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Harte and Marc Harper:
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Shannon entropy

S(p) = −
n∑

i=1

pi ln(pi )

is fundamental to thermodynamics and information theory. But it’s
also used to measure biodiversity, where pi is the probability that a
randomly chosen organism is of the ith species.

Is this a coincidence? No!

I In thermodynamics, the entropy of system is the expected
amount of information we gain by learning its precise state.

I In biodiversity studies, the entropy of an ecosystem is the
expected amount of information we gain about an organism
by learning its species.



If biodiversity is a form of entropy, shouldn’t it always increase?

No:

I The entropy contained in biodiversity is just a tiny portion of
the total entropy of an ecosystem. Entropy can increase while
biodiversity decreases.

I Entropy can decrease on Earth while total entropy increases:
incoming sunlight gets re-emitted as infrared.

However, something like the Second Law of Thermodynamics holds
whenever an ecosystem has a ‘dominant’ mixture of species, which
can invade all others.



Let

P = (P1, . . . ,Pn)

be the vector of populations of n different self-replicating entities,
which we’ll call species of organisms.

The probability that a randomly chosen organism belongs to the
ith species is

pi =
Pi∑
j Pj

We can think of this probability distibution as a ‘hypothesis’ and
its change with time as a ‘learning process’. Natural selection is
analogous to Bayesian updating.



Suppose the replicator equation holds:

dPi

dt
= Fi (P1, . . . ,Pn) Pi

Here the population Pi changes at a rate proportional to Pi , but
the ‘constant of proportionality’ can be any smooth function of the
populations of all the species.

We call Fi = Fi (P1, . . . ,Pn) the fitness of the ith species.



Let’s see how the probabilities change:

dpi
dt

=
d

dt

Pi∑
j Pj

=
Ṗi
∑

j Pj − Pi
∑

j Ṗj(∑
j Pj

)2
=

FiPi∑
j Pj

−
Pi
∑

j FjPj(∑
j Pj

)2
= Fipi −

(∑
j Fjpj

)
pi

F =
∑

j Fjpj is the mean fitness of the population. So:

dpi
dt

=
(
Fi − F

)
pi



dpi
dt

=
(
Fi − F

)
pi

For your market share to increase, you don’t need to be good: you
just need to be better than average.

If fi = Fi − F is the excess fitness of the ith species, we obtain
the Lotka–Volterra equation:

dpi
dt

= fipi

Remember, fi is a function of the population P = (P1, . . . ,Pn).



Does the Lotka–Volterra equation implies a version of the Second
Law of Thermodynamics?

Under some conditions, yes! But it involves relative entropy.



Let p and q be a two probability distributions. The information of
q relative to p, or Kullback–Leibler divergence, is

I (q, p) =
∑
i

qi ln

(
qi
pi

)
This is the amount of information left to learn if p is our current
hypothesis and the ‘true’ probability distribution describing a
situation is q.

In Bayesian language, p is our ‘prior’.



Let’s see how the relative information changes as p(t) evolves,
holding q fixed:

d

dt
I (q, p(t)) =

d

dt

∑
i

qi ln

(
qi

pi (t)

)

= − d

dt

∑
i

qi ln(pi (t))

= −
∑
i

qi
ṗi
pi

= −
∑
i

qi fi

using the Lotka–Volterra equation in the last step.



When is
d

dt
I (q, p(t)) = −

∑
i

qi fi

actually ≤ 0, so the ‘information left to learn’ decreases?∑
i

qi fi =
∑
i

qi fi (P1, . . . ,Pn)

is the average excess fitness for a small ‘invader’ population with
distribution qi , given that the overall population is
P = (P1, . . . ,Pn). It says how much fitter, on average, the
invaders are. If this is ≥ 0 for all choices of P, we call q a
dominant distribution.

And in this case we get the Second Law:
d

dt
I (q, p(t)) ≤ 0.



So: if there is a dominant distribution — a probability distribution
of species whose mean fitness is at least as great as that of any
population it finds itself amidst — then we get a version of the
Second Law. As time passes, the information any population has
‘left to learn’ always decreases.

Reality is more complicated, but this is a nice start.

This result was shown by Akin and Losert in 1984. For more, see:

I Marc Harper, The replicator equation as an inference
dynamic, arXiv:0911.1763.

I Marc Harper, Information geometry and evolutionary game
theory, arXiv:0911.1383.

and newer papers by Harper.
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