
• The Maximum Caliber Principle 
• for modeling stochastic dynamic processes



All Flows:   Of molecules, energy, fluids, electrical currents. 
In trafficking networks in biochemistry, brains & ecology.

• Goal:  A statmech for dynamics 
• Input a model,  predict force-flow distributions.

To derive “laws”:   Ohm’s law (electrical), Fick’s Law (particles), 
Fourier’s Law (heat), Newtonian Fluids (momentum).

General applicability:   Systems that are nonlinear; have large 
fluctuations; are Far From Equilibrium; are not thermal (like traffic).



First, Equilibrium statmech�
MAXENT:  Maximize the entropy, constrained by <E>               
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1)  1) The  math  entropy 

•     For any .Smath{pi} = − ∑
i

pi ln pi {pi}
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• 2)  The  MaxEnt  entropy 

• :   For one .S*maxent{p*i } = − ∑
i

p*i ln p*i {p*i }
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SHORE & JOHNSON 1980.  Only this* entropy is useful for prediction & inference.



• 3)  The  2nd Law  entropy 

• ΔS2nd Law =
δqrev

T
brought into thermal contact. Because the whole system was isolated from its
surroundings by an adiabatic boundary, we had Utotal = UA + UB = constant.
Adiabatic boundaries constrain the whole system to undergo no energy change.
In Carnot’s engine (Example 7.9) the energy change of the system was known
from the heat and work exchange across the boundaries. In these cases, U was
the relevant independent variable.

δqbath
δqsystem

Constant Volume

Figure 8.1 A heat bath is a
reservoir that holds the
system (test tube, in this
case) at constant
temperature by allowing
heat flow in or out, as
required. The properties
that do not change inside
the system are temperature
T , volume V , and particle
number N, denoted
(T ,V ,N). The condition for
equilibrium inside the test
tube is that the Helmholtz
free energy F(T , V ,N) is at a
minimum.

However, when an intensive variable, such as T ,p, or µ, is included as a part
of the specification of a system, it means that the system is in contact with a
large reservoir or ‘bath’ that can exchange the corresponding extensive quan-
tity, U,V , or N , respectively. Such exchanges are called ‘fluctuations.’ When
T is constant, energy can exchange between the system and the surroundings
(the heat bath), so the energy of the system fluctuates. Constant p implies an
action like a piston stroke through which the system can exchange volume with
the surroundings. In that case, the volume of the system fluctuates. Constant
µ implies that a particle ‘bath’ is in contact with the system. Particles leave
or enter the system to and from the particle bath. In this case, the number of
particles in the system can fluctuate.

Consider a process in a system that we will call the test tube, immersed in a
heat bath. The system need not be a real test tube in a water jacket. It could
be molecules in a solvent or air in the atmosphere. ‘Heat bath’ refers to any
surroundings of a system that hold the temperature of the system constant.
This arrangement controls the temperature T , not the energy U , at the bound-
ary around the subsystem. If the test tube plus heat bath are isolated from
the greater surroundings, equilibrium will be the state of maximum entropy
for the total system. However, we are not interested in the state of the total
system. We are interested in what happens in the test tube itself. We need a
new extremum principle that applies to the test tube, where the independent
variables are (T , V ,N).

If the extremum of a function such as S(U) predicts equilibrium, the variable
U is called the natural variable of S. T is not a natural variable of S. Now
we show that (T , V ,N) are natural variables of a function F , the Helmholtz
free energy. An extremum in F(T , V ,N) predicts equilibria in systems that are
constrained to constant temperature at their boundaries.

Free Energy Defines Another Extremum Principle

The Helmholtz Free Energy

Consider a process inside a test tube, sealed so that it has constant volume V
and no interchange of its N particles with the surroundings (see Figure 8.1). A
heat bath holds the test tube at constant temperature T . The process inside the
test tube might be complex. It might vary in rate from a quasi-static process
to an explosion. It might or might not involve chemical or phase changes. It
might give off or absorb heat. Processes within the test tube will influence the
heat bath only through heat exchange, because its volume does not change and
no work is done.

Now we reason with the First and Second Laws of thermodynamics to find an
expression that describes the condition for equilibrium in terms of the changes
in the test tube alone.

132 Chapter 8. Laboratory Conditions & Free Energies

• Clausius 1854.


• It’s measurable.


• Predicts equilibrium.


• Requires reversibility.


• It links energy to entropy.



• The foundations of EQ statmech 
•   Material properties come from microscopic distributions. 

Beyondjustaverages Sometimes distributions matter

variance

t x
x mean

STATMECHI BIOLOGY

kinetic theory ofgases Heritablevariance

Natural selection

zmLv3 Z Bethedging
Drug resistance

• Kinetic theory of gases   

• Heat capacities    

• Random flights    

⟨v2⟩ = 3kT/m
CV = ⟨ΔE2⟩/kT2

⟨x2⟩ = 6Dt



The brilliant insight of EQ Statmech: 
  !!!ΔS*maxent{pi} = ΔS2nd Law

BUT: 

  


The LHS requires .

And,     The RHS requires EQUILIBRIUM.

ΔS*maxent



• Limited to near-equilibrium slow systems.


• Limited to linear force-flow processes.


• Doesn’t treat single- or few-agent systems.


• Doesn’t derive Phenomenological Laws.

• Problems with traditional NET 
• It is not a general method for model-making.



•  


•     gives incorrect Kirchoff current law.

S(t),
dS
dt

, S(t) = − ∑ p(t)ln p(t) .

dS/dt

• Problem (1):  Entropy Production has no meaning 
•

• … except near equilibrium, where: 
• •  


•  


•   small gradients.


• No gradients  no Phenomenological Laws

S(t) → S*

pi(t) → p*i → pBoltzmann

S → S(U, V, N ) ⟹

⟹



 Dissipation = ∑ (F × J) ≈ J2 .

• Problem (2):  Flows are linear functions of forces 
•

• Ohm’s Law:  Power = 


• Viscous fluids:  Dissipation ~ (velocity)2

RI2

BUT THIS PRECLUDES: 

Non-newtonian fluids, diodes, transistors, 
feedback and delays, 

Michaelis-Menten & Hill kinetics, …



Problem (3) Modeling noise 
You can’t just append random noise to a model. 

Langevin models don’t work for nonlinear systems.

   


 

m
dv
dt

+ ξv =

dA
dt

+ f(A) =} Random noise term

A Langevin diode will rectify its own fluctuations! 
(van Kampen, 1981)



(4) MaxCal is about  path entropies 
not state entropies:   .S*path{p*i } = − ∑

i

p*i ln p*i

HIGH path entropy

LOW path entropy
START END START END



Max Cal is Max Ent for pathways 
Maximize path entropy, constrained by rates <J>.
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Is Max Cal the NESM Principle? 
Some key confirmatory tests:

• Master equations  (Stock et al, JCP `08).


• Green-Kubo  (Hazoglou et al, JCP `15).


• Onsager recriprocal relations  ( `` ).


• Prigogine Minimum Entropy Production  ( `` ).


• Markov models  (Ge et al, JCP `12).


• Kirchoff current law  (Ghosh, Ann Rev PChem `20).



Some Max Cal modeling

• Fick’s Law, FP  (Ghosh, AJP `06, JPCB `07).


• Single-particle reactions  (Wu PRL `09).


• 3-state molecular motors  (Presse PRE `10).


• Find MD rxn coords  (Tiwary & Berne PNAS `16).


• Dissipation in flows  (Agozzino PRE `19).


• Inferring micro rates from avgs  (Dixit JCTC `15 ).


• Infer networks from flows  (Weistuch, PLOSCB `20).



Dynamical nonlinearities & fluctuations 
Max Cal predicts the noise from the model.

• Positive feedback  (Ghosh BJ `17,  JPCB `18).


• Toggle switch  (Presse JPCB `11,  Ann Rev PC `20).


• Molecular motors  (Presse PRE `10).


• Repressilator  (oscillator, clock)  (Ghosh JPCB `19).

 

G



Maximum Caliber: 

A general inference principle  
for dynamics and routes on pathways & 

networks.
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