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If goal is to stabilize
global emissions

profile to 550 ppm
GHG emissions,
approx 50% of
Global Energy
Demand must be
non- carbon forms of

energy

All new growth to be met by non-carbon
sources
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The central global energy challenge: how to de-
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Population Growth: Energy: Income
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Global population divided into income groups:

M Primary energy
Developed (GDP>$12,000)
Emerging (GDP<$12,000)
Developing (GDP<$5,000)
Poorest (GDP<$1,500)

Population rise to 9 billion + by 2050,
mainly in poorest and developing
countries.

Shifting the development profile
to a “low poverty” world means
energy needs double by 2050

Shifting the development profile
further to a “developed” world
means energy needs triple by 2050

Source: WBCSD 2007

Poverty world
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Magnitude of change required for CO2
stabilization
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The lifetime of energy infrastructure

The rate of technological
change is closely related
to the lifetime of the
relevant capital stock
and equipment

Buildings 45+

i, "
H Coal po

Nuclear 30 — 60 years

(‘) Gas turbines 25+ years

‘ ‘ Motor vehicles 12 — 20 years




Alternate power generation technologies:
Impact on emissions
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. . . because of the large
. existing base of power stations
and their long lifetimes



2000

Annual total vehicle growth of 2% p.a.
Annual vehicle production growth of 2% p.a.

Large scale "alternative" vehicle manufacture
starts in 2010 with 200,000 units per annum
and grows at 20% p.a. thereafter.
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Useful Energy: Efficiency: Waste ???
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Useful Energy: Efficiency: Waste ???
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* "The Moving Finger writes; and having
Writ, Moves on;

Nor all your Piety nor Wit Shall lure it
back to cancel half a line, Nor all your
tears wash out a word of it.”

- The Rubaiyat of Omar Khayam, Edward
Fitzgeraid



A Balanced Mix of Options
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How do we manage the big risks?

Not to focus on regulations for helmets!
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Land Use Requirements for Electric Power Generation 3100
3000 -
Source: V. Fthenakis & H.C. Kim,
Renewable ond Sustainabie Energy Reviews
13(2009): 1465-1474
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Power Systems Need Flexibility as well as Energy &
Capacity
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Energy Capacity Flaxibillty

CPC: Demand Side Management Working Group




Texas Load and Wind in 2008 Averaged by Hour of the Day
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EEX: Wind & PV Energy in Germany (01/2010-02/2013)

EEX Wind + Solarenergie

70.000MW
Nennleistung Wind + Solar
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10.000MW

RIS 3858¢
2010
Datenquelle : Leipziger Stromborse EEX
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AIT

Karlsruhe Institute of Technology

i - : installierte | Mittelwert
Wind + Solar| minimale . maximale .
. Ei . Mittelwert Ei A Leistung J
ahr inspeisung inspeisung PP Leistung
2010 127MW 5.580MW| 24.072MW  44.532MW 12,55%
2011 210MW| 7.82aMW| 31.652MW  53.899MW 14,52%
2012 180MW 8.344MW| 31.799MW| 62.372MW 13,38%
Coal?

2011

Auflosung: Stundenwerte

Quelle: Leipzig Electricity Stock Exchange EEX; Karl Linnenfelser
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Darstellung: Rolf Schuster

Chief Science Officer (CS0-4)



CO, and NO, from natural gas that fills in

Compensating
Variable Power Power Firm Power

Power

Time
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A New Metropolis on the North American Continent ?

- Minfiaapolis/St Padl




Energy Storage for the Future
Grid
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Future Grid

. Click icon t (I
Wlng ower

Reliable and
stable output

Storage critical
for increased
compatibility of
renewable
energy to the
grid.

“Bhysical ESS
Central Power

Electricity
Controller

Load
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E n h a‘n Ce d HOT SEDIMENTARY AQUIFER ENHANCED GEOTHERMAL SYSTEM
Geothermal Systems
(EGS)

Co-produced systems

Advanced binary-
cycle plants
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Large upfront capital cost for CAPITAL SHORTFALL
drilling projects
[ Additional capital required

Lack of access to private B Private sector capitl
sector capital to undertake
high-risk capital intensive
projects

Lack of long-term investment
Incentives such as a price on
carbon

Lack of proof of resource for
many geothermal prospects Preliminary Two wells Pilot plant More wells Scale-up

work 25MWe to 100MWe
Lack of technically and
commercially proven projects
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ADVANCED
NUCLEAR POWER
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Nuclear waste is fuel
~ Avoids long-term storage

Closing the fuel cycle
~ Inexhaustible supply

Inherent safety
~ Public acceptance

Decarbonizes base load
» Eliminates coal
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Proven capacity to deliver on a large scale
Build on existing technological base

Closing the fuel cycle: eliminate waste, improved
safety, near inexhaustible resource

Transition from fossil fuels without Advanced Nuclear
Technologies? =

Advanced nuclear
fuel cycle concepts




Comparing three nuclear fuel cycles

Three major approaches to burning nuclear fuel and handling its wastes can be employed; some of their features are noted below.

Fuel is burned in thermal reactors and is not
reprocessed; occurs in the U.S.

Fuel is burned in thermal reactors, after which
plutonium is extracted using what is called PUREX
processing; occurs in other developed nations

Recycled fuel prepared by pyrometallurgical
processing would be burned in advanced fast-
neutron reactors; prototype technology

5% used

95% wasted

ONCE-
THROUGH
ROUTE

Uses about 5% of energy in thermal-
reactor fuel and less than 1%
of energy in uranium ore (the original
source of fuel)

Cannot burn depleted uranium (that part
removed when the ore is enriched) or
uranium in spent fuel

6% used

94% wasted

PLUTONIUM
RECYCLING

Fuel utilisation

Uses about 6% of energy in original
reactor fuel and less than 1%
of energy in uranium ore

Cannot burn depleted uranium or
uranium in spent fuel

5% used in
thermal reactor

Less than
1% wasted

More than
94% used in
fast reactor
FULL

RECYCLING

Can recover more than 99% of energy
in spent thermal-reactor fuel

After spent thermal-reactor fuel runs out,
can burn depleted uranium to recover more
than 99% of the rest of the energy
in uranium ore
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Organic Photovoltaics (TTF’V)W

PV technologies in developmEX@HUE ecosystem from silicon-
based photovoltaics to thin films and emerging next-generation
nanotechnology concepts

They in turn are a part of a larger system with the potential to be
integrated within smart micro-grids, along other local renewable
resources

Organic

Electrolyte

Glass

The thin film family: amorphous silicon, copper indium
gallium diselenide (CIGS), cadmium telluride (CdTe),
organic thin films and dye-sensitised integrated

““wsphotovoltaic = ——




500 c/kWh

Price ($)
50 c/kWh



Consumer benefit per watt

Low Willingness To Pay: High kWh

High Willingness to Pay: Low kWh

CONSUMPTION:
THE VALUE OF USING ELECTRICTY

, Highly valued watt

Off-grid
supplied
electricity Low valued
waltt
On-grid
supplied
electricity

Quantity of watts supplied

Production cost

PRODUCTION:
COST EFFICIENCY OF TECHNOLOGIES
A
Low efficiency
technologies
Small scale
production
High efficiency
technologies
Large scale
production

Efficiency
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- 2.5 billion people without electricity (500
million households)

© @%$200/system, $100B
* Cost of systems being purchased now in Haiti
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Flexible, Portable, Light-weight and Resilient.
Attractive Price.

MOBIUS Zero Energy Home Lighting
KVA MATx




Replace Si based PV in
applications such as:

Water pumps
Refugee camps

Military forward bases

(>$1000/gallon delivered
diesel)

Distributed sensors
(rugged for deployment)




UNFCCC
(NAMAS)

UNHCR
Red
Cross/Crescen

Development
Banks
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Rapid Urban Population Growth = Increasing Mobility
. Needs

200 i

5
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Electric Bus, Trains Electric Cars & Bicycles

‘We Want Access, Not Ownership’
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Advanced Lithium lon

Flow Battery

ICT
(smart-phones, GPS)

V

- |Cars, Bicycles |

=) Bus, Fleets
=)

Integrating
Information
Access
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Smart Urbanization
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- Need an intelligent infrastructure that can accommodate
renewable energy solutions:
* Matching load with renewable energy availability
- Electrification of transportation

- Knowledge is literally power
- Ability to influence future construction & design
- Ability to influence behaviour now



Efficeint

: building
Utility systems
communications 4
Al Internet
N 0
4 Consumer portal g -
and building EMS

Renewables

Advanced . D
C

metering

ontrol

Dynamic Distributed interface
systems operations :
control it B Y
Hybrids | .
Distributed Smart
i end-use
Data generation :
and storage devices

management

Electromechanical

Digital

One-way communication

Two-way communication

Centralised generation

Distributed generation

Hierarchical Network
Few sensors Sensors throughout
Blind Self-monitoring

Manual restoration

Self-healing

Failures and blackouts

Adaptive and islanding

Manual check/test

Remote check/test

Limited control

Pervasive control

Few customer choices

Many customer choices
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Model:
Community

Power
distribution

Model:
Municipality

Model:
Region and
province

Power
transmission

Consumers
(residential, commercial and industrial)

Natural gas production and supply

Electricity
Natural gas

District heating/cooling

Zombined heat and power

dy a0y 20 swalon

I cinc vehie. » charging station
clecuwity swrage system

Fuel cell system

Natural gas
distribution

Distributed generation

Natural gas
transmission




Guideposts: shaping future directions
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Scale and complexity of change suggests transition to a |
GHG economy will take a long time

Global dimension of energy poverty is an even larger an
social and economic problem

Compelling global need for a non-carbon based sourc
quality energy

Radical improvements necessary: OOM efficiency/co
The power sector will be characterized by a low car
A balanced mix of energy resources is key to achie
sustainable prosperity and environmental perfor
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University of Waterloo, Waterloo, ON

T: 519 888 4567 ext 38252
Cell: 416 735 6262

Email: nathwani(@uwaterloo.ca
Website: http://www.wise.uwaterloo.ca
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