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IT’S ALL RELATIVE — EVEN INFORMATION!

When you learn something, how much information do you gain?

It depends on what you believed before!

We can model hypotheses as probability distributions. When you
update your prior hypothesis p to a new one q, how much
information do you gain?

This much:

I (q, p) =
n∑

i=1

qi ln

(
qi
pi

)
This is the information of q relative to p, also called the
‘information gain’ or ‘Kullback–Leibler divergence’.

I (q, p) ≥ 0 and I (q, p) = 0 ⇐⇒ q = p



For example, suppose we flip a coin you think is fair. Your prior
hypothesis is this:

pH =
1

2
pT =

1

2

Then you learn it landed heads up:

qH = 1 qT = 0

The relative information is 1 bit:

I (q, p) = 1 ln

(
1

1/2

)
+ 0 ln

(
1

1/2

)
= ln 2

where we define 0 ln 0 = 0. You have gained 1 bit of information.



But suppose you think there’s only a 25% chance of heads:

pH =
1

4
pT =

3

4

Then you learn the coin landed heads up:

qH = 1 qT = 0

Now the relative information is higher:

I (q, p) = 1 ln

(
1

1/4

)
+ 0 ln

(
1

3/4

)
= ln 4 = 2 ln 2

You have gained 2 bits of information!



MAXIMIZING ENTROPY

Say we have a set of states i = 1, 2, 3, . . . . Let Ei be any
real-valued function of states — let’s call it the energy.

If the probability of the system being in its ith state is qi , then its
Shannon entropy is

S(q) = −
∑
i

qi ln(qi )

Any probability distribution p that maximizes S(p) subject to a
constraint on

〈E 〉p =
∑
i

piEi

is a Boltzmann distribution

pi ∝ exp(−Ei/T )

for some value of the real parameter T , called temperature.



FREE ENERGY

The free energy of a probability distribution q at temperature T
is defined to be

F (q) = 〈E 〉q − TS(q)

=
∑
i

qiEi + T
∑
i

qi ln(qi )

The basic reason free energy is interesting:

maximizing S(q) for some fixed value of 〈E 〉q
is the same as

minimizing F (q) for some fixed value of T .



FREE ENERGY AND RELATIVE ENTROPY

Supose p is the probability distribution that maximizes Shannon
entropy for some fixed value of 〈E 〉p. Suppose q is any other
probability distribution on the set of states.

A fun calculation shows that

F (q)− F (p) = T I (q, p)

where F (q) is the free energy of q and F (p) is the free energy of
the Boltzmann distribution — thus, the least possible free energy
at temperature T .



NATURAL SELECTION AND RELATIVE INFORMATION

Suppose we have self-replicating entities of different kinds:

I organisms belonging to different species

I genes of different alleles

I restaurants belonging to different chains

I people with different beliefs

I game-players with different strategies

I instances of a genetic algorithm

I etc.

I’ll call them replicators of different species.



Let Pi be the population of the ith species, as a function of time.

Suppose the Lotka-Volterra equation holds:

dPi

dt
= fi Pi

where fi = fi (P1, . . . ,Pn), the fitness of the ith species, is any
function of the populations of all the species.



The probability that a randomly chosen replicator belongs to the
ith species is

pi =
Pi∑
j Pj

If we think of each species as a strategy, the probability
distribution pi can be seen as a hypothesis about the best strategy.
The quality of a strategy is measured by its fitness fi .

We can show pi evolves according to the replicator equation:

dpi
dt

= (fi − 〈f 〉)pi

where 〈f 〉 =
∑

j fj pj is the mean fitness.



The replicator equation is a continuous-time version of Bayesian
hypothesis updating:

I Marc Harper, The replicator equation as an inference
dynamic, arXiv:0911.1763.

But the probability distribution pi (t) may not converge to an
equilibrium:

https://arxiv.org/abs/0911.1763
https://arxiv.org/abs/0911.1763
https://arxiv.org/abs/0911.1763


INFORMATION GEOMETRY

How can we quantify the rate of learning?

Here we face a ‘paradox’:

For any probability distribution p(t) that changes smoothly with
time, we have

d

dt
I (p(t), p(t0))

∣∣∣∣
t=t0

= 0

for all times t0.

“To first order, you’re never learning anything.”



However, as long as the velocity ṗ(t0) is nonzero, we have

d2

dt2
I (p(t), p(t0))

∣∣∣∣
t=t0

> 0

“To second order, you’re always learning something... unless your
opinions are fixed.”

This lets us define a ‘rate of learning’ — that is, the ‘speed’ of the
changing probability distribution p(t).



Namely, define the length of the vector ṗ(t0) by

‖ṗ(t0)‖2 =
d2

dt2
I (p(t), p(t0))

∣∣∣∣
t=t0

This notion of length defines a ‘Riemannian metric’ on the space
of probability distributions: the Fisher information metric. This
makes the space of probability distributions round:



Now suppose we have populations obeying the replicator equation:

dPi

dt
= fi Pi

so the probability distribution of species evolves via

dpi
dt

= (fi − 〈f 〉)pi

Then a fun calculation shows∥∥∥∥dpdt
∥∥∥∥2

=
∑

i

(fi − 〈f 〉)2pi

The square of the rate of learning is the variance of the fitness!



In 1972, George R. Price wrote:

It has long been a mystery how Fisher derived his famous
‘fundamental theorem of Natural Selection’ and exactly
what he meant by it.

He compared this result to the second law of
thermodynamics, and described it as holding ‘the
supreme position among the biological sciences’. Also, he
spoke of the ‘rigour’ of his derivation of the theorem and
of ‘the ease of its interpretation’. But others have
variously described his derivation as ‘recondite’ (Crow &
Kimura), ‘very difficult’ (Turner), or ‘entirely obscure’
(Kempthorne). And no one has ever found any other way
to derive the result that Fisher seems to state.



I claim this equation∥∥∥∥dpdt
∥∥∥∥2

=
∑

i

(fi − 〈f 〉)2pi

is the theorem Fisher should have stated — but did not.

For more, see:

I John Baez and Blake Pollard, Relative entropy in biological
systems, Entropy 18 (2016), 46.

I John Baez, The fundamental theorem of natural selection,
Entropy 23 (2021), 1436.

http://arxiv.org/abs/1512.02742
http://arxiv.org/abs/1512.02742
https://arxiv.org/abs/2107.05610

