Quantization of Area:
The Plot Thickens

John C. Baez

Department of Mathematics, University of California
Riverside, California 92521
USA

email: baez@math.ucr.edu

February 6, 2003

One of the key predictions of loop quantum gravity is that the area of a
surface can only take on a discrete spectrum of values. In particular, there is a
smallest nonzero area that a surface can have. We can call this the ‘quantum
of area’, so long as we bear in mind that not all areas are integer multiples of
this one — at least, not in the most popular version of the theory.

So far, calculations working strictly within the framework of loop quantum
gravity have been unable to determine the quantum of area. But now, thanks
to work of Olaf Dreyer [1] and Lubo§ Motl [2], two very different methods of
calculating the quantum of area have been shown to give the same answer:
41n 3 times the Planck area. Both methods use semiclassical ideas from outside
loop quantum gravity. The first uses Hawking’s formula for the entropy of a
black hole, while the second uses a formula for the frequencies of highly damped
vibrational modes of a classical black hole. It is still completely mysterious why
they give the same answer. It could be a misleading coincidence, or it could be
an important clue. In any event, the story is well worth telling.

The importance of area in quantum gravity has been obvious ever since the
early days of black hole thermodynamics. In 1973, Bekenstein [3] argued that
the entropy of a black hole was proportional to its area. By 1975, Hawking [4]
was able to determine the constant of proportionality, arriving at the famous
formula

S=A/4

in units where b = ¢ = G = k = 1. Understanding this formula more deeply
has been a challenge ever since.

Things took a new turn around 1995, when Rovelli and Smolin [5] showed
that in loop quantum gravity, area is quantized. The geometry of space is
described using ‘spin networks’, which are roughly graphs with edges labelled
by spins:
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Any surface gets its area from spin network edges that puncture it, and an
edge labelled by the spin j contributes an area of 87y1/j(j + 1), where v is a
dimensionless quantity called the Barbero-Immirzi parameter [6, 7].

Given this, it was tempting to attribute the entropy of a black hole to
microstates of its event horizon, and to describe these in terms of spin net-
work edges puncturing the horizon. After some pioneering work by Rovelli and
Smolin, Krasnov [8] noticed that the horizon of a nonrotating black hole could
be described using a field theory called Chern-Simons theory. He began working
with Ashtekar, Corichi and myself on using this to compute the entropy of such
a black hole.

By 1997 we felt we were getting somewhere, and we came out with a short
paper outlining our approach [9]. While the details are technical [10], the final
calculation is easy to describe. The geometry of the event horizon is described
not only by a list of nonzero spins j; labelling the spin network edges that
puncture the horizon, but also by a list of numbers m; which can range from
—7J; to j; in integer steps. The intrinsic geometry of the horizon is flat except at
the punctures, and the numbers m; describes the angle deficit at each puncture.
To count the total number of microstates of a black hole of area near A, we
must therefore count all lists j;, m; for which

A2 8my /(i + 1).
i
This is a nice little math problem. It turns out that for a large black hole,
the whopping majority of all microstates come from taking all the spins to be
as small as possible. So, we can just count the microstates where all the spins
ji equal 1/2. If there are n punctures, this gives

A = 47/3n.

In a state like this, each number m; can take just two values at each puncture.
Thus if there are n punctures, there are 2" microstates, and the black hole

entropy is
In2

S =In(2") =2 ——A.
n(2") /37
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In short, we see that entropy is indeed proportional to area, at least for large
black holes. However, we only get Hawking’s formula S = A/4 if we take the
Barbero—Immirzi parameter to be
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On the one hand this is good: it’s a way to determine the Barbero—Immirzi
parameter, and thus the quantum of area, which works out to

87vy/5(35 +1) =4In2.

This makes for a pretty picture in which almost all the spin network edges
puncturing the event horizon carry one quantum of area and one qubit of in-
formation, as in Wheeler’s ‘it from bit’ scenario [11]. One can also check that
the same value of v works for electrically charged black holes and black holes
coupled to a dilaton field. On the other hand, it seems annoying that we can
only determine the quantum of area with the help of Hawking’s semiclassical
calculation. The strange value of v might also make us suspicious of this whole
approach.

Meanwhile, as far back as 1974, Bekenstein [12] had argued that Schwarzschild
black holes should have a discrete spectrum of evenly spaced areas. While this
law does not hold in the loop quantum gravity description of black holes, it has
some of the same consequences. For example, in 1986 Mukhanov [13] noted that
with a law of this sort, the formula S = A/4 can only hold exactly if the nth
area eigenstate has degeneracy k™ and the spacing between area eigenstates is
4Ink for some number k = 2,3,4,.... He also gave a philosophical argument
that the value k = 2 is preferred, since then the states in the nth energy level
can be described using n qubits.

Many researchers have continued this line of thought in different ways, but in
1995, Hod [14] gave an remarkable argument in favor of k¥ = 3. His idea was to
determine the quantum of area by looking at the vibrational modes of a classical
black hole! Hod argues that if classically a system can undergo periodic motion
at some frequency w, then in the quantum theory it can emit or absorb quanta
of radiation with the corresponding energy. But the energy of a Schwarzschild
black hole is just its mass, and this is related to the area of its event horizon by

A =167M?,

so when a black hole absorbs one quantum of radiation its area should change
by
AA=32rMAM = 32rMw.

And now for the miracle! A nonrotating black hole will exhibit damped oscil-
lations when you perturb it momentarily in any way, and there are different
vibrational modes called quasinormal modes, each with its own characteris-
tic frequency and damping. In 1993, Nollert [15] used computer calculations to



show that in the limit of large damping, the frequency of these modes approaches
a specific number depending only on the mass of the black hole:

w 22 0.04371235/M.
Plugging this into the previous formula, Hod obtained the quantum of area
AA =4.394444

and noticed that this was extremely close to 41n 3 = 4.394449. On the basis of
this, he daringly concluded that k& = 3.

Our story now catches up with recent developments. In November 2002,
Dreyer [1] found an ingenious way to reconcile Hod’s result with the loop quan-
tum gravity calculation. The calculation due to Ashtekar et al used a version
of loop quantum gravity where the gauge group is SU(2). This is why so many
formulas resemble those familiar from the quantum mechanics of angular mo-
mentum, and this is why the smallest nonzero area comes from a spin network
edge labelled by the smallest nonzero spin: j = 1/2. But there is also a version
of loop quantum gravity with gauge group SO(3), in which the smallest nonzero
spin is j = 1. Dreyer observed out that if we repeat the black hole entropy cal-
culation using this SO(3) theory, we get a quantum of area that matches Hod’s
result! One can easily check this by redoing the calculation sketched earlier,
replacing 7 = 1/2 by j = 1. One finds a new value of the Barbero-Immirzi

parameter:
In3

7=m,

and obtains 4In 3 as the new quantum of area. But ultimately, all that really
matters is that when j = 1 there are 3 spin states instead of 2. Thus each
quantum of area carries a ‘trit’ of information instead of a bit, which is why
Dreyer obtains k = 3.

With the appearance of Dreyer’s paper, the suspense became almost un-
bearable. After all, Hod’s observation relied on numerical calculations, so the
very next digit of his number might fail to match that of 4In3. Luckily, in
December 2002, Motl [2] showed that the match is exact! He used an ingenious
analysis of Nollert’s continued fraction expansion for the asymptotic frequencies
of quasinormal modes.

While exciting, these developments raise even more questions than they an-
swer. Why should SO(3) loop quantum gravity be the right theory to use? After
all, it seems impossible to couple spin-1/2 particles to this version of the theory.
Corichi has sketched a way out of this problem [16], but much work remains
to see whether his proposal is feasible. Can we turn Hod’s argument from a
heuristic into something a bit more rigorous? He cites Bohr’s correspondence
principle in this form: “transition frequencies at large quantum numbers should
equal classical oscillation frequences.” However, this differs significantly from
the idea behind Bohr—Sommerfeld quantization, and it is also unclear why we
should apply it only to the asymptotic frequencies of highly damped quasinor-
mal modes. Can the mysterious agreement between SO(3) loop quantum gravity



and Hod’s calculation be extended to rotating black holes? Here a new paper
by Hod makes some interesting progress [17]. Can it be extended to black holes
in higher dimensions? Here Motl’s new work with Neitzke gives some enigmatic
clues [18]. Stay tuned for further developments.
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