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Fibrations and Indexed Categories

There is a 2-category Fib of fibrations P: A — X,

fibred 1-cells fibred 2-cells
— H~
A—H-> B A la” B
~ K P
e Ll
X 47 Y
X—F=>Y ¢
where H is cartesian with Qo = Bp
There is a 2-category ICat of pseudofunctors .# : X°? — Cat,
indexed 1-cells (F,7) indexed 2-cells (3, m)
XOP
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The Grothendieck construction

Given .# : X°P — Cat, the Grothendieck category [.# has

. objects (x, a) where x € X, a € .4 x
. morphisms (x,a) — (y,b) are f: x = y in X, a = (f)(b) in M x

The fibration [.# — X projects to the X-parts.

Both 2-categories are cartesian monoidal:

(Fib, x,17) A x BP9 X « Y is a fibration when P, Q are

(ICat,®, A1) X°PxYP-“*", CatxCat>>Cat is Xx Y-indexed




Monoidal Grothendieck Construction

2-categories of pseudomonoids

For (K, ®, I) monoidal 2-category, PsMon(K) is the 2-category of
pseudomonoids, strong morphisms and 2-cells.

’PsMon(Fib) — Monpib‘ ’Psl\/lon(ICat) = MonlCat
. Monoidal fibration: monoidal . Monoidal indexed category:
base W and total V, strict monoidal domain W, lax monoidal
M
monoidal V L W, cartesian ®y pseudofunctor W°P == Cat
Vxy —2 .,y Dyt MXX My = M(x Dy y)
Tx Tl JT for all x,y ¢ W

W ox W —2%, w bo: 1 — A (hw)

. Monoidal fibred 1-cell is (H,F) . Monoidal indexed 1-cell (F,7), F
both monoidal functors monoidal, 7 monoidal pseudonatural

. Monoidal fibred 2-cell is (o, ) . Monoidal indexed 2-cell (3, m),
both monoidal natural mon natural, m mon modification
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Monoidal Grothendieck Construction

For lax monoidal pseudofunctor (., ¢, ¢g): WP—Cat, equip [.# with

(x,a) @ (v, b) == (x @w y, dxy(a; b)), 1= (hw,o())

* Lax monoidal structure gives a ‘global’ tensor product to [.# — W.




Global and fibrewise monoidal structure

Fibrewise monoidal structure

Start over, from Fib(X) ~ ICat(X).

These 2-categories also monoidal:

(Fib(X), xx, 1x) A xx B — X pullback of fibrations
(ICat(X), ®, Al) XOP —5 XoPx XoPLXY, Catx Cat=5Cat

Pseudomonoid in Fib(X)? Ordinary fibration whose fibres are
monoidal, reindexing functors are strong monoidal.

Pseudomonoid in ICat(X)? Pseudofunctor X°? — MonCat.

There is a 2-equivalence PsMon(Fib(X)) ~ 2Cat,(X°?, MonCat).

* [# — X obtains ‘fibrewise’ monoidal structure; in general, this does

not give a ‘global’ one! X is an arbitrary category.

J
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Cartesian base X

»Shulman constructs (x) in ‘Framed bicategories, monoidal fibrations’

»Can obtain (%) via equivalences involving Mon2Cat,s and 2Cat .

When X is cartesian, ‘monoidalness’ transfers from the ta-
rget category to the structure of the functor and vice versa.




Examples

Global categories of modules and comodules
Suppose (V,®, I, 0) is braided monoidal.

Categories of monoids Mon()), comonoids Comon()) are monoidal.

Mon(V)°P Cat Comon(V) ——  Cat
Al > Mody(A) Ci > Comody(C)
N
Bi > Mody,(B) D > Comody(D)

are lax monoidal: for M an A-module, N a B-module, M ® N is
A® B-modulevia AR BEMaN 3 Ao Mo Bo N L24% M N.

They give rise to (split) monoidal (op)fibrations
Mod — Mon(V) Comod — Comon())

* These do not fall under the fibrewise monoidal case.
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Zunino and Turaev categories
Family fibration Fam(C) induced by the functor [—,C]: Set°® — Cat.
[X,C] has {My}xex of C-objects, f: X — Y induces reindexing f*.

For V monoidal, [, V]: Set®® — Cat is lax monoidal; gives rise to
. (split) monoidal fibration Fam()) — Set, morphisms look like

t: MX—)Nf(X) in ¥V
f: X = Y in Set

. (M & N)X><Y = {Mx Ry Ny}xEX,er
. (split) monoidal opfibration Maf(V) — Set°?, morphisms look like
S: Mg(y) — Ny in ¥V
g: Y — X in Set
Caenepeel&De Lombaerde use the Zunino=:Fam(Modg) and the
Turaev=:Maf(Modg) category to study Hopf group-(co)algebras.

* Since Set is cartesian, these are both fibrewise monoidal as well.
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Graphs and cospans

The functor F: Set — Cat which maps any set X to E % X, the
category of all graphs with vertices X, induces opfibration Grph — Set.
. It has a lax monoidal structure (Set, +,0) — (Cat, x, 1)

oxy(EEX, DY) = E+D%X+Y

which induces cocartesian mon opfibration (Grph, +,0)—(Set, +,0).

Fong uses F: FinSet — Set to decorate apices of cospans with graphs.
Baez&Courser use monoidal | F — Set (4adjoint) to structure cospans.

/’?§

* Not only base Set, but also total category is cocartesian (fibres too).
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Network Models

[Baez, Foley, Moeller, Pollard] Let S(X) be the free symmetric monoidal
category on a finite set X, e.g. S(1) = FinSet?/.

. Network model = symmetric lax monoidal (S(X),®,/) — (Mon, x,1).

O—> O—2 (O—2
& ® —®

It always induces a monoidal (split) opfibration: the underlying operad
of the total category has algebras that model various networks.

Examples include simple/directed graphs, (directed) multigraphs,
hypergraphs, graphs with colored edges/vertices, petri nets.

* Base S(X) is not cocartesian; in many examples, it takes 4 from Set.
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Thank you for your attention!
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