u0_sis_sex = LVector(

SM=5400.0, SF=4600.0, IM=10.0, IF=1.0
)

prob_sis_sex =␣
↪→ODEProblem(vectorfield(sis_sex_SF),u0_sis_sex,(0.0,50.
↪→0),p_sis_sex);

sol_sis_sex = solve(prob_sis_sex,Tsit5(),abstol=1e-8);
plot(sol_sis_sex)

[38]:
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