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What is life?

Self-replicating information!

Information about what?

How to self-replicate!

It is clear that biology has something to do with information and
self-replication. But what’s the math behind this — in its very
simplest form?



IT’S ALL RELATIVE — EVEN INFORMATION!

When you learn something, how much information do you gain?

It depends on what you believed before!

We can model hypotheses as probability distributions. When
you update your prior hypothesis p to a new one q, how much
information do you gain?

This much:

I(q,p) =
n∑

i=1

qi ln

(
qi

pi

)
This is the information of q relative to p, also called the
‘information gain’ or ‘Kullback–Leibler divergence’.

I(q,p) ≥ 0 and I(q,p) = 0 ⇐⇒ q = p



For example, suppose we flip a coin you think is fair. Your prior
hypothesis is this:

pH =
1
2

pT =
1
2

Then you learn it landed heads up:

qH = 1 qT = 0

The relative information is 1 bit:

I(q,p) = 1 ln

(
1

1/2

)
+ 0 ln

(
0

1/2

)
= ln2

where we define 0 ln0 = 0. You have gained 1 bit of
information.



But suppose you think there’s only a 25% chance of heads:

pH =
1
4

pT =
3
4

Then you learn the coin landed heads up:

qH = 1 qT = 0

Now the relative information is higher:

I(q,p) = 1 ln

(
1

1/4

)
+ 0 ln

(
0

3/4

)
= ln4 = 2 ln2

You have gained 2 bits of information!



FREE ENERGY AS RELATIVE INFORMATION

The free energy of a system at temperature T is

F = 〈E〉 − TS

where 〈E〉 is the expected value of its energy and S is its
entropy.

In equilibrium this is minimized. Biochemistry is driven by this
fact.



Let’s understand free energy more precisely. Say we have a
system that can be in many states. If the probability of a system
being in its i th state is qi , then its free energy is

F (q) =
∑

i

qiEi︸ ︷︷ ︸
〈E〉

− kT
∑

i

qi ln(qi)︸ ︷︷ ︸
TS(q)

.

where Ei is the energy of the i th state and k is Boltzmann’s
constant.



‘Equilibrium’ is a hypothesis about the system’s state, in which
the probability of the system being in its i th state is

pi ∝ exp(−Ei/kT )

But suppose we choose a different hypothesis, and say
probability of finding the system in its i th state is qi .

A fun calculation shows that

F (q)− F (p) = kT I(q, p)

where F (q) is the free energy for q and F (p) is the free energy
in equilibrium.

So: the extra free energy of a system out of equilibrium is
proportional to the information it has, relative to equilibrium.



Since

I(q,p) ≥ 0 and I(q,p) = 0 ⇐⇒ q = p

and
F (q)− F (p) = kT I(q,p)

when p is the equilibrium, we see that free energy is minimized
only in equilibrium.

There are theorems saying that free energy, or relative
information, tends to decrease. For example, whenever p(t)
and q(t) are probability distributions evolving via a Markov
process, we have

d
dt

I(q(t),p(t)) ≤ 0

But let’s see a result like this in evolutionary game theory!



NATURAL SELECTION AND RELATIVE INFORMATION

Suppose we have self-replicating entities of different kinds:
I molecules of different chemicals
I organisms belonging to different species
I genes of different alleles
I restaurants belonging to different chains
I people with different beliefs
I game-players with different strategies
I etc.

I’ll call them organisms of different species.



Let Pi be the population of the i th species, as a function of time.

Suppose the replicator equation holds:

dPi

dt
= Fi Pi

where Fi = Fi(P1, . . . ,Pn), the fitness of the i th species, can
depend on the populations of all the species.



The probability that a randomly chosen organism belongs to
the i th species is

pi =
Pi∑
j Pj

If we think of each species as a strategy, the probability
distribution pi can be seen as a hypothesis about the best
strategy. The quality of a strategy is measured by its fitness Fi .
We can show

dpi

dt
= (Fi − 〈F 〉)pi

where 〈F 〉 =
∑

j Fj pj is the mean fitness.

This is a continuous-time version of Bayesian hypothesis
updating:

I Marc Harper, The replicator equation as an inference
dynamic, arXiv:0911.1763.

https://arxiv.org/abs/0911.1763
https://arxiv.org/abs/0911.1763
https://arxiv.org/abs/0911.1763


Now suppose that q is some fixed probability distribution of
species, while pi(t) changes as above.

A fun calculation shows that

d
dt

I(q, p(t)) = −
∑

i

(Fi − 〈F〉) qi



But what does this equation mean?

d
dt

I(q, p(t)) = −
∑

i

(Fi − 〈F〉) qi

I(q,p(t)) is the ‘information left to learn’ in going from p(t) to q.∑
i (Fi − 〈F 〉)qi is the average ‘excess fitness’ of a small

‘invader’ population with distribution qi . It says how much fitter
the invaders are, on average, than the general population Pi(t).

If this average excess fitness is ≥ 0 for all choices of Pi(t), we
call q a dominant distribution.



So: if q is a dominant distribution, then

d
dt

I(q,p(t)) ≤ 0

In short, the information ‘left to learn’ tends to decrease!

But real biology is more interesting! At all levels, biological
systems only approach steady states in limited regions for
limited times.

Even using just the replicator equation

dPi

dt
= Fi Pi

we can already see more complex phenomena.



THE RED QUEEN HYPOTHESIS

"Now, here, you see, it takes all the running you can do, to keep
in the same place."

https://en.wikipedia.org/wiki/Red_Queen's_race


The Red Queen Hypothesis: replicators must keep changing
simply to survive amid other changing replicators.

For example, in males of the common side-blotched lizard,
orange beats blue, blue beats yellow, and yellow beats orange:

http://bio.research.ucsc.edu/~barrylab/lizardland/male_lizards.overview.html


We can model this using the replicator equation by assuming
lizards play randomly chosen opponents in the rock-paper-
scissors game, with fitness determined by the game’s outcome:

I Sinervo and Lively, The rock-paper-scissors game and the
evolution of alternative male strategies, Nature 380 (1996).

https://en.wikipedia.org/wiki/Rock-paper-scissors
http://www.indiana.edu/~curtweb/L567/readings/Sinervo&Lively1996.pdf
http://www.indiana.edu/~curtweb/L567/readings/Sinervo&Lively1996.pdf


The replicator equation gives this dynamics for the probability
distribution of strategies ‘rock’, ‘paper’ and ‘scissors’:

There is a steady state, but it is not an attractor. In general, the
population never stops learning new information!

https://ocw.mit.edu/courses/economics/14-11-insights-from-game-theory-into-social-behavior-fall-2013/lecture-slides/MIT14_11F13_Replica_dynam.pdf


INFORMATION GEOMETRY

How can we quantify the rate of learning?

Here we face a ‘paradox’:

For any probability distribution p(t) that changes smoothly with
time, we have

d
dt

I(p(t),p(t0))
∣∣∣∣
t=t0

= 0

for all times t0.

“To first order, you’re never learning anything.”



However, as long as the velocity ṗ(t0) is nonzero, we have

d2

dt2 I(p(t),p(t0))
∣∣∣∣
t=t0

> 0

“To second order, you’re always learning something... unless
your opinions are fixed.”

This lets us define a ‘rate of learning’ — that is, the ‘speed’ of
the changing probability distribution p(t).



Namely, define the length of the vector ṗ(t0) by

‖ṗ(t0)‖2 =
d2

dt2 I(p(t),p(t0))
∣∣∣∣
t=t0

This notion of length defines a ‘Riemannian metric’ on the
space of probability distributions: the Fisher information
metric. This makes the space of probability distributions round:



Now suppose we have populations obeying the replicator
equation:

dPi

dt
= Fi Pi

so the probability distribution of species evolves via

dpi

dt
= (Fi − 〈F 〉)pi

Then a fun calculation shows∥∥∥∥dp
dt

∥∥∥∥2

=
∑

i

(Fi − 〈F〉)2pi

The square of the rate of learning is the variance of the fitness!

This result resembles Fisher’s fundamental theorem of
natural selection, but it applies to many more situations.



These are some small steps toward a theory of biology as
information dynamics.


