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We now say the i th Betti number of a topological space X is the
rank of Hi (X ). But that’s not what Enrico Betti said!

Betti defined his numbers in 1871. In 1895 Poincaré recalled
them in his Analysis Situs, saying:

Meanwhile, the field is by no means exhausted.

Poincaré said what it means for two oriented submanifolds of a
manifold X to be homologous. He showed how to add and
subtract homology classes. He essentially said that the i th Betti
number of X is βi if X has at most βi linearly independent
homology classes of i-dimensional submanifolds.

http://www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf


Only 20 years later, in 1915, did Alexander prove that Betti
numbers are topological invariants.

In the summers of 1926–1928, Alexandroff and Hopf lectured
on algebraic topology in Goettingen. Emmy Noether attended
and pointed out that i th Betti number is the rank of an abelian
group

Hi (X ) =
ker ∂i

im ∂i+1

where

∂i : Ci (X ) → Ci−1(X )

is a map between ‘chain groups’. She also noticed that a map
of simplicial complexes induced a map of homology groups. All
this was new!



Noether never published a single paper about these ideas, and
they spread slowly.

All these ideas were a very long time in the making
because the people doing homology and homotopy
theory were not algebraists and the algebraists didn’t
take any interest. The only person who took any
interest was Emmy Noether. — Peter Hilton

http://img2.tapuz.co.il/forums/1_166449055.pdf


Around 1945, Eilenberg and Mac Lane realized that homology
groups define functors between categories:

Hi : Top→ Ab

We now realize that the nicest invariants are functors, thus
applying to morphisms as well as objects.

But they only invented these concepts to surmount this
challenge: when do two ways of constructing homology groups
count as “the same”? Answer: when they are naturally
isomorphic.

I didn’t invent categories to study functors; I invented
them to study natural transformations. — Saunders
Mac Lane



To really understand this well, we need to realize that Cat is a
2-category, with

I categories as objects
I functors as morphisms
I natural transformations as 2-morphisms
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Thus: the birth of categories laid the groundwork for the birth of
2-categories... though these were only invented around 1965,
by Ehresmann and others.



But the impetus towards 2-categories also comes from the
heart of topology itself! There is a 2-category Top2 with:

I topological spaces as objects
I continuous maps as morphisms
I homotopies between maps as 2-morphisms
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The really good invariants of topological spaces are 2-functors
from Top2 to other 2-categories!



For example, taking the chain complex C•(X ) of a topological
space X extends to a 2-functor from Top2 to the 2-category Ch2
with:

I chain complexes of abelian groups as objects
I chain maps as morphisms
I chain homotopies as 2-morphisms



And this doesn’t stop! There is really an ∞-category Top∞ with

I ‘nice’ topological spaces (CW complexes) as objects
I continuous maps as 1-morphisms
I homotopies as 2-morphisms
I homotopies between homotopies as 3-morphisms
I etcetera...

An object in here is called a homotopy type.



Similarly, there is an ∞-category Ch∞ with

I chain complexes of abelian groups as objects
I chain maps as 1-morphisms
I chain homotopies as 2-morphisms
I chain homotopies between chain homotopies as

3-morphisms
I etcetera...

Taking the chain complex of a space extends to an ∞-functor

C• : Top∞ → Ch∞



The dream of doing topology with ∞-categories was advocated
by Grothendieck in his 600-page text Pursuing Stacks, written
around 1983.

...

Only in the 1990s did mathematicians take it up in earnest.



Why all these higher morphisms in topology? Because any
topological space X gives an ∞-category Π∞(X ), with

I points of X as objects
I paths in X as 1-morphisms
I paths of paths as 2-morphisms
I paths of paths of paths as 3-morphisms, etc....



Π∞(X ) is called the fundamental ∞-groupoid of X .

An ∞-groupoid is an ∞-category where for all j , all
j-morphisms are invertible up to higher morphisms.

The Homotopy Hypothesis, due to Grothendieck, says that
∞-groupoids are ‘the same’ as homotopy types. This can be
made precise in many ways, some of which are theorems, and
some of which are still ongoing projects.

This hypothesis makes topology algebraic, by suitably
generalizing ‘algebra’ and limiting ‘topology’.



A chain complex of abelian groups gives an ∞-groupoid with:

I 0-chains as objects
I 1-chains f with df = y − x as morphisms from x to y
I 2-chains α with dα = g − f as 2-morphisms from f to g
I etc....

∞-groupoids coming from chain complexes are the simplest
kind. Thanks to the homotopy hypothesis,

C• : Top∞ → Ch∞

can be reinterpreted as taking Π∞(X ) and simplifying it down to
C•(X ).



The ∞-categories Top∞ and Ch∞ are not ∞-groupoids, because
their 1-morphisms — continuous maps, and chain maps — are
not all invertible, not even up to homotopy.

However, all their j-morphisms for j > 1 are invertible up to
higher morphisms.

An ∞-category where all j-morphisms for j > 1 are invertible up
to higher morphisms is called an (∞, 1)−category.



In 2006, Jacob Lurie put out a 735-page book Higher Topos
Theory, which develops a powerful theory of (∞, 1)−categories.
It’s free online!

The goal of this book, and related work by many other people,
is the homotopification of mathematics.

In other words: redo as much math as possible, replacing the
category of sets with the (∞, 1)-category of ∞-groupoids — or
by the Homotopy Hypothesis, homotopy types.

Instead of demanding that algebraic structures obey equations,
make them obey equations only up to coherent homotopy: that
is, up to higher morphisms, that themselves obey the right
equations up to still higher morphisms, etc.

https://arxiv.org/abs/math/0608040


To make all this stuff precise, Lurie and others use simplices
rather than globes:

objects morphisms 2-morphisms 3-morphisms · · ·
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In the simplicial approach we define an ‘∞-groupoid’ to be a
Kan complex: a simplicial set where every horn has a filler:
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The Dold–Kan theorem says there is an equivalence between
chain complexes of abelian groups and simplicial abelian
groups. Every simplicial abelian group is a Kan complex. This
makes precise how chain complexes are special ∞-groupoids.
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In the simplicial approach, we can define an ‘(∞, 1)−category’
to be a quasicategory: a simplicial set where ‘inner’ horns
have fillers:
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Every Kan complex is a quasicategory. This makes precise
how every ∞-groupoid is an (∞, 1)−category.

There’s a quasicategory of all ‘nice’ topological spaces, Top∞,
and a quasicategory of all chain complexes, Ch∞. Taking the
chain complex of a space extends to a map

C• : Top∞ → Ch∞

as expected!
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In the simplicial approach, we can define Π∞(X ) to be the
simplicial set consisting of all simplices mapped into X .

This is a Kan complex — our concept of ∞-groupoid — so it
indeed deserves to be called the fundamental ∞-groupoid of
X .

In fact, there’s a quasicategory of all Kan complexes, Kan∞, and
an equivalence

Π∞ : Top∞ → Kan∞

This makes the Homotopy Hypothesis into a theorem!



Back to the big picture:

I am pretty strongly convinced that there is an ongoing
reversal in the collective consciousness of
mathematicians: the right hemispherical and
homotopical picture of the world becomes the basic
intuition, and if you want to get a discrete set, then you
pass to the set of connected components of a space
defined only up to homotopy. — Yuri Manin, 2009

http://www.ams.org/notices/200910/rtx091001268p.pdf


‘Homotopy type theory’ is an attempt to set up new axioms for
math that take homotopy types rather than sets as
fundamental. Instead of the category Set, these axioms apply to
the (∞, 1)-categories Top∞ and Kan∞... and many others, called
‘(∞, 1)-topoi’.

Again there’s a free book to read: Homotopy Type Theory:
Univalent Foundations of Mathematics.

But homotopy type theory does not yet solve all our problems:
homotopy coherence is not completely ‘built in’. The revolution
is not finished!

https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/


Where does topological data analysis fit into all of this?

A clue:

Instead of sets, clouds of discrete elements, we
envisage some sorts of vague spaces, which can be
very severely deformed, mapped one to another, and
all the while the specific space is not important, but
only the space up to deformation. — Yuri Manin, 2009

http://www.ams.org/notices/200910/rtx091001268p.pdf


Topological data analysis transforms a ‘cloud of discrete
elements’ into a ‘sort of vague space’. But it does so in a subtle
way. It creates not a homotopy type, but an object in some
other (∞, 1)-category to which the axioms of homotopy type
theory apply!

We can think of these as ‘homotopy types that depend on a
distance scale’.



For any metric space X and any ε ∈ [0,∞], the ε−Rips
complex is the simplicial set Rε (X ) where an n-simplex is an
(n + 1)-tuple of points in X with pairwise distances ≤ ε .

When ε ≤ δ we have an inclusion of simplicial sets

Rε (X ) ⊆ Rδ(X )

So, the Rips complex as a whole is a family of ‘nested’
simplicial sets, one for each ε ∈ [0,∞], What kind of object is
this? What world does it live in?



There is a category with numbers ε ∈ [0,∞] as objects and a
single morphism from ε to δ if ε ≤ δ, none if ε > δ.

The Rips complex of a metric space X is a functor

R(X ) : [0,∞] → SSet

where SSet is the category of simplicial sets. This functor maps
each object ε to the simplicial set Rε (X ), and each morphism
ε ≤ δ to the inclusion of simplicial sets

Rε (X ) ↪→ Rδ(X )



So, for any metric space, its Rips complex is an object in
SSet[0,∞], the category with:

I functors F : [0,∞] → SSet as objects,
I natural transformations between these as morphisms.

Objects in SSet[0,∞] are ‘homotopy types that depend on a
distance scale’.

Indeed, there’s a way to build an (∞, 1)-category from SSet[0,∞].
And this (∞, 1)−category is an ‘(∞, 1)−topos’ in the sense of
Lurie, so it obeys the axioms of homotopy type theory.

This sounds fancy, but it means that the Rips complex lives in a
world that’s formally like the world of homotopy types... but
different, and richer.



How does this help topological data analysis? I don’t know yet:
I hope to find out this week!

But it shows applied mathematics is starting to enter a realm
that algebraic topology reached by its own internal momentum:
the world where algebra and topology meet and merge.

Realizing this should help us come up with new ideas.



Technical Details

To build a quasicategory containing Rips complexes, we use
this recipe: for any model category M, the homotopy coherent
nerve of the full subcategory Mcf consisting of fibrant and
cofibrant objects is a quasicategory. We apply this to SSet[0,∞].
As a category of simplicial presheaves, SSet[0,∞] has a number
of different model structures with the same weak equivalences.
All these give equivalent (∞, 1)-categories, which are
(∞, 1)-topoi.

https://ncatlab.org/nlab/show/model+category
https://ncatlab.org/nlab/show/homotopy+coherent+nerve
https://ncatlab.org/nlab/show/homotopy+coherent+nerve
https://ncatlab.org/nlab/show/quasi-category
https://ncatlab.org/nlab/show/simplicial+presheaf
https://ncatlab.org/nlab/show/model+structure+on+simplicial+presheaves
https://ncatlab.org/nlab/show/model+structure+on+simplicial+presheaves
https://ncatlab.org/nlab/show/%28infinity%2C1%29-topos


Let us consider the projective global model structure on
SSet[0,∞], where fibrations are defined objectwise. In this model
structure, a fibrant object is just a functor F : [0,∞] → Kan, and
conditions for an object to be cofibrant were given by Garner.

One can easily check using Garner’s conditions that the Rips
complex R(X ) ∈ SSet[0,∞] is always cofibrant. Unfortunately it is
rarely fibrant, because Rε (X ) is rarely a Kan complex. Here is a
2-dimensional horn in Rε (X ) that does not have a filler:
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z
d(x, y ) = ε d(y, z) = ε

d(x, z) = 3ε/2

Only triangles whose two longer sides have equal length have
fillers for all their horns! All horns of dimension , 2 have fillers.

https://mathoverflow.net/questions/97690/necessary-conditions-for-cofibrancy-in-global-projective-model-structure-on-simp/127187


Given this, we need to replace the Rips complex by a weakly
equivalent fibrant and cofibrant object to make it into an object
of the quasicategory obtained from SSet[0,∞] with its projective
global model structure. I don’t know if there’s a model structure
on SSet[0,∞] that makes the Rips complex of every metric space
be both fibrant and cofibrant.

https://ncatlab.org/nlab/show/fibrant+replacement
https://ncatlab.org/nlab/show/model+category#definition
https://ncatlab.org/nlab/show/model+category#definition

