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Preface

This book is an amplified and updated version of a graduate course given
by one of us (1ES) at various times during the past two decades. It is intended
as a rigorous treatment from first principles of the algebraic and analytic core
of general quantum field theory. The first half of the book develops the alge-
braic theory centering around boson and fermion fields, their particle and wave
representations, considerations of unitary implementability, and the represen-
tation-independent C*-algebraic formalism. This is tied in with the infinite-
dimensional unitary, symplectic, and orthogonal groups, and their actions as
canonical transformations on corresponding types of fields. In part, this rep-
resents a natural extension of harmonic analysis and aspects of the theory of
classical Lie groups from the finite to the infinite-dimensional case. But certain
features that are crucial in the physical context—srability (positivity of the
energy or of particle numbers) and causality (finiteness of propagation veloc-
ity), both of which play essential roles in the quantization of wave cquations—
are also central in our treatment. These features are integrated with svmmetry
considerations in a coherent way that defines the essence of algebraic quantum
field theory and subsumes the quantization of linear wave cquations of a quite
general type.

But the key process that distinguishes quantum from classical physics is
that of particle production. The mathematical description of this phcnomenon
in accordance with the physical desiderata underlined above is, at the funda-
mental level, by quantized nonlinear wave equations. The algebraic theory
developed in the first part of the book is used extensively in the sccond part in
developing the mathematical interpretation, and solution in a prototypical con-
text, of such equations. New analytic, rather than algebraic, issucs of rcnor-
malization and singular perturbation arise in this conncction. In particular,
nonlinear local functions of quantum fields—such as fields that arc not neces-
sarily free, or defined over arbitrary Riemannian manifolds—arc treated in
general contexts. These are in the direction of ultimate cxtension to physically
more realistic cases than the model treated here. This consists of the formula-
tion of the concept of solution of a quantized local nonlinear scalar wave equa-
tion in a sense that is independent of the existence of an associated free field.
and of the establishment of such solutions in two space-time dimensions (al-
beit by a technique that starts from a free field).

This book is intended as a self-contained introduction, and not as a treatise
or compendium of results. A logically coherent and detailed treatment of a
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subject as indivisible and multifaceted as quantum field theory must be highly
selective. We eschew both ‘‘practical’’ and the now classical *‘axiomatic’
quantum field theory, on which there arc excellent textbooks. Those in axio-
matic theory include the authoritative texts by Bogolioubov, Logunov, and
Todorov (1975); Jost (1965); and Streater and Wightman (1964). The pleni-
tude of texts on practical theory includes the lucid treatments, in order of in-
creasing scope, of Mandl (1959); Bjorken and Drell (1965); and Cheng and Li
(1984).

We also fail to do justice to the geometrical side of the theory, partly be-
cause to do so would require another volume of the present size, but also
because our approach is designed to apply in essence to virtually arbitrary
geometries, the particularities of which need not be specified. Applications
and illustrations are usually given in terms of Minkowski space, because this
is the simplest and the most familiar. The key developments would, however,
apply to general classes of space-times endowed with causal structures and
corresponding transformation groups, including the context associated with
the conformal group.

We include brief historical comments, but refer to the classics by Dirac
(1958), Heisenberg (1930), and Pauli (1980) for the nascent formalism and
spirit of heuristic quantum field theory.

We assume the reader has some background in modern analysis and expo-
sure to the idcas of quantum theory, because it would be impractical to do
otherwisc in a volume of this size. We have, however, appended a glossary to
clarify terminology and to help tide the reader over until he has a chance to
consult a source of technical detail, in case he wishes to do so; it may also
serve as a review of the technical background. A series of Lexicons in the
main text serves to correlate the mathematical formulation with the physical
interpretation. The Problems and Appendix B further round out the treatment
and provide contact with the physical roots and intercsting, if peripheral,
mathematical issucs.

The first haif of the book should provide a basis for a onc semester, first- or
second-ycar graduate course on group, operator, and abstract probability the-
ory, as well as quantum field theory per se. The full book should do the same
for a yearlong course in its primary topic of quantum field theory. It can easily
be enhanced with specific mathecmatical or physical applications, from number
theory and theta functions to path integrals and many-body formalism, de-
pending on the direction of the class or reader. Our purpose here has simply
been to provide a coherent and succinct introduction to a general area and
approach that connects, and in part underlies, all of thosc fields.

This book is primarily a synthesis. and only secondarily a survey. Detailed
reference could not have been made briefly in an accurate and balanced way,
and the alternative—lengthy accounts of the development of the subject—



Preface x|

would have distracted from the logical development and added much to the
bulk of the book. We have followed a middle course of providing each chapter
with bibliographic notes on key publications related to our presentation. A
more general list of references enlarging on our themes, directions, and tech-
niques is given at the end of the book. The literature is now so vast that such
a list cannot be complete, and we have given priority to sources of special
relevance to or coherence with the rigorous treatment here.

We thank students and colleagues who have made corrections or sugges-
tions regarding notes forming a preliminary version of this book, and Jan Ped-
ersen for a final reading.






Introduction

The logical structure of quantum field theory

Quantum field theory is quintessentially the algebra and analysis of infinitc-
dimensional dynamical systems, as constrained by quantum phenomenology,
causality, and symmetry. Although it has a clear-cut central goal, that of the
realistic description of particle production and annihilation in terms of the lo-
calized interactions of fields in space-time, it is clear from this description that
it is a multifaceted subject. Indeed, both the relevant mathematical technology
and the varieties of physical applications are extremely diverse. In conse-
quence, any linear (i.e., sequential) presentation of the subject inevitably
greatly oversimplifies the interaction between different parts of the subject.

At the level of mathematical technology. the subject involves Hilbert space
and geometry, wave equations and group representations, operator algebra
and functional integration, to mention only the most basic components. At the
level of practical applications, much of physical quantum field theory is heu-
ristic and somewhat opportunistic, even if it is strongly suggestive of an un-
derlying distinctive and coherent mathematical structure. At the overall foun-
dational level, the logical basis of the subject remains unsettled, more than six
decades after its heuristic origin. There is not even a general agrecment as to
what constitutes a quantum field theory, in precise terms.

In this context, logical clarity and applicable generality take on particularly
high priority, and have been emphasized here. At the same time, therc has
been outstanding progress in the mathematical theory of quantum fields, al-
though the ultimate goal of an effective theory of relevant equations in four-
dimensional space-time has by no means been achieved. To present the estab-
lished developments in a lucid and succinct way, while treating the issucs
involved in the ultimate goal of the theory, it is unfortunately necessary to be
somewhat abstract and to focus on the algebraic and constructive core of the
theory. This results in an approach that may, at first glance, seecm unfamiliar
to those introduced to the subject in the conventional manner.

The traditional approach commonly involves presenting a prototypical,
classical ‘*free’’ equation, often the Klein-Gordon equation

Oe + m*e = 0,

and explaining that in view of quantum mechanics, what is wanted is rather
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an operator-valued function ¢ that satisfics the same equation, together with
the nontrivial commutation relations at an arbitrary fixed time #,.

l‘p('()vx)v ‘P('o,}’)] = 0 = [ol‘P('O'x)v a:‘P(’m.V)]i
[@(to, x), 39(to, Y)] = — idx — y),

which are analogous to the Heisenberg commutation refations. Having ex-
plained heuristically how the appropriate *‘function’’ ¢ may be obtained, the
text goes on to treat vector and other higher spin fields, the quantization of
wave equations on other space-times, and so on.

This is a natural and sensible approach, but it suffers from some scientific
limitations, and therc are practical advantages to a morc abstract treatment.
More specifically, the value of a quantized ficld at a point is a highly theoret-
ical entity, which is relatively singular mathematically, and not really concep-
tually measurable from a foundational physical standpoint. it is now widely
realized that it is mathematically more cfficient and physically more appropri-
ate to treat, instcad of the value of the quantized field at a point, its average
with respect to a smooth function f supported in a neighborhood of the point,
such as ¢(f) = fe(X)f(X)dX, where X = (1,x). What is less widely realized
is that the test functions f are effectively in an invariant Hilbert space, the so-
called *‘single-particle space.”” From the fact that all Hilbert spaces of the
same dimension arc unitarily equivalent, it follows that the underlying quan-
tum field theory docs not depend, for the most part, on the particularitics of
the wavce cquation or space-time under consideration. The point is that there
are universal boson and fermion quantizations applicablc to an arbitrary Hil-
bert spacc.

Morcovcr, the use of thesc universal fields for the quantization of given
equations is not only a major theoretical economy, but definitively simplifics
the treatment of many important topics. Thus, there is a simple invariant con-
dition for the unitary implementability of canonical transformations on a free
quantum ficld in Hilbert space terms that is necessary and sufficient, in con-
trast to thc complex and unneccssarily stringent sufficicnt conditions derivablc
from analysis in a more specialized format.

More generally, instead of starting out with a given Hilbert space, it is ncc-
essary in morc complicated cases to begin with a space with less structure, a
real orthogonal or symplectic spacc. The introduction of an appropriate com-
plex structure in such a spacc, on the basis of symmctry and stability (positive
encrgy) considerations, underlies the determination of thc ‘‘vacuum’ and,
indecd, the usc of complex numbcrs generally in quantum mechanics. At the
samc timc, thesc real variants of a Hilbert space provide the cssential basis for
thc C*-algebraic formalism, which uses an infinite-dimensional version of the
Clifford algebra in the orthogonal casc and of Weyl algebra in the symplectic
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casc. These C*-algebras are representation-independent (i.e., do not depend
on a particular choice of a representation of the canonical or anticanonical
commutation relations). The C*-algebraic formalism is a natural extension of
the Hilbert space line and at the same time permits the quantization of ficlds
that do not necessarily possess a vacuum, such as thosc of ‘‘tachyons’’ (rep-
resented, e.g., by the Klcin-Gordon equation with imaginary mass).

Last, but not at all least, the use of a succinct and invariant algebraic for-
malism facilitates the overall view of the forest in a subject in which this view
is obscured by a very large number of trees. The development of a foundation
for four-dimensional quantum ficld theory that is consistent with the simple
and natural ideas that motivated the subject—and there is no compelling rea-
son to doubt that one exists—seems likely to be expedited thereby, even if it
may ultimately be describable in other terms.

For these reasons, the first part of the book, consisting of Chapters 1-5,
cmphasizes the algebra and treats the Klein-Gordon and Dirac equations in
Minkowski space only as cxamples. The second part, or Chapters 6-8, treats
differential equations and nonlinear issues, in which the notion of the quan-
tized ficld as a point function becomes quite pertinent. The basic principle of
the locality of causal interactions is naturally formulated in terms of point
valucs of fields, and the constructive theory is more sensitive than the alge-
braic to the underlying geometry and wave equation.

The connection between the global Hilbert space standpoint and the intui-
tive idea of fields as localized entities will emerge in opportune places
throughout the book and will be crucial to Chapter 8. This chapter will develop
in particular the concept of a nonlinear local function of an interacting quan-
tum ficld. The reader who would like early on to see an example of the con-
ncction may find it in Appendix B.

Organization of the book

The main technical prerequisite for this presentation of quantum field theory
is basic functional analysis and operator theory. No familiarity with heuristic
quantum field theory is assumed, but it should be helpful. Correlation of the
rigorous theory with the conventional looser and more specialized physical
formalism is madc in the Examples. Problems, and Lexicons. The Problems
are also used to make contact with some interesting but seemingly peripheral
issues in quantum field theory.

Chapter 1 treats the universal free boson field. The unboundedness of the
field operators and the incorporation of functional integration theory into this
chapter make it relatively lengthy. Chapter 2 treats the universal fermion ficld
along parallel lines, more briefly because of the boundedness of the field op-
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crators and the subsumption of the counterpart to functional integration theory
under operator algebra. Each of these chapters details the three basic unitarily
and physically equivalent representations of the universal fields: the particle
representation, which diagonalizes the ‘‘occupation numbers’" of states; the
‘‘real’” wave representation, which essentially diagonalizes the hermitian field
operators at a fixed time; and the ‘‘complex’’ wavc representation, which
pscudo-diagonalizes the creation operators.

Chapter 3 establishes gencral propertics of the universal fields, such as the
relation of the field over a direct sum to the fields over the constituents, and
their unicity subject only to the constraint of positive cnergy. The remarkable
parallelism between the structure and representations of the boson and fermion
ficlds, notwithstanding their striking differences, comes through strongly in
this chapter. At the same time, the assumption of an underlying (single-parti-
cle) Hilbert space is relaxed to treat boson fields over symplectic spaces and
fermion ficlds over orthogonal spaces.

Chapter 4 deals with absolute continuity of distributions in function spaces
and the related question of the unitary implementability on the universal fields
of given canonical transformations on the underlying single-particle space (or
classical field). The result, that the Hilbert-Schmidt condition on the commu-
tator of the given transformation with the complex unit i is necessary and suf-
ficient for unitary implementability, confirms the relevance and cssentiality of
the Hilbert space format (for the underlying classical field or single-particle
space) used in the carlier chapters. At the same time, this condition shows a
need for a broader formalism that will encompass the actions on the quantized
field of gencral canonical transformations. In Chapter 5 it is shown that thesc
transformations act naturally, esscntially in extension of their Hilbert space
actions when these exist, on C*-algcbras associated with the underlying sym-
plectic or orthogonal structures.

Chapter 6 applies the algebraic theory to the quantization of wave equations
(using the Schrodinger, Klein-Gordon, and Dirac as prototypes) and marks the
transition to constructive quantum ficld theory. Chapter 7 devclops in a quite
general format the theory of renormalized local products of boson fields.
These arc shown to cxist as generalized operators—more specifically, contin-
uous sesquilinear forms on the domain D of infinitely-differentiable vectors
for the ficld Hamiltonian—without any special assumption as to the character
of space or an underlying wave cquation. The last scction details the special-
ization to the formulation of a quantum field as an essentially self-adjoint op-
erator-valued distribution on Minkowski spacc and establishes the existence
of Wick powers of this ficld as a Lorentz-covariant operator-valued distribu-
tion.

Chapter 8 focuses on the case of a nonlinear scalar field in two space-time
dimensions as a vehicle for illustrating some of the basic ideas and methods in
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constructive quantum field theory. A nonlinear variant of the Weyl rclations is
used to give effective meaning to polynomials in a quantum field that is not
necessarily free, at a fixed time, as required for the fundamental partial differ-
ential equations of interacting quantum field theory to make mathematical
sense as such. The existence of quantized solutions to local nonlinear scalar
wave equations, in which the nonlinearities are renormalized relative to the
**physical’* rather than a somewhat ambiguous and hypothetical *‘frec’’ vac-
uum, is shown in detail. The real-time (Lorentzian) approach of the original
rigorous treatment seems physically more natural and generally adaptable than
the later-developed imaginary time (Euclidean) treatment, and is adopted
here.

The numbering system is as follows. Theorems are numbered seriatim in
each chapter: e.g., Theorem a.b denotes the bth theorem in Chapter a. Lem-
mas and corollaries are numbered serially following the underlying theorem
number. Thus, Lemma a.b.c denotes the cth lemma for Theorem a.b. We also
use scholia in the same manner as in the Principia: generally useful ancillary
results that are not of the central importance of a theorem. The scholia and
equations are numbered like the theorems. The sections of each chapter are
numbered serially. A compendium of the main notations we use is given in
Appendix A. References are to the Bibliography following the text. For basic
functional analytic results we refer primarily to Segal and Kunze (1978),
which is cited throughout as SK.
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1

The Free Boson Field

1.1. Introduction

Much of the quantum field theory is of a very general character independent
of the nature of space-time. Indeed, a universal formalism applies whether or
not there exists an underlying ‘‘space’ in the usual geometrical sense. In its
primary form, this universal part of quantum field theory depends only on a
given underlying (complex) Hilbert space, say H. Colloquially, H is often
called the single-particle space.

Thus, for a nonrelativistic particle in three-dimensional euclidean space R?,
H is the space L,(R?) consisting of all square-integrable complex-valued func-
tions on R?, in the usual formalism of elementary quantum mechanics. For a
relativistic field or particle as usually treated, H is the space of ‘‘normaliz-
able’’ wave functions. Here the norm derives from a Lorentz-invariant inner
product in the solution manifold of the corresponding wave equation. For pos-
sible more exotic types of fields, the situation is much the same.

This chapter presents the mathematical theory of one of the most fundamen-
tal quantum field constructs from a given complex Hilbert space H, without at
all concerning itself with the origin of H. This theory has close relations to
integration and Fourier analysis in Hilbert space, and can in part be interpreted
as the extension of analysis in euclidean n-space to the case in which n is
allowed to become infinite. We call this universal construct the free boson
(more properly, Bose-Einstein) field over H.

The next section of the chapter begins the rigorous mathematical develop-
ment. From time to time, items logically outside the mathematical develop-
ment, labeled Lexicon, wiil interrupt in order to correlate the somewhat ab-
stract treatment with physical usage and intuition. Mathematical Examples, in
the nature of special cases, will also be provided. Readers interested primarily
in the mathematics may largely ignore the Lexicon items. Those who would
like to appreciate at this point how the conventional treatment of relativistic
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fields can be subsumed under the universal Hilbert spacc formulation of this
chaptcr will find an explicit treatment in Appendix B.

1.2. Weyl and Heisenberg systems

In any Hilbert space, the imaginary part of the inner product provides a real
antisymmetric (rcal-) bilinear form. A more general type of space, in which
only such a form is given, also plays an important part in boson theory.

DEFINITION. A symplectic vector space is a pair (L, A) consisting of a rcal
topological vector space L, together with a continuous antisymmetric, *‘non-
degencrate’” bilinear form A on L. To be more explicit, ‘‘nondegeneratc’’
means that if A(x, ) = Oforallxe L, theny = 0.

When L is a real finite-dimensional vector space, it is easily seen that it can
be given the structure of real topological vector space in one and only onc
way. A rcal infinitc-dimensional vector space is a topological vector spacc
relative to the topology in which a set is open if and only if its intersection
with cach and every finite-dimensional subspace is open relative to this sub-
space. A spacc with this topology will be said to be ‘‘topologized algebrai-
cally.”” The continuity condition on A is then easily seen to be vacuous.

ExampLE 1.1, Let M be a finite-dimensional real vector space, and M* its
dual, i.c., the space of all lincar functionals on M. Let L denote the direct
sum M@®M?*, and let A denote the form

A, X'®f") = fx") = f'(x),
for arbitrary x@®f and x'@f" in L. Then it is easily verified that (L, A) is a
symplectic vector space; it will be called the symplectic vector space built from
M. More generally, supposc M and N are arbitrary given real topological
vector spaces, and B(x, f) is a given continuous nondegenerate bilincar form

on M X N. Thc symplectic vector space built from (M, N, B) is defined as
the space (L, A) wherc L = M®N and A(x®f, x'®f') = B(x, f) — B(x.f').

DEFINITION. Let (L, A) be a given sympiectic vector spacc. A Weyl system
over (L, A) is a pair (K, W) consisting of a complex Hilbert space K and a
continuous map W from L to the unitary operators on K (taken as always,
unless otherwisc specified, in their strong operator topology) such that for all
zand:'inL,
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WEW(E') = eveW(z + 2'). (L1

Equations 1.1 are known as the Wey! relations.

If H is a given complex pre-Hilbert space (**pre’* signifying that complete-
ness is not assumed), and A denotes the form A(z, z’') = Im(z, z’), then the
pair (H?, A), where H* denotes H as a real vector spacc with the same topol-
ogy, is a symplectic vector spacc, a Weyl system over which is called simply
a Weyl system over H. Here and below we shall follow mathematical conven-
tion and take the complex inner product (:,) to be complex-lincar in the first
argument.

ExaMpLE 1.2. Let L denote the space C of all complex numbers as a real
two-dimensional space, and let A(z, z) = Im(z2’). Let K denote the space
L(R) of all complex-valued square-integrable functions on the real line R;
here and later when the measure in cuclidean space is unspecified, it is under-
stood to be Lebesgue measure. For arbitrary z in C of the form = = x + iy,
where x and y are real, let W(z) denote the operator on K,

W) f(u) > e~ — o2 f(y + x),

It is easy to check that (K, W) is Weyl system over (L, A); it is known as the
**Schrodinger system’' or the **Schrédinger representation of the Weyl rela-
tions."

More generally, let H denote a finite-dimensional complex Hilbert space.
Let e,. e,, ..., €, denote an arbitrary orthonormal basis for H, and lct H' denote
the real span of the e, that is, the real subspace consisting of all real linear
combinations of the e,. Relative to the restriction of the given inner product
(-,) to H', H' forms a euclidean space. Let K denote L,(H'), and for arbitrary
zin H, of the form z = x + iy, where x and y arc in H', let W(z) denote the
operator on K:

W(z):f(u) > ¢~ Hvw) - l(n.v)lzf(u + x).

Just as in the one-dimensional case, (K, W) is casily scen to form a Weyl
system over H.

The Weyl relations are a regularized form of the Heisenberg relations,
which are essentially the infinitesimal form of the Weyl relations. Such an
infinitesimal form, like the infinitesimal representation associated with a group
representation (of which the Weyl systems are in fact a special casc; cf. Prob-
lems following this section) is more cffective in algebraic contexts than the
global form, although the latter is more cogent for rigorous analytical pur-
poses.
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More specifically, if (K, W) is a Weyl system over a given symplectic vec-
tor space (L, A), then the map r — W(rz) is for any fixed z € L a continuous
one-parameter unitary group whose selfadjoint generator (whose existence is
asserted by Stone’s theorem) is denoted as ¢(z). The map z — ¢(z) from L
into the selfadjoint operators on K will be called a Heisenberg system.

THEOREM 1.1. Let & denote the Heisenberg system for the Weyl system
(K. W) over the symplectic vector space (L, A). Then for arbitrary vectors x
and y in L, and nonzero 1 € R, the following conclusions can be made:

i) &x) = 1d(x);

ii) &(x) + &(y) has closure d(x + y);

iii) for arbitrary u in the dense domain D(d(x)d(y)) = D(d(y)d(x)),

[b(x),d(Y)u = —iA(x,y)u; and

iv) &(x) + id(y) is closed.

PrOOF. The definition of ¢ makes i) clear. For the rest, we use two lemmas.
Here and later the notation D(T) for an operator T denotes the domain of 7.

LEMMA |.1.1. Let x and y be arbitrary in L, and suppose that u € D(¢(x)).
Then W(y)u € D(d(x)) and
SW(y)u = W(y)ld(x) + Alx, y)lu.

Proor. It follows from the Weyl relations that for arbitrary nonzero real 1,
=it~ W) — W = — it~ '[Wx)W(y) — W(y)lu
= —it '"W(yIW(x)es» — Tu.
Letting t — 0, the lemma follows. O

LEMMA 1.1.2. Let D’ denote the set of all finite linear combinations of vec-
tors of the form of the weak integral

S W(sx + ty)v F(s. 1) dsdt,

where v is arbitrary in K and F is arbitrary in Cg'(R?). Then D' is dense in K,
D’ C D(d(x))ND(d(y)). and D' C D(d(x)d(y)).

Proor. Here and clsewhere, intcgrals arc extended over all values of the
variables of integration, unless otherwise indicated, and the notation C;;(S) for
an arbitrary manifold S denotes the set of all C* complex-valued functions of
compact support on S.

The density of D' in K follows from the choice of a sequence {F,} suitably
approximating the Dirac measure. To show that D' C D(b(x)d(y)) it suffices



The Free Boson Field 7

to show that D’ C D(d(y)) and that ¢(y)D’ C D’. To show that D' C D(d(y))
is to show that if
u= [ W(sx + ty)v F(s, 1) dsdt,
then lim,_o € [W(ey) — 1Ju exists. Now
e '[W(ey) — lju
= €' [[W(ey + sx + ty)evesats — Wisx + ty)lv Fis, 1) dsdr,
using the Weyl relations. In the integrand,
W(ey + sx + ty)e*ran — Wisx + 1y) = eveatnn(W(ey + sx + ty)
- W(sx + 1y)) + (etresroo — W(sx + ty),
and making a translation in ¢,
e [W(ey) — Iu = [ e"r=rvoW(sx + ty)v (F(s, t — €) — F(s, 1))/ dsdt
+ [ (e¥rears — [)g W(sx + ty)v F(s. 1) dsdr;

letting €— 0 on the right side shows that the limit of the left side exists and
cquals

— [W(sx + 1y)v 8,F(s, 1) dsdt + 2isA(y, x) [W(sx + ty)v F(s, 1) dsdt.

This shows that D' C D(d(y)) and that ¢(y)D’ C D(d(x)d(y)). The proof that
D' C D(d(x)) is analogous to that of D' C D(d(y)). O

" To see that &(x) + &(y) C d(x + v), note that
Wx)Wiy)u = e2uusnW(i(x + y)u
so that

=it Wix + y) — lu = —it~ e w2 Wex)Wty) — 1 ju.

Now taking 1 in D(b(x))ND(d(y)), the usual argument for treating the deriva-
tive of a product shows that the right hand side of the above equation con-
verges as 1— 0 to (d(x) + &(y)u. The inclusion in question follows now
from Stonc's theorem.

To show that ¢(x + ) is the closure of db(x) + (y) is thus equivalent to
showing that ¢(x + y) is the closure of its restriction to D(d(x))ND(d(v)).
To prove this, recall the general criterion: a selfadjoint operator A is the clo-
sure of its restriction to a domain D if: a) D is dense; and b) ¢4D C D for all
teR. Taking A = &(x + y) and D = D(d(x))ND(d(y)). then both (a) and
(b) follow from Lemma 1.1.2.

Note that by Lemma 1.1.1 for arbitrary w € D(db(x)d(v)).
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[b(»I)W(sx) — W(sx)b(y)lw = A(y, sx)W(sx)w,
or
d(Y)W(sa)w = W(sx)d(y)w + A(y, sx)W(sx)w.

Diffcrentiating with respect to s on the right side and setting s = 0 yields
id(x)d(y)w + A(y, x)w. It follows that the left side is differentiable at s = 0,
and since ¢(y) is closed, the limit is d(y)d(x)w. Thus

ifd(y), dX)Iw = A(y, x)w.

Conclusion iii) now follows from Lemma 1.1.2.
1t also follows that

(d(x) + i = fidx)wl + ld(yIwl + Alx, y)liwil.

To show that ¢(x) + id(y) is closed, let {u,} be a sequence of vectors in
D(d(x))ND(d(y)) such that u, — u and (d(x) + id(y))u, — v. Then

llb(x) (@, — w,)|— O and lib(y)(un — u,)|— 0

as m, n — . |t follows in turn that u € D(d(x))ND(d(y)), so that db(x) +
id(y) is closed, proving (iv). a

ExAMPLE 1.3. A map ¢ from L to operators on a Hilbert space K that
satisfies conditions i)-iii) is not in general a Heisenberg system. In other
terms, the operators W(z) defined as ¢ do not necessarily satisfy the Weyl
relations. Sufficient conditions for this to be the case follow from the thcory
of analytic vectors for unitary group representations duc to Nelson (1959);
rclated conditions were derived earlier in the special case of the Weyl rclations
by Rellich and later by Dixmicr (1958).

Nelson's criterion implics that for a given mapping ¢, from L to operators
on a Hilbert space K to be essentially a Heisenberg system, in the scnse that
$q(2) has a closure ¢(2), for all z € L, such that ¢ is a Heisenberg system, the
following is sufficient:

(i) All ¢,(z) have thec same domain D, which is dense in K, and left in-

variant by all the ¢,(z), which are hermitian.

(ii) Every finite-dimensional subspace of L has a basis z,, z,, ..., 2, such that

bal2)? + by(2,)? + -+ + y(2,)? is essentially selfadjoint.

This applies in particular to the simplest case of thc *‘particle representa-
tion.”” In this, K is the space €, of all sequences (ay, 4,.,...) for which the sum
lagl* + la\J* + ---is convergent, with the inner product (A, B) = a,b, + a,b,
+ +++. The domain D is that of all finite sequences, and ¢, is determined as a
map on L = C by the specification of &y(1) and d(i), which may be denoted
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as P and Q. Setting e, for the vector in €, whose only nonvanishing component
is a | in the nth position,

Pe, = 2-%(n%e,_, + (n + DYe,,\); (1.2)
Qen = iz—l’,("%en—l - (” + |)I/'e,,_,|).

On observing that (P? + Q%e, = (2n + 1)e,, the requisite essential selfad-
jointness follows.

This particle representation, in its global form., is unitarily equivalent to the
Schrédinger representation, and the same is true of its analog for L of arbitrary
finitc dimension. A generalization to the case when L is a Hilbert space of
arbitrary dimension is developed later in this chapter.

The preceding example illustrates the formulation of a Weyl system in terms
of a *‘canonical pair,”’ consisting of suitable hermitian operators P and Q sat-
isfying the relation [P, Q] C —il. The essential equivalence of this type of
formulation, which is more familiar and elementary, but typically less invari-
ant, with the explicitly symplectic formulations, will now be developed.

DEFINITION. A linear dual couple is a system (M, N, (-,-)) consisting of real
topological vector spaces M and N, together with a real bilincar continuous
function (x,A) on M x N that is nondegenerate. A Weyl! pair over a given
dual couple is a system (K, U, V) consisting of a complex Hilbert space K
together with continuous unitary representations on K, U, and V of the addi-
tive groups of M and N respectively, satisfying the relations

U@VQ) = =PV (N)U(x), xeM, AeN. (1.3)

Equations 1.3 are called the restricted Weyl relations.

ExaMPLE 1.4. A variant of the Schrédinger representation is as follows. Let
M denote a finite-dimensional rcal vector space, M* its dual space. and define
(x,A\) = A(x) forx € M and A € M*. Then (M, M*, (-,-)) is a dual couple and
is said to be built from M. Let m denote an arbitrary regular measure on M
that is quasi-invariant, meaning that its null scts arc invariant under vector
translations in M; or equivalently that m and its translate m, through x. defined
by the equation m(E) = m(E + x) for any Borel set E. arc mutually abso-
lutely continuous for all x € M. For arbitrary x e M, let U(x) denote the oper-
ationon K = L,(M, m)

U(x): flu) — flue + X)ldm tdm)": (feK). (1.4a)
For arbitrary A € M¥ let V(A) denote the operation
V(N): f(1e) > e™f(u) (fe K). (1.4b)
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It is not difficult to verify that (K, U, V) is a Weyl pair over (M, M*, (:,)).

Any quasi-invariant measurc m on M is mutually absolutely continuous
with Lebesgue measure on M, by a result of Mackey (1952). From this it
follows that the Weyl pair just constructed is unitarily equivalent to that ob-
tained when m is Lebesguc measure. It will be seen later that there is an anal-
ogous construction in the case when M is infinite-dimensional, in which case
the conclusion of Mackey's theorem is not at all valid. Even in the finite-
dimensional case the construction will be convenient on occasion, especially
with m taken as a Gaussian measure.

The relation between Weyl systems and pairs is noted in

THEOREM 1.2. Let (M, N, (:,*)) be a dual couple and K be a complex Hil-
bert space. Let U and V denote given continuous mappings from M and N
respectively ta the unitary operators on K. Then (K, U, V) is a Weyl pair over
(M®N, (-.*)) if and only if the mapping W from M®N 1o the unitary operators
onK:

W(z) = U(x) V(=) el = x@M.

is in conjunction with K a Weyl svstem over the symplectic space built from
(M, N, ).

Proor. The proof is left as an exercise. 0O

As in the casc of a Weyl system, for any Weyl pair (K, U, V) over a given
dual couple (M, N, (-,-)), therc exist unique mappings P and Q from M and N
to the selfadjoint operators in K that are given by the equations:

Ulx) = em™, V() = ee™ reR.

DEFINITION. A Heisenberg pair (K, P, Q) over a dual couple (M, N, (-,-))
consists of a complex Hilbert space K and mappings P and Q from M and N,
respectively, to the selfadjoint operators in K, having the property that if U(x)
= ¢ and V(A) = '@, then (K, U, V) is a Weyl pair over (M, N, (-,")).

DEFINITION. A collection of sclfadjoint opcrators on a Hilbert space is said
to be strictly commutative if the spectral projections of the operators are mu-
tually commutative.

CoroLLARY 1.2.1. If (K, P, Q) is a Heisenberg pair over the dual couple
(M, N, (-.")). then for arbitrary x, ye M and \, p € N, and nonzero t € R,
i) P(ix) = tP(x); QUA) = 10());
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ii) P(x) + P(y) has closure P(x + y), Q(A) + Q(w) has closure Q(\ + p);
and

iit) P(x) and P(y) commute strictly, and Q(A) and Q(1) commute strictly;
[P(x), Q(\)) has closure —i(x, \).

ProoF. The corollary follows from Theorems 1.1 and 1.2 by specialization
of zand 2’ O

DEFRINITION. A collection of bounded linear operators on a Hilbert space is
irreducible (*‘topologically,”" as will be understood unless otherwise indi-
cated) if the only closed linear subspaces invariant under all of them are the
trivial ones (i.e., the entire space, or that consisting only of 0).

THEOREM 1.3. The Schridinger system over a finite-dimensional space is
irreducible.

ProoF. Let K’ denote an arbitrary closed invariant subspace. Being invari-
ant under multiplications by the ¢**, where the notation of Example 1.4 is
used, it is invariant under multiplications by arbitrary finite linear combina-
tions of these functions. But an arbitrary bounded measurable function on R
is a w*-limit of such linear combinations (in L, as the dual of L,). It follows
that K’ is invariant under multiplications by arbitrary bounded mecasurable
functions.

If K’ is not all of K, there exists a vector f € K that is orthogonal to every
vector in K': [f(x)g(x)dx = O for all g € K'. By replacing g by sgn(fg)g
(where sgn(x) = x/|x] if x # 0 and sgn(0) = 0), and noting the invariance of
K’ under translations, it follows that [ |f(x)| [g(x + a)ldx = O for all real a.
Now K' is invariant under convolution by arbitrary integrable functions. by
virtue of its assumed invariance features, so every clement of K’ may be ap-
proximated arbitrarily closely by a continuous function in K’. It follows that
if K' does not consist only of zero, then f(x) must vanish on a nonempty open
set. But the class of open sets on which f vanishes is translation-invariant, so
S vanishes identically, a contradiction that completes the proof. O

LExicoN. In the physics literature, hermitian operators P and Q satisfying

the relation [P, Q] = —il. first used by Heisenberg, are said to be *‘canoni-
cally conjugate’” or to form a canonical pair. More generally, opcrators P,,
P,,...and Q,, Q.....satisfying the relations [P, Q,] = —id, [P, P,] = 0

= [Q,. Q,]. are said to satisfy the *'canonical commutation relations'” or
**CCRs."" In field theory it is common for the index j to be continuous, so that
in more precise mathematical terms one is dealing with operator-valued distri-
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butions. Operator-ficlds P(x) and Q(x) defined over a manifold M are then said
to be canonically conjugate or to satisfy canonical commutation relations if
formally [P(x), Q(y)] = —ib(x — y), [P(x), P(y)] = 0 = [Q(x), Q(y)]. But
the precise meaning of such relations requires a formulation in terms of Weyl
systems.

The Heisenberg relations descend in part from relations between classical
quantities rather than operator-valued quantities. The word *‘classical’’ is used
often to mean ‘‘numerically-valued’ or, in Dirac’s term, a ‘‘c-number.’” In
contrast, a ‘*quantized’’ quantity, meaning effcctively one represented by an
operator, is called a ‘‘q-number.” Lic’s theory of contact transformations
made extensive use of Poisson bracket-relations between classical canonically
conjugate variables P, and Q;; these take the form {P,, Qi} = 0, {P,, P} = 0
= {Q,, QJ (j. k = 1,2,...). Although the close parallcl with the Heisenberg
relations is no accident and has been particularly strongly developed by Dirac,
it appears to be impossible to make precisc or effective in a general way,
notwithstanding repeated attempts to do so. A key problem is the importance
in quantum mechanics that the cnergy be represented by an operator that is
bounded below (for the treatment of stable systems), but this is never the case
for the corresponding classical motion induced in the space of square integra-
ble functions over phase space, which space moreover is roughly twice the
size of the quantum mechanical Hilbert space. The phase space is often just
the cotangent bundle of the configuration space M that figures earlier in this
section, and so has twice the dimension. As first noted by Koopman (1931), a
classical motion induces a one-parameter group resembling the one-parameter
unitary group representing the quantum mechanical motion, but is quite dis-
tinct from it; at most it may be possible to deduce the quantum mechanical
group by restriction of Koopman’s group to a suitable invariant subspace. As
yet, however, this has been shown only in extremely limited cases, such as
that of the harmonic oscillator.

It is only in nonrelativistic theory that there is an invariant distinction be-
tween the P's and Q's—the "*‘momenta’” on the onc hand and the *‘coordi-
nates’’ on the other. In relativistic theory a change of Lorentz frame mixes the
P’s and Q's, and the full Weyl relations display symplectic invariance that is
lacking in the formulation in terms of canonical conjugate variables (or the
restricted Wey! relations).

The Weyl relations serve to suppress irrelevant pathology that is permitted
by the original loose formulation of the Heiscnberg relations (cf. Problems)
and have been shown by experience to be generally appropriate. The unitarity
of the Weyl operators, like the hermitian character of the canonical P’s and
Q’s, has been a universal assumption deriving from standard quantum phe-
nomenology and physically based on conservation of probability and stability
conceptions. However, unstable systems are the rule rather than exception,
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and nonunitary Weyl systems should perhaps not be excluded from consider-
ation.

Problems

1. Show that a finite-dimensional symplectic vector space (L, A) is isomor-
phic to a symplectic space built over a given vector space M. (Two symplectic
vector spaces (L, A) and (L A") are isomorphic if there exists a linear isomor-
phism T of L onto L' as topological vector spaces such that A'(Tx,Ty) =
A(x, y) for all x and y in L.) An equivalent statement of the result is that therc
exist coordinates x,,...,X,, Y1,.-.,Y. in L such that

Az, ') Z X1y, = xy;).

2. Let (L, A) be a finite-dimensional symplectic space. and let W be a map-
ping from L to the unitary operators on a pre-Hilbert space K, satisfying the
Weyl relations. Show that (K, W) is a Weyl system if and only if W(sz) is a
continuous function of 1 € R for every fixed z in L. (Hint: Show by induction
that if W satisfies the Weyl relations over (L, A), then for arbitrary z,,...,z, in
L,

W(z,)--W(z,) = cxp['/zilz‘A(z,. )Wz, +++ 2).)

3.LetM = R, let K = L(R); 0(0) = 0 and if a # 0, let Q(a) be the
operator in K given by: f(x) — axf(x) on the domain of all f € K such that
xf(x) € K; P(0) = 0 and if a # 0, P(a) is given by: f(x) > —iaf'(x), on the
domain of all absolutely continuous functions in K whose derivative is again
in K. Show that (K, P, Q) is a Heisenberg pair over the symplectic vector
space built over M.

4. Let L denote the space of real C* functions on the circle S', and definc

A(f. 8 = [ fle)dg(e);

topologize L algebraically. Show that (L. A) is not a symplectic vector space,
but becomes such when L is replaced by its quotient modulo the subspace of
constant functions, and A is replaced by the result of applying the given A to
the representative functions in the residue classes. Show also that this sym-
plectic structure is invariant under the induced action of arbitrary diffeomor-
phisms on §', where such a diffeomorphism T acts by sending f(p) into
fT-Yp).pes'.
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5. Let L denote the space of real C= solutions of the wave cquation ¢, —
¢,. = 0 in R? that have compact support at any fixed time. Let A denote the
form A(e, ¥) = [ (1, x)a(1, x) — (1, x)3,(t, x)] dx.

a) Show that this form is independent of ¢ and defines a lincar symplectic
structure on L in its algebraic topology.

b) A Lorentz transformation T is defined as one preserving the form dr? —
dx?, It acts on solutions ¢ of the wave equation by sending @(p) into
@(T-'(p)). Show that this action does indeed carry a solution of the wave
cquation into another solution, and that A is invariant under this action.

c) Show that the foregoing A is the unique onc (within proportionality via a
real constant) that is Lorentz invariant and continuous in the topology of con-
vergence at any onc time (and, by implication, at all times) in C5(R). Here
and clsewhere, for any manifold M, C5(M) is topologized by the convergence
of derivatives of every order (0, 1, 2,...) on some compact set inclusive of the
support of the limit. (Hint: cf. Poulsen, 1972.)

6. Show that there exists a map z > W(z) from C to unitary operators on a
Hilbert space K that satisfies the Weyl relations, but is not a Weyl system.
(Hint: let G denote the compact dual group to the discrete group R,, consisting
of the reals under addition with the discrete topology. Let K = LJ(G, m),
where m is Haar measure on G. Then R, is canonically embedded in G, by
mapping x in R, into the character y— e of R,. Let U(x) be the operator f(u)
— f(u + x), and let V(x) denote the opeartor f(u) — e=*f(u), f € K. Show that
the restricted Weyl relations are satisfied by the pair (U, V), but that the con-
tinuity required for a Weyl system is lacking.)

7. Let (Lo(R), U, V) denote the Weyl pair for the one-dimensional Schré-
dinger representation. Show that the linear subspace of all Cy functions in
L,(0, =) is invariant under P and Q, but that its closure is not invariant under
the associated Weyl system.

8. Let (L, A) bc a symplectic vector space, and let G denote the set of all
pairs (z, a) with z € L, and a € R, with the multiplication law (z, a)(z} a') =
(z + z,a + a + A(z,2')). Show that G is a topological group (called the
Heisenberg group) and that any continuous unitary representation U such that
U(0, @) = e | defines a Weyl system by the equation W(z) = U(z,0). Show
conversely that every Weyl system arises in this way.

9. Let M be a ¢ manifold and m a C= nonvanishing form of maximal de-
gree; let K = L,(M, m). Let P denote the set of all C= vector ficlds that arc
generators of global continuous one-parameter groups of diffeomorphisms of
M, and Q the set of all C~ functions on M. Decfine P(X) as the selfadjoint
generator of the unitarized action of e* in K, where X € P, and Q(f) as the
operation of multiplication by f e Q. (If G is a group of measurable transfor-
mations on a measure space (M, m), its unitarized action on Ly(M, m) is de-
fincd as the unitary representation U of G given by the equation: (U(g)f)(x) =
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D(g~ ") f(g~'(x)), where D(g~') is the Radon-Nikodym derivative. or Jaco-
bian, of the transformed measure m(E) = m(g~'(E)) with respect to m.)
Show that if X € P, f e Q, then P(X) and Q(f) leave invariant the domain D
= Ca(M), and that their restrictions to D satisfy the relations [P(X), P(Y)] =
iP[X, Y] (where on the right side [X, Y] denotes the commutator, or Lie
bracket, of X and ), [P(X), Q(f)] = —iQ(Xf), |Q(f). Q(f')] = 0. Apply
these results to euclidean space and obtain commutation relations for the cases
in which X or Y is an infinitesimal rotation or (as earlier) translation.

10. Give an example of a pair of scifadjoint operators p and q in Hilbert
space that leave invariant a common dense domain D and satisfy the relations
[p.qlu = —iu for u € D, but which do not generate groups satisfying the
restricted Weyl relations. (Hint: consider the Schrédinger p and gq, restricted
to the submanifold of functions satisfying periodic boundary conditions [or
vanishing outside an interval, which is slightly more complex]. In L,(S"), e.g.,
take p as —idyp, and g as multiplication by 8 on thc domain of C* functions
vanishing in some neighborhood of 8 = 0, and computc thc commutator
eiretde —re - ’”J_)

11. Let H denote an n-dimensional complex Hilbert space, n < «, and let
K denotc L,(H? dg), where H* denotes H as a real euclidean space of dimen-
sion 2n and dg = e~+"2 dx. For arbitrary z € H let W(z) denote the operator
on K:

Ju) = flu — z) e - (v

Show that (K, W) is a Weyl system over H, and that it is not irreducible. (Hint:
show that the subspace S of antiholomorphic functions on H that arc in K is a
closed invariant subspace.)

12. In problem 11, suppose n = |, and represent H as C. Let the selfadjoint
generators of the groups W(r) and W(—ir), r € R, be denoted as P and Q. Show
that 2-"(P + iQ) act on the space of antiholomorphic functions as multipli-
cation by —i2-"%z and i2" 9/9z, respectively.

13. Show that the restriction to S of thc Weyl system of Problem 11 is
irreducible.

1.3. Functional integration

The existence of a Weyl system over a finite-dimensional Hilbert space fol-
lows from either the Schrodinger representation or, in a somewhat more com-
plex way, from the particle representation on a Hilbert space of sequences
rather than functions, by exponcntiation of & Heisenberg system. Neither of
these constructions applies to the casc of an infinitc-dimensional Hilbert
space. as formulated, but it will be seen that appropriate analogs can be de-
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veloped. This scction begins the trcatment of appropriate substitutes for Le-
besguc measure in the infinite-dimensional context.

There simply is no nontrivial measure on a Hilbert space (or any Banach
space) of infinitc dimension that is translation-invariant. There is however a
substitute that is unitarily invariant: in a Hilbert space of large finitc dimen-
sion, the unitary group is much larger than the translation group, so this sub-
stitute is relatively well suited to the expression of physical symmetrics. For
short, we call it the isonormal (probability) distribution in the Hilbert space,
which, while quite cffective, involves a serious technical problem, which im-
peded its recognition and development. Specifically, the corresponding mea-
surc in Hilbert space is not countably additive, which appears at first glance to
render conventional abstract Lebesgue integration theory inapplicable. But
there is an abstract measure space in the background which is roughly a direct
limit of the corresponding probability spaces over n-dimensional Hilbert space
as n — o (a notion that can in fact be made precise).

The most direct and succinct way to treat the generalized notion of integra-
tion needed is by an algebraic formulation that can be interpreted physically
as morc opcrational than abstract Lebesgue integration theory, but consistent
with it. The formulation of moder probability theory by Kolmogorov (1933)
in terms of measurc theory, the chief tenet being the axiom that a random
variable is a mecasurable function on a probability space, is effective techni-
cally but is less intuitive than the original approach of the Bernoullis and their
successors. This can now be precisely formulated and legitimized by the linc
of representation theory due to Gelfand and Stone. In these terms, the random
variables arc assumed simply to form an associative algebra on which a (par-
tially defincd) expectation value function is given, satisfying the natural prop-
crties of positivity and normalization. In the presence of boundedness or rea-
sonable growth conditions, it follows from representation thcory that this
concept of random variable is equivalent (in respects interpretable as observ-
able or operationally mecaningful) to the Kolmogorov concept. But there is
little specificity to the measure space involved in this definition, and the ac-
tions of physical symmetries on the points of the spacc are relatively implicit,
while the algebraic and group transformation properties of the random vari-
ables are rather explicit, and particularly effective technically in the case of
the isonormal distribution on a Hilbert space.

The simplest functions on a Hilbert space are the coordinates x,, x,, ... .0r
functions f(x,.,...,x,) of a finitc number of such (e.g., polvnomials on Hilbert
space, defined as such functions with fa polynomial in n numerical variables).
In the algebraic approach it is natural to begin with the assignment of an cx-
pectation value functional to the algebra of all such functions. The coordinates
are of coursc lincar functionals over the Hilbert space, and this algebraic ap-
proach boils down to the self-consistent assignment of a random variable to



The Free Boson Field 17

cach such linear functional. This is the cssential idea of the treatment that
follows. Its invariance and operational features compensate quitc adequately
for its abstraction relative to the classical Kolmogorov approach, and it is also
readily extendable to noncommuting generalized random variables such as
those that occur in connection with fermion fields.

DeFINITION. Given an arbitrary measure space P, a measurable on P is an
cquivalence class of complex-valued measurable functions on P modulo null
functions. Let L be a given locally convex topological vector space. A predis-
tribution in L is a linear mapping d from the dual L* of L to the measurables
on a probability measure space P. Two such predistributions d and d’ are
equivalent in case the joint distribution of d(f,),...,d(f;) is the same as that
of d'(f1),....d'(f,), for every finite ordered set f;.... ./, of vectors in L*. An
equivalence class of predistributions is a distribution. To avoid circumlocu-
tion, however, the term distribution will normally be used for both predistri-
butions and equivalence classes of such, since it will usually be clear from the
context, or on occasion immaterial, which concept is appropriatc.

If T is a continuous linear transformation on L, and d is a distribution on L,
the transform of d by 7, denoted d7, is defined by the predistribution d(T*x),
where d is a predistribution that represents d. Note that this is independent of
the choice of the representing predistribution, and that & = (d7)S.

ExampLE 1.5. If L is finitc-dimensional, then a distribution is tantamount
to a probability measure on L. On the one hand, given a regular such measure
m, any vector f in L* represents a measurable function f(x), x € L, so that d( f)
= f(-) defines a predistribution. Conversely, given a predistribution, the cor-
responding probability measure m is definable on an arbitrary Borel subset B
of L by the equation m(B) = Pr{(d(f,).d(f>).....d(f,)) € B'], wherc B’ is the
subset of R" into which B is carried by the coordinate functions (f;,...,f,)
corresponding to some basis of L.

When L is infinite-dimensional, a regular probability measure m on L de-
termines a distribution on L, just as in the finitc-dimensional case. In general,
a distribution on L will not be of this form; in the special case that it is, it will
be called strict.

If L is a real Hilbert space, for example, it will be scen that given any
bounded positive selfadjoint operator C on L, there exists a unique distribution
d such that: i) d(x,),....d(x,) are jointly normally distributed for arbitrary
X).....x, (where L is being identificd with its dual in the usual way): and ii)
for arbitrary x and y in L. E(d(x)d(v)) = (Cx, v) and E(d(x)) = 0. where here
and henceforth E denotes expectation (i.c.. integral with respect to the proba-
bility measure). This distribution, called the centered normal distribution of



covariance C, is strict if and only if the operator C is of trace class. If for
example C = cl, the distribution is called the isonormal distribution of vari-
ance parameter ¢ on L. This distribution will be denoted by g., where the
subscript ¢ will be dropped when immaterial or clear from the context. The
isonormal distribution is invariant under arbitrary orthogonal transformations
UonL, in the sense that gV = g. However, it is by no means strict unless L
is finite-dimensional, in which case it corresponds to the Gaussian measure
dg. = (2mc)-"? e~ 22 dx, where n is the dimension.

The existence of a distribution d having specified joint distributions for
d(f,), ..., d(f,) for arbitrary finite sets of vectors f;, ... ,f, in L* follows by a
counterpart to a theorem of Kolmogorov on the existence of stochastic pro-
cesses with preassigned joint distributions at arbitrary, finite sets of times.
This counterpart is as follows in the simple and central case in which M is a
real Hilbert space.

THEOREM 1.4. Suppose that for each finite-dimensional subspace F of a real
Hilbert space H there is given a predistribution dy, with the property that if G
is a linear subspace of F, then di|G is equivalent to dg. Then there exists a
unique distribution d on H such that for every finite dimensional subspace F,
d|F is equivalent to dy.

ProoF. In order to reduce this thcorem to general representation theory, it
is convenient to make the

DEFINITION. Let L be a real topological vector space. A tame function on
L is one of the form F(x) = f(A(x),...,\A,(x)), where f is a complex-valued
Borel function on R", and A,,....), are vectors in L* (n < ), If A is any
linear subspace of L* that contains A,, ..., \,, F is said to be based on A.

Referring now to the theorem, let A denote the collection of all bounded
tame functions on the given Hilbert space H. Noting that a tame function
based on a subspace A is also based on any finite-dimensional subspacc that
contains A, it follows that the product and sum of tame functions is again
tame. It follows in turn that the bounded tame functions on H form a *-algebra
with F* defined as the complex conjugate of F.

For any bounded tame function F based on the finite-dimensional subspace
N of H, the expectation Ey is well defined (as the integral of F over R” with
respect to the probability measure on R” corresponding to d|N). If N’ is any
other finite-dimensional subspace on which F is based and which contains N,
then Ex(F) = E\(F), since dy|N is equivalent to dy. But it follows from this
that even if N’ does not necessarily contain N, then still Ey.(F) = Ex(F), for
N and N’ are both contained in their finite-dimensional linear span N, so



Ex(F) = EN(F) and En(F) = Ey.(F). Setting E(F) cqual to Ey(F) for any
finite-dimensional subspace N on which F is based, it follows that E is a well-
defined linear functional on A.

Obscrve next that the system (A, E, *) consisting of the algebra A, the linear
functional E, and the adjunction opcrator *, satisfics conditions characterizing
algebras of bounded random variables, apart from the essentially trivial pos-
sibility that E(|FI*) may vanish for some class of functions F in A (which in
the usual measure-theoretic description of random variables are represented
by null functions).

Specifically, the system (A, E, *) forms a commutative integration algebra,
meaning that: i) E(F*) = E(F); ii) E(F*F) = 0; and iii) |[E(G*FG)| = c¢(F)
E(G*G), for all F and G in A, where c(F) is a positive F-dependent constant.
Conditions i) and ii) are obvious, and iii) is satisfied with ¢(F) taken as the
supremum of F.

1t follows (SK, sec. 8.4) that there exists a probability measure space P and
a *-preserving homomorphism { of A into bounded mecasurable functions on
P (where the * on functions is defined throughout as the complex conjugate)
such that: i) ¢ is an isomorphism modulo the ideal of F € A for which E(F*F)
= 0, for which Y(F) arc null functions; and ii) E(F) = I(\(F)), where 1
denotes the integral over P. The requisite mapping d can now be defined by
setting d(A) equal to the unique mcasurable such that Y(F) = F(d(»),....
d(),,)) for the bounded tame functions F on an arbitrary finite-dimensional sub-
space F in H, on which A,, ... A, are linear functionals. The existence of this
mapping d, which effectively scrves to extend ¥ from the bounded tame func-
tions to arbitrary tame functions, which are in any event Borel functions of a
finite number of the A (x), follows by elementary functional analysis and is left
as an exercise. ]

ExaMPLE 1.6. Let H be a real Hilbert space, and C a bounded positive
selfadjoint operator on H; for arbitrary x, y € H, let S(x, ) = (Cx, y). On any
finite-dimensional subspace F of H, there is a unique normal distribution of
vanishing mean and covariance form equal to S|F, say dy.. This unicity implics
that if G is a finite-dimensional subspace of F, then d,|G is equivalent to d,;.
It follows that there exists a unique distribution n.- on H whose restriction to
any finite-dimensional subspace is normal with the indicated mean and covari-
ance operator.

Theorem 1.4 is formulated for Hilbert space for simplicity. the argument
applics equally well to general cases. The argument also shows that the con-
cept of distribution on a given topological vector space L is equivalent to that
of a normalized positive lincar functional E on the algebra A(L) of all bounded
tame functions over L, having the property that |[E(G*FG)| < c(F) E(G*G)
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for all F and G in A(L), where ¢(F) is a finite and depends only on F. The
general case is more easily stated in terms of the latter concept of an algebra
equipped with an cxpectation-value form.

COROLLARY 1.4.1. Let E be a linear functional on the algebra A of all
bounded tame functions on the given real topological vector space L, having
the properties:

E(l) =1, E(F*F) =0, |[E(G*FG)| = c(F) E(G*G)

for arbitrary F and G in A, where c(F) is finite. There then exists a probability
measure space P and a predistribution d mapping L* to the measurables on
P with the following properties:
1) d extends to a *-homomorphism (also denoted d) from A into the algebra
of all measurables on P, such that if F € A has the form F(x) = f(A(x),
<.+ AJ(X)), where f is a Borel function on R", then

d(F) = f(d(\),....d(A,)).

2) E(F) = Wd(F)), where 1 denotes the integral over P. Moreover, P can
be chosen so that d(A) is dense in L (P) for every p € [1, ®), and the pair
(d. P) is then unique within isomorphism. More specifically, given two
such pairs (d, P) and (d', P'), there is an isomorphism a from the mea-
surables on P 1o the measurables on P' such that d'(F) = a(d(F)) for
everyF e A,

PRroOF. This proof is similar to that for Thcorem 1.4 and is left as an cxer-
cise, with the remark that density of a *-algebra of bounded functions in L, (p
< =) of a probability measure space is equivalent to the property that the
minimal o-algebra of sets relative to which every member of the algebra is
measurable includes all measurable sets, apart from possible null sets. This
property guarantces uniqueness up to isomorphism of (d, P) and scrves to
avoid redundancy in P. (Cf. Glossary, Stone-Weierstrass Theorem for proba-
bility space.) (]

A probabilistic concept familiar in the finite-dimensional case is extended
in the

DEFINITION. If d is a distribution on the real topological space L. its char-
acteristic function y is the function on L*: u(A) = E(e™).

Its characterization is similar to that in the finite-dimensional case:

COROLLARY 1.4.2. A distribution is uniquely determined by its character-
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istic function. A given function W(\) on L* is the characteristic function of a
distribution if and only if:
1) W is positive definite and p(0) = 1,
2) the restriction of n to an arbitrary finite-dimensional subspace of L* is
continuous.

ProOF. We recall that for u to be positive definite means that 2,_,,~,
u(A, — Ao, = 0 for arbitrary A,.....A, in L* and complex a, ..., @,. Both
1) and 2) obviously hold if p is a characteristic function. On the other hand, if
u satisfies 1) and is continuous on the finite-dimensional subspace N of L*,
then by Bochner's theorem there exists a unique regular probability measure
I on N* of which |N is the characteristic function. This in tum determines
an expectation form Ey on the algebra of all bounded Borel functions of an
arbitrary basis A,,... .\, for N, regarded as measurable functions with respect
to ITy. Now allowing N to vary, and forming the union of the algebras of
bounded tame functions for cach N, yiclds the algebra A of all bounded tame
functions over L. It provides also a unique expectation value functional £
extending each Ey, and satisfying the criteria for a distribution in Corollary
1.4.1, with ¢(F) taken as the supremum of |F]. O

CAvEAT. Some care is nceded in the infinite-dimensional case in distin-
guishing between functions on the underlying space L, residue classes of tame
functions modulo the ideal J of all functions F for which E(F*F) = 0, and
clements of function spaces over the probability space P. This is a result of
the weakness of the distribution that may be in question, i.e., the lack of full
countable additivity. As a consequence of this, a vector in L,(P) nced not be
representable by a function on L; the Riesz-Fischer theorem carrics no such
implication. Conversely, simple operations on the functions on L do not nec-
essarily carry over to the residue classes mod J. For example, the induced
action on A of translations x — x + a on L is well defined: F(x) — F(x +
a). but is naturally extendable to the quotient A/J only if J is invariant under
such translations, which is in general not the case. In practice, an claborate
notation is not requircd to climinate confusion in these matters and will be
avoided, but on occasion it will be useful to use the notation 8 for the canonical
homomorphism from A to A/J. Itis also useful to make the following defini-
tions:

DEFINITION. Let d be a predistribution in the vector space L. extended to a
*-homomorphism from the algebra A of bounded tame functions on L to meca-
surables on P. Then the space of random variables in (L., d ), denoted M(L. d),
is defined to be the smallest subspace of the space of measurables on P con-
taining d(A) and closed under the operation of taking pointwisc a.e. limits



of sequences. The subspace of random variables f for which E(|f}) < = is
denoted as L,(L, d).

We leave as an exercise to check that if d and d' are equivalent predistribu-
tions on L, there is a unique scquentially continuous isomorphism a from
M(L. d) to M(L, d') such that a(d(F)) = d'(F) for all F € A. Thus given a
distribution ¢ on L, we may define the algebra of random variables in (L, €)
10 be M(L, d) for any predistribution d representing ¢, and the dependence on
d is incssential. Similarly, we define L, (L, e) to be L (L, d) for any predistri-
bution d representing e.

The following Scholium constructs (the casy) half of the Schrodinger or real
wave representation for distributions on an infinite-dimensional space.

ScHoLtuM 1. 1. For any distribution d on the real topological vector space
L, there exists a unique unitary representation V of the additive group of L*
on K = LJL, d) such that V(\)o(F) = e“»o(F) for all bounded tame func-
tions F, and which is continuous in the algebraic topology on L. Moreover |
is a cyclic vector in K for V.

Proor. 1t is straightforward to check that the mapping, say Vo(A), that car-
ries 8(F) into 8(e“™F), where F € A, is independent of the choice of represen-
tative for 8(F). In addition, V,(A) preserves the inner product in K = Ly(L,
d), and Vy(MV4(A') = Vy(A + A'), by casy arguments. Thus V(M) has the
inverse V,(—A) and can be extended uniquely to a unitary operator V(M) on
the closure L,(L, d) of 8(A). It follows that V is a representation of the additive
group of L* on K. To demonstrate the continuity, it suffices to show that
V(Mw is a continuous function of A for a dense set of vectors w in K, for
cxample, the 6(A), in which case the requisite continuity follows by domi-
nated convergence.

To show that 1 is a cyclic vector for the V(}), it suffices to show that the
o(e») span 8(A) in K. To this end it is adequate to treat the case in which A
ranges over a finite-dimensional subspace M of L* and A(M) is the corre-
sponding algebra of bounded tame functions, since the totality of the A(M) is
densc in K. Since this is a finite-dimensional question, 8 may be omitted. The
span of the V(A)1 in the finite-dimensional case includes all functions on L of
the form fe™)f(A) d A, where fis integrable, by a simple argument, and hence
all fi\(x), ..., A,(x)), where f denotes the Fourier transform of f. Such f are
dense in the algebra of all continuous functions of x that vanish at infinity on
R", and hence in the algebra of continuous functions of compact support,
which in turn is dense in L,(R").

Notions of the mean, variance, and continuity of distributions extend from
strici to general distributions, as in the



DEFINITION. If d is a distribution in L such that d()) is integrable for all A €
L*. and if there exists a vector a € L such that E{d(A)] = Ma) for all A € L*,
a is called the mean of the distribution d. If d(A) is square-integrable for ali A
and if E(dQA)d(A')) = C(\,\'), the form C(,*) is called the covariance form
of the distribution. When L is a rcal Hilbert space, the covariance operator of
the distribution is an operator C such that C(A, ') = (CA, \'), with the usual
identification between L and L* in the Hilbert space case. A bounded distri-
bution on a Banach space B is a distribution d such that ldA)|l. = cl[M|, where
c is a constant, and the notation |- ||, applied to a random variable indicates its
L, norm. A continuous distribution is a distribution d on L that is continuous
from L* to random variables, relative to a given topology on the space of the
latter. For example, let H be a rcal Hilbert space and A a densely defined
operator in H with domain D. If A is positive and selfadjoint, an argument
given previously shows that there exists a normal distribution on D with mean
0 and covariance operator A. If A and its inverse arc bounded, this distribution
is continuous in the L.-norm on random variables.

Problems

1. Evaluate the characteristic function of the normal distribution of mean 0
and covariance operator C, where C is bounded, positive, and selfadjoint.

2. Show that every vector a in the rcal Hilbert space H is the mean of a
unique normal distribution d whose restriction to each finite-dimensional sub-
space has centered covariance operator 1, where the centered covariance op-
erator, say B, is defined by the cquation

(Bx, y) = El(d(x) — d(b))(d(y) — d(b))],

where b is the mean of the restriction. Evaluate the characteristic function of
this distribution.

3. Evaluate the characteristic function of the normal distribution on the
given rcal Hilbert space H of given mecan in H and positive selfadjoint
bounded centered covariance.

4. Let H = L,(R). Let ¢, denote the characteristic function of the subset
[0, 1] of R, let g denote the isonormal distribution of variance 1 on H, and set
x(0) = g(c).

a) Show that for arbitrary positive 1, < 1, <---< t,, the random variables
x(1,. ) — x(1;) are stochastically independent (j = 0,1....,n; 1, = 0). Show
also that for arbitrary positive ¢ and 1, x(1) — x(1') is normally distributed with
mean 0 and variance |r — 1'|. (The stochastic process x{f) is thus equivalent to
Wicner Brownian motion. )

b) Show that x{r) is a continuous function of 1, in the L,-topology on random
variables. (A similar celebrated thcorem of Wiener asserts that each x(r) can
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be represented by a measurable function x(¢, *) on a measure space W, in such
a way that for almost all w, x(¢, ) is a continuous function of ¢ [cf., e.g.,
Doob, 1965].)

5. Show that a bounded distribution on a Hilbert spacc always has a mean
and a bounded covariance operator.

6. Let e,,e,,... denotc a complete orthonormal set in the Hilbert space H,
and let i, ,1,,... denote a sequence of independent measurables on a probabil-
ity measure space P with uniformly bounded second moments. Show that
there exists a bounded distribution fon H such that f(e)) = , (j = 1,2,...).

7. A group of measure-preserving transformations on a probability measure
space is said to be ergodic if the only measurables that are left fixed by the
group arc the constants. Show that the orthogonal group O(H) of a real infi-
nite-dimensional Hilbert space H acts ergodically on the space of random var-
iables over (H, g), where g is thc isonormal distribution. (This is in contrast
to the action of the orthogonal group on the isonormal distribution in the finite-
dimensional case, which is not at all ergodic. [Hint: O(H) leaves invariant the
joint distributions of the n(x,), ... .n(x,,) for arbitrary x,.,...,x,,.] It follows that
to cach T € O(H) there corresponds a *-algebraic automorphism a(T) of the
algebra M(H, g) of all random variables, which moreover leaves invariant the
cxpectation. [This is the operational form of a measure-preserving transfor-
mation. Representation by a point transformation is superfluous: it can always
be attained by a suitable choice of P, cf. SK, but this is superfluous here.] If
there is a nontrivial invariant element of M(H, g), then there is an invariant
bounded such random variable, which can be approximated arbitrarily closely
by a vector in L,(H, g), which in turn can be approximated arbitrarily closcly
in this space by a tame function. Now observe that O(H) cannot lcave any
such element of L,(H, g) invariant, for it can carry the function into one based
on an orthogonal subspacc.)

8. A tame subsct S of a real topological vector space L is defined as onc
whose characteristic function ¢y is tamec. Show that for any distribution the
functional m(S) = E(cy) is additive on the ring of all tame subsets.

9. Show that in the casc of the isonormal distribution in an infinite-dimen-
sional real Hilbert spacc H, the associated finitely additive measure m of Prob-
lem 8 is not countably additive. (Hint: let x, .X,.... be coordinates in H relative
to an orthonormal basis, let ¢, be a sequence (n = 1, 2,...) which is monotonc
increasing to o, and consider the tame sets S, = {x:x} + 22 + -+ + x2 > c,},
whose intersection is empty. Show that for suitable choice of ¢,, m(S,) is
hounded away from 0, using, for example, the central limit theorem.)

10. Let n denote the integral j( £.du(c), where g, is the isonormal distri-

bution of variance ¢ on H and dj(c) is a probability measure on (0, «<). Show
that n is invariant under O(H). Are all orthogonally invariant distributions of
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this form for some p? Does O(H) act ergodically on the space of random
variables over (H, n) if H is infinite-dimensional?

1.4. Quasi-invariant distributions

Although there is no nontrivial measure on an infinite-dimensional Banach
spacc that is invariant under all translations by vectors in the space, there exist
distributions that arc ‘‘quasi-invariant’’ in the sense that, roughly speaking,
the effect on them of such translation leaves their class of null sets intact. In a
finite-dimensional space this has a precisc meaning, since distributions are
then strict, and implies that they are equivalent in the sense of absolute conti-
nuity to Lebesguc measure (Mackey, 1952). Equivalently, quasi-invariant dis-
tributions are the indefinite integrals of functions vanishing only on a Le-
besgue null set.

Quasi-invariant distributions play a central role in the cxtension of the
Schrédinger represcntation to the infinite-dimensional case. Their structure is
much more complex than in the finite-dimensional case, and they are not at all
necessarily mutually absolutely continuous in any sense approximating the
usual onc. This section begins the extension of the absolute continuity concept
to distributions and its application to the treatment of quasi-invariance.

DEFINITION. Let d and e be given distributions in the real topological vector
space L. For any distribution din L, let 6, denote the canonical homomor-
phism of the algebra A of all bounded tame functions on L modulo the idcal J
of nul! functions, for the distribution d (or simply ¢ when d is clear from the
context). Then ¢ is absolutely continuous with respect to d (symbolically,
e < d) if there exists D € L,(L, d) such that forall F e A,

E[o(F)] = E,J60.F)D].

D is called the derivative of ¢ with respect to d and is denoted Dfe, d).

ScHoLium 1.2, Every element B of L,(L .d) is the limit almost everywhere
of a sequence of the form 8(F,), where F, € A and the range of F, lies in the
essential range of B.

Proor. For an arbitrary element u € L.(L, d), there exists a sequence {F,}
of tamc functions such that 8,(F,) — u in L(L, d). Taking a subsequence if
necessary, it may bc assumcd that 0,(F,) — u almost cverywhere. If f is the
identity function on the essential range of 1 and takes the valuc ¢ clsewhere on
C. where c lics in the esscntial range of u, then f is a Borel function and f
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04(F,) — f° u almost cverywhere; and f o 8,(F,) = 8,(f° F,) while fe u =
u. O

ScHoLIUM 1.3. The derivative D(e, d) is unique and nonnegative.

PRroor. If E,(8,(F)D) = E(8,(F)D') for some D/, then, choosing an appro-
priatc scquence and using dominated convergence, it follows that E,(BD) =
E,BD’) for all B € L., implying that D = D' If B is an arbitrary nonncgative
element of L., the same argument shows that E,(BD) = 0, showing that D =
0.

ExampLE 1.7. Let R be a set, R a sigma-ring of subsets including R, and r
and s two probability measures on R, with s << r. Let d be a linear mapping
from the given topological vector space L* to the measurables on the proba-
bility measure space (R, R, r), and for any A in L*, let e(A) dcnote d(\) as a
mcasurable on the probability measurc space (R, R, s). Then e is absolutely
continuous with respect to d in the foregoing scnse, by the Radon-Nikodym
thecorem.

The definition just made is further justified by

ScHoLiuM 1.4. With the above notation, e << d if and only if e and d can
be simultaneously represented, within equivalence, in the form given in Ex-
ample 1.7.

ProoF. The **if*’ part has already been disposed of, so assume that e and d
arc given predistributions over L such that e << d. It is no essential loss of
generality to suppose that d is represented in the form given in Example 1.7.
Now let ¢’ be the predistribution which carries an arbitrary clement A of L* into
d(\) as a mcasurable on (R, R, 5) where s is the probability measure on (R. R)
given by ds = Ddr. To complete the proof it suffices to show that e’ is cquiv-
alent to e; this means that if b is any bounded Borel function of n real vari-
ables, then

I bd\).....d0\) ds = Ej8,(b(A(),.... A (D).
By hypothesis. the expression on the right equals
Ef0,(b\ (). ... A, (IND]) = [ bld(\)).....d(\,)) Ddr,
which is the same as the expression on the left, since ds = Ddr. 0
DerFiNiTtON. Two distributions 4 and e in a given rcal topological vector

space are eqnivalent in the sense of absolute continuity, or algebraically equiv-
alemt, ife < dand d < ¢.



The Free Boson Field 27

A convenient criterion for weak equivalence in Hilbert space terms is given
by

SCHOLIUM 1.5. In order that two given distributions d and e in a given real
topological vector space L be algebraically equivalent, it is necessary and
sufficient that there exist a (fixed) unitary transformation U from L,(d) onto
L,(e) which transforms the operation of multiplication by d()\) into that of
multiplication by e(\), for all \ e L*:

U- 'M,Q)U = Md(k)»

where M, denotes the selfadjoint operator in L(d) consisting of multiplica-
tion by d(\), and M ,,, is the similar operator on L(e). Moreover, U is unique
if it is additionally required to be positivity-preserving.

PrOOF. Suppose first that d and e are algcbraically cquivalent. By virtue of
the absolute continuity of e with respect to d, they may be jointly represented
as in Example 1.7. Since d is absolutely continuous with respect to e, there
exists also an element D’ of L,(e) such that

Eje,F)] = Efo,(F)D']

for all F € A. Setting r’ for the probability measure on (R, R) such thatdr’ =
D'ds, then by the argument in the proof of Scholium 1.4, the predistribution
d' mapping A to d(A) as a mcasurable on (R, R, r') is equivalent to d. This
means that if f is any measurable function on (R, R) of the form b(d(},), ....
d(\,)), where b is a bounded Borel function on R” and A,, ..., A, are arbitrary
in L*, then

[fdr' = [fdr.

Since thesc f form a dense subset of both L,(r) and L,(r'), it follows that r =
r'.Hence DD’ = | a.c.*

In particular, D is invertible as a measurable, and the transformation U: f
— D~ "1 f is unitary from L,(d) into L,(e). It is immediate that U has the re-
quired transformation property on the densc domain of functions f supported
by a set on which D and D-! arc bounded. By a conventional approximation
argument this follows for all relevant fin Ly(d).

If. on the other hand. there exists a unitary operator U having the indicated
property. then by the unitary invariance of the operational calculus for com-
muting scifadjoint operators,

UMy, coalU = Muaiss, ine

b being an arbitrary bounded Borel function and A,, ... . A, any finitc subset of

* The abbrevintion **a.c.’’ means **almost everywhere ' —i.c.. except on a set of meusure zero.
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L*, where M, dcnotes the operation of multiplication by the measurable &. It
follows that if a(T) denotes U ~'TU for any operator T in the maximal abelian
of M(e) onto the corresponding algebra M(d) for d. Evidently, a is continuous
in the weak operator topology. It follows (SK, Schol. 6.5) that (a(T)1, 1), 44
has the form (Tx,, y,} ++++ + (Tx,.y,) for some finitc set of vectors x,,y,, ...,
XY in Ly(e). (Alternatively, the Radon-Nikodym theorem may be applied in
conjunction with the *-isomorphisms of M(e) and M(d) with the L. algcbras
of probability mcasurc spaces.) This means in particular that E(6(F)) =
E.(6(F)D) for all F € A, where D = Zx,y, is an element of L,(e). By symmc-
try, the same is truc when 4 and e are interchanged, so they arc algebraically
equivalent.

1t remains only to show the unicity of U when it is required to be positivity-
preserving; the cxistence of such a U is shown by the construction above. If
U, and U, both have the required transformation property and are positivity-
preserving, then U,~'U, commutes with all the My ,,.....40.,): but these gen-
crate a maximal abelian algebra of operators on Ly(d), and hence Ui 'U, is
itself a multiplication operator. Since it is positivity-prescrving as well as uni-
tary, it must be the identity. a

DeFINITION. The distribution d is called quasi-invariant in case for all a in
L. d is algebraically cquivalent to the distribution d,, dcfincd by the equation

d,\) = d) + (a. N

for all A € L*. For such a process, the measurable D(d,. d)* is called the
unitarizer for the transformation x — x + a.

ExaMpLE |.8. If L is finite-dimensional, d is quasi-invariant if and only if
the corresponding probability measure m on L is quasi-invariant in the classi-
cal scnse—that any translate m, by a vector a in L has the sanic null sets us m,
in which casc m is cquivalent to Lebesgue measure in the sensc of absolute
continuity.

The relevance of quasi-invariant processes to Weyl systems is indicated by

THEOREM 1.5. Let d be a given quasi-invariant distribution in the real to-
pological vector space L, algebraically topologized. Then there exists a
unique Weyl pair (U, V. K) over the dual couple (L, L*), with V and K as in
Scholium 1.1, and with U given as follows: If F is any tame function, and a is
arbitrary in L, then U(a)0(F) = o(F,)G(a), where F (x) = F(x + a) for all x
€ L, and G(a) is the unitarizer for the transformation x \— x + a on L.

Proo¥. Obscrve first that 8(F,) is indeed determined by 8(F), preciscly by
virtuc of the quasi-invariance of d. To show this. it suffices by lincarity to



The Free Boson Field 29

show that if 8(F) = 0, then 8(F,) = 0. Now
EJl8,(FOP] = E ll8,(F)I*) = E|0F)] D(d,.d)] = 0.

It is easily verified that the transformation Uy(a) defined on the tame mea-
surables in the indicated fashion is isometric, and so extends to a unique iso-
metric mapping U(a) from all of L,(d) into itself. Since Uy(a)Uy(b) = Uyla
+ b) by the chain rule for differentiation, U(a)U(a) = U(a + b), from which
it follows that the U(a) are unitary. The restricted Weyl relation follows in a
similar fashion, by first checking it on thc dense domain of bounded tame
mcasurables, and it remains only to establish the continuity of U(:).

By virtue of the unitarity of the U(a). it suffices to show that (U(a)x, x') is
a continuous function for arbitrary fixed bounded tame measurables x and x',
say x = 8(F) and x’ = 8(F'). Let G denotc a finitc dimensional subspace of
L* on which F and F' are based. Let d, denote the restriction of d to G. Then
d, is again a quasi-invariant distribution in L/G*, and by Examplc 1.8 corre-
sponds to an absolutely continuous probability measure of nonvanishing den-
sity on L/GL.

Now note that if e < d, so that E,[6.(H)] = E|8,(H)D] with D € L,(d) for
all bounded tame functions H, then for H restricted to be based on the linear
subspace G of L*,

E|8.(H)] = EJo,(H)D],

where D = D(e|G, d|G). It follows that (U(a)x, x*) = (Ug(alx, x')g, where
the subscript G indicates that the Hilbert space Ly(d|G) is involved. Thus it
suffices to establish the continuity in the case in which L is finite-dimensional;
and in this case it is an easy variant of the classical result of Lebesgue, to the
cffect that fgal f(x + @) — f(x)|2dx — 0 as a — O for any f€ L,(R"). O

CoroLLARY 1.5.1. With the notation of Theorem 1.5, there exists a repre-
sentation U of the additive group of L by unitary opcerators on K that is con-
tinuous relative to each finite-dimensional subspace of L, and satisfies the
restricted Weyl relation with V(-), if and only if d is quasi-invariant; and in
this case, U may be further restricted, and is then unique, by the requirement
that it be positivity-preserving.

Proor. That d is nccessarily quasi-invariant if U is of the indicated type
follows from Theorem 1.5. That the U(x) may all be chosen to be positivity-
preserving follows from the construction in the proof of Theorem 1.4. If U’(-)
is another mapping from L to the unitarics on K having the same propertics,
then for every x, U(x)~'U’(x) is a unitary operator which is both positivity-
preserving and commutes with all V()); by the argument given carlier, it must
therefore be the identity. O
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Problems

1. Show that there exists no translation-invariant distribution on a Banach
space. (Hint: reduce the problem to the finite-dimensional case.)

2. Calculate the unitarizer of a Gaussian distribution with given covariance.

3. Show that a o-finite Borel measure on R" that is absolutely continuous
relative to its translates is mutually absolutely continuous with Lebesgue mea-
sure. (Hint: use the Fubini thcorem.)

1.5 Absolute continuity

It has now been shown that for any given quasi-invariant distribution there
is a corresponding Weyl pair. This serves to show the existence of Weyl pairs
in the casc when L is infinite-dimensional oncc quasi-invariant distributions
are obtained. On the other hand, the latter are not so simple to come by as one
might naively anticipate. Indeed, in an infinitc-dimensional Banach space
there are no quasi-invariant distributions that are strict. This mcans that one
has to usc weak distributions, for which the criteria for absolute continuity,
and hence quasi-invariance, have to be developed.

Earlicr on, Cameron and Martin (1944) proved that Wiener measure on the
space W of continuous real functions on [0, 1] vanishing at 0 is quasi-invariant
relative to displacements by sufficiently smooth clements of W. Using this, a
corresponding Weyl system acting on L,(W) exists by Thcorem 1.5. However,
this Weyl system lacks natural transformation propertics relative to typical
physical symmetry groups. In this scction we develop criteria for absolute
continuity that arc adapted to quite general classes of Weyl systems. As a by-
product, the Cameron-Martin result follows in a maximally sharp form, ex-
emplifying the Hilbert space character of the underlying theory. We first recall
the

DerINITION. If P = (M, M, m) is a probability measure space with o-ring
M of measurable sets, and N is any sub-o-ring of M (always assumed inclu-
sive of & and M unless othcrwise specified), the conditional expectation of f e
L,(P) with respect to N, denoted on occasion as E{ f|N], is the unique measur-
able f* with respect to P' = (M, N, m|N) such that for all bounded mcasur-
ables g on P', E[ fg] = Elf'g).

THEOREM 1.6. Let P = (M, M, m) be a probability measure space, and let
{M,: \ € A} be a directed system of sub-sigma-rings of M, with M, C M,., for
A =<\, and such that M is generated by the union of the M,. Then a given
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probability measure n on M is absolutely continuous with respect to m if and
only if
i) n|M, is absolutely continuous with respect to m|M,; and
ii) denoting as D, the derivative of n|M, with respect to m|M,, then {D,} is
convergent in L,(P).
When i) and ii) hold, dnidm is the limit of D, in L,(P).

ProoF. Note first that if f is any integrable with respect to P, and if f, de-
notes the conditional expectation of f with respect to M,, then the net {f,} is
L,-convergent to f. To show this it suffices, since conditional expectation is a
contraction, to establish the conclusion for a dense set of integrables f. But all
integrables measurable with respect to some M, constitute such a dense set,
and the stated L,-convergence is trivially valid for any such f. This establishes
the **only if'" part of Theorem 1.6.

To prove the *if** part, let D denote the limit in L, of the net {D,}. Now if
f is bounded and measurable with respect to some M,, n{f) = m(fD,.) for
A’ = \, from which it follows on letting A’ T, that n(f) = m(fD). Since any
bounded measurable f is the limit a.e. of a uniformly bounded sequence of
measurables with respect to the M,, it follows in turn that n(f) = m(fD) for
all bounded measurables f. Thus n is absolutely continuous with respect to
m. O

COROLLARY 1.6.1. Condition ii) of Theorem 1.6 is equivaltent ta the con-
dition
ii') {D,%} is convergent in L(P).

Proor. The inequality |a*s — b%}? < |a — b| for arbitrary nonnegative real
numbers a and b shows that ii) implies ii'). On the other hand, from the rcia-
tion |a — b| = |a* — b“|la" + bY|, it follows via the Schwarz inequality that
If— gl =f* — g4l Ilf" + g*|l, for arbitrary probability densities fand g
with respect to m. But in this case ||/ + g*||; = 2 and the stated equivalence
follows. ad

DEFINITION. An indexed collection {M,,; o € Z} of sub-o-rings of the mea-
surc ring of a probability measure space is stochastically independent in casc
for every finite subset g,,...,0, of £ and bounded measurables f;., ... f, with
respect to M, , ..., M,_(respectively),

E(fi-+f) = E(f)--E(f,).

Terminology regarding infinite products will follow that of Titchmarsh
(1952). chapter 1, as extended to the case in which the index set is not neces-
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sarily countable, in a parallel fashion to the case of infinite sums treated in
SK. In particular, a product can converge only if its limit is nonvanishing.

COROLLARY 1.6.2. Let P = (M, M, m) be a probability measure space, and
let {N,; 0 € Z} be an indexed collection of sub-sigma-rings of M, which gen-
erate M, and are stochastically independent both with respect to m and an-
other given probability measure n on M. Then n << m if and only if n|N, <<
m|N,,, and the follawing product is convergent:

1 m(D,%),
0eX
where D, = D(n|N,,, m|N,).

ProoF. Let A denote the directed system consisting of the finite subsets of
Z, ordered by inclusion, and M, the g-ring generated by the elements of the
N, with 0 € A; the hypotheses of Theorem 1.6 are then satisfied. Now, if A is
any finite subset of £, D(n|M,, m[M,) = I1,,D(n|N,, m|N,) by virtue of the
stochastic independence assumption. Thus it is necessary and sufficient for the
absolute continuity of n with respect to m, setting D(n|N,, m|N,) = D, that

Il 11 D% — Tl D% |l,— 0inLy(m) as AA' 1.
o o\’

The squared inner product in question here is easily evaluated as
2-2{ M mD,"}
oA’

(where A denotes the symmetric difference). Thus it is necessary and suffi-
cient that
1 mD,))— 1.
oehAN'
Noting that m(D,") = 1 by Schwarz's inequality, this is the same as requiring
that I, m(D,,") be convergent. (|

COROLLARY 1.6.3. With the notation of Corollary 1.6.2, suppose that n|N,,
= miN,, for all 0. Then n << mif and only if m << n. (Thus abyolute continuity
implies equivalence.)

ProoF. The infinite product is unchanged when n and s arc interchanged,
since m(D,) = n(D,~"). O

Notc that the condition that 1, m(D,*) be convergent is casily scen to be
cquivalent to the condition that Z, (1 — m(D,*)) be convergent (cf. Titch-
marsh).
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SCHOLIUM 1.6. The centered normal distribution in a real Hilbert space H
with given covariance operator B that is bounded and has bounded inverse is
quasi-invariant.

ProOF. Note first that it suffices to consider the case of the isonormal pro-
cess with covariance parameter 1. For, suppose the conclusion has been at-
tained in this case. If d is the given centered process of covariance operator B,
set

e(x) = d(B~ "),

then e is isonormal, so for any vector a € H, there cxists a unitary operator U
on L,(d) such that

UM, U = M, + (x.a)l,
UManU-' = My, + (x. Ba)l,

showing that d is quasi-invariant.

Now suppose that g is isonormal with variance parameter ¢ = 1. Let {e,}
be an orthonormal basis in H; then the g(e,) are mutually stochastically inde-
pendent. If a is a fixed vector, it has the form a = £, a,¢,. and by Corollary
1.6.2 there is quasi-invariance as stated if and only if the infinitc product

1S {(2m) - exp(— Yalx + a,))} {(27) - “rexpl — Vax?)}])*: dx

is convergent. The o-th factor in this product is cxp( —%af,). so the product

is convergent. O

ExaMpLE 1.9. If e and d arc weakly equivalent quasi-invariant distributions
on a rcal topological vector space L, it is not difficult to show that the associ-
ated Weyl systems (given by Theorem 1.5) are unitarily equivalent, via the
operation of multiplication by the square root of the derivative of the one dis-
tribution with respect to the other. (The details arc left as an exercise.) Con-
versely. if these Weyl systems arc unitarily equivalent, then ¢ and d must be
weakly equivalent by Scholium 1.5.

The preceding scholium shows the existence of Weyl systems over any real
Hilbert space algebraically retopologized (but this changc in the topology will
soon be eliminated). It also shows thce nonunicity of these Weyl systems,
within unitary equivalence, in contrast with the unicity in the finite-dimen-

sional case established by the Stonc—von Ncumann Theorem. This is implied
by
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ExAMPLE 1.10. Let g denote the isonormal distribution of unit variance on
the real infinite-dimensional Hilbert space H, and let a and a’ denote any
positive constants. Then the distributions ag and a’g are weakly equivalent
only if @ = a’ For, by Corollary 1.6.2, there is absolutc continuity only if the
infinite product

N JI {(2na2)~" exp( — Vax?a'2)} {(2ra?) ~ " exp( ~ V2x¥a?)} | dx
oZ

is convergent. The factors in this product are independent of o, so there is
convergence only if all the factors are 1, which a simple computation shows
is not the case unless @ = a'. (A byproduct of this obscrvation is the result of
Cameron and Martin [1945] to the effect that the transformation f— af (a >
0) on Wiener space is absolutcly continuous only if a = 1.)

A useful extension of the carlier notion of characteristic function of a weak
process is given by the

DEFINITION. Let E be a state of a C*-algebra containing the operators W(z)
of a Weyl system W over L. The generating function of E relative to W is
defined as the function p such that:

wz) = E{W(z2)], zelL.

ExaMpLE I.11. If v is any unit vector in the represcntation space of W, the
generating function of the statc it detcrmines is p(z) = (W(2)v, v). If W is
associated with a quasi-invariant process as in Theorem 1.5 and v = 1, the
designation of the statc will ordinarily be omitted.

In the case in which L is built from a real Hilbert space H, the notation x@®y
will be used for an element of the direct sum HEOH.

THEOREM 1.7. The generating function of the Weyl system associated via
Theorem 1.5 with the centered normal process of covariance operator B on
the real Hilbert space H has the form

wxBy) = exp( — (B~ 'x, x)/8 — (By, ¥)/2) (x. vy € H).
Proor. By the method of proof of Scholium 1.6, the proof reduces to that
for the case B = 1. Now W(x®y) = Ux)V(—y)e<»?2, so
H(X@)’) = elta.n2 (V( _.y)l s U( —,\‘)l).

Here V(—»)I is 6(¢~'“), 1 being a dummy variable; U(—x) is multi-
plication by the unitarizer for the displacement ¥ — 1 — x. The inner
product in question here is thus the expectation of the tame function (e~
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e¥twn -~ Y9y which is based on the at most 2-dimensional subspace spanned
by x and y. This is an elementary Gaussian integral which is readily evaluated
from the formula

(27)~% [ exp(vx — Vavd)dx = exp(¥av?) (1.5)

as exp(Ya(—iy, + Yax))? + Ya(~iy, + Y2x,)? — Ya(x} + x3)) in terms of the
components of x and y in this space. The given expression for pu(xDy)
follows. ]

The case B = Y:l, corresponding to unit variance for the complex random
variable x + iy, is the most symmetric one.

DerRINITION. If H is a given real Hilbert space, the normal Weyl pair over
H is the Weyl pair (K, U, V) given by Theorem 1.5 for the isonormal distri-
bution in H with variance parameter ¢ = Y2. The normal Weyl system over H
is the corresponding Weyl system (K, W).

COROLLARY 1.7.1. The generating function of the normal Weyl system (rel-
ative to the state vector 1) is

w(xDy) = exp(— Ya(lixi> + [?)).
Proor. This follows from Theorem 1.7. O

DerniTioN. If H is a real Hilbert space, its complexification is the complex
space H€ of all pairs (x, y) with x, y € H. with the complex structurc and inner
product

ix,y) = (-y. %)
(), (2 y")) = € X + (ny') + iy x') — (¥

The normal Weyl system over H¢ is defined as that over H. It will be seen that
for a given complex Hilbert space H, the various choices of real subspaces H'
such that H = H'¢ give risc to unitarily equivalent Weyl systems.

COROLLARY 1.7.2. The normal Weyl svsiem over the complexification H¢ of
a real Hilbert space has the generating function
E(W(z)) = exp(— |z|*/4);

und the system is continuous not only in the algebraic topology on H¢, but in
its Hilbert space topology.

Proor. To show that W is continuous in the Hilbert topology. it suffices to
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show that (W(z)u, u') is a continuous function of z € H¢ for u and u’ in a dense
subset of the representation space K. Let D denote the algebraic span of the
W(2)1; since v is cyclic for W, D is dense in K. It suffices therefore to show
that

(W(2)W(z))], W(zx)1)

is a continuous function of z, z, and z, being fixed. Employing the Wey! rela-
tions and the form of the gencrating function, this follows. (]

COROLLARY 1.7.3. A sufficient condition that there exist a Weyl system over
a given symplectic vector space (L, A) is that there exists u real positive defi-
nite symmetric bilinear form S on L such that
i) convergence in L implies convergence relative to the S-norm, |xi| =
S(x, x)%; and
i) |A(x, y)| = c |l [yl

ProOF. Let L denote the completion of L with respect to S, and let K =
Ly(g) where g is the isonormal distribution on L. For arbitrary z € L and
bounded tame function fon L, lct W(2)8(f) be defined as

8(c4¢2) U(z2)e( f),

where U is as given in Theorem 1.5. Then Wy(2) is isometric on a dense linear
subspace of L,(g), and so extends uniquely to an isometry W(z) on all of L,(g).
It is readily verificd that for arbitrary z, z' € L,

Wo(z) Wo(2') = er=22 Wiz + 2'),

from which it follows that W satisfies the Weyl relations. In particular the W(z)
are unitary. To show that thc map z — W(z) is continuous from L to the
unitaries on K, it suffices to show continuity from L in the ||| topology; this
follows from Corollary 1.6.1 and the continuity of A on L.

Problems

1. Prove the existence of the conditional expectation f* = | £|S] of an inte-
grable f of a probability measure space P = (R, R, r) with respect to a sub-o-
ring S of R. Show that

a) |f'll, =fll, forp = 1,2, oroo;

b) (f') =f"

c) if g is a bounded measurable with respect to S, then (fg)' = f'g; and

d) if f is squarc-intcgruble, then f” is the projection of f onto the subspace
of L,(P) consisting of all thc clements of L.(P) that are mcasurable with respect
to S.
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2. Let (R, R) (j = 1,2,...) be a sequence of sets R, and a-rings of subscts
R, of R;; Ict m; and n, be countably-additive probability measurcs on R, that are
mutually absolutely continuous for all j. Show that the infinite product mea-
sures [1,m, and IT, n, are mutually absolutely continuous if and only if I [ (dm,
dn))* is convergent, where for absolutely continuous measures m and n, [ (dm
dn)": means [ (dm/dn)" dn. (This result is due to Kakutani, 1948.)

3. Show that there are no quasi-invariant strict distributions in an infinite-
dimensional Banach space. (Cf. Feldman, 1966.)

1.6. Irreducibility and ergodicity

The construction used in the proof of Corollary 1.7.3 does not result in an
irreducible Weyl system when L is finite-dimensional. The Schrédinger rep-
resentation is however irreducible. This section treats related aspects of irre-
ducibility and ergodicity.

DEFNITION. Let (M, M, m) be a given measure space; a nonsingular trans-
formation T on this space is a mapping of M into M that carries null sets into
null sets, and whose induced action on the measure ring (of all measurable scts
modulo the null sets) is an automorphism. A set of such transformations is
called ergodic if their induced actions leave invariant no clements of thec mea-
sure ring other than the images of & and M.

ScHorium 1.7. Let G be a given group of nonsingular transformations on
the finite measure space P = (M, M, m). Let U be the representation of G on
H = L,(P) given by the equation

U(a): fix) = fla~'(x)) [dmdm)*,

where m(E) = m(a~'E) for E € M. Then G acts ergodically on P if and only
if the totality of the U(a), together with the totality of all multiplication oper-
ators M f— kf (k € L.(P)), is irreducible on H.

Proor. It suffices to show the more general result that in any cvent, any
bounded lincar operator on H that commutes with all U(a) and M, is of the
form M,,, where h is G-invariant; i.e., h(a~'x) = h(x) a.c., forcachain G. If
h is invariant, then for any Borcl subset B of C, h~'(B) is also invariant, so if
G acts ergodically it follows that & must be constant a.e.

Now a bounded linear operator A that commutes with all M,, ke L., is itself
of the form M, for some & (cf. SK). Noting that

U@ M, Ua)"! = M, k(x) = k(a™'x),
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for arbitrary &, it follows that M, commutes with all M, and U(a) if and only
if it is G-invariant. d

ScHoLiuM 1.8. Let P = (M, M, m) be a given finite measure space: let M,
be a generating net of sub-o-rings of M, such that M, C M,. if A = \'; and
let G be a given group of nonsingular transformations on P. In order that G
be ergodic on P, it is sufficient that for every N, the subgroup G, of all trans-
formations T in G which leave M, invariant, modulo null sets, and are such
that dm,/dm is measurable with respect to M,, acts ergodically on (M, M,,
m) (or its measure ring).

ProOF. Suppose thal h is a G-invariant element of L..(P), and lct /, dcnote
its conditional cxpectation with respect to (M, M,, m). This means that

Johf = Jeh f
forall fin L, (M. M,, m). Applying T € G,,
Johyfrdmyidm = [o(hy o T-) frdm,.idm,
so that
Johfrdmpldm = [p(hy o T~") frdmy/dm.

Since dm/dm is mcasurablc with respect to M,, and sincc T leaves M, in-
variant, the product f; dm;/dm is measurable with respect to M, and ranges
over L,(M, M,.m) as f ranges over this same space. It foliows that hy = T-!
satisfies the defining cquation for h,, that is, h, is an invariant element of
L.(M,M,, m) under T, and hence under all of G,. By the ergodicity of G,, A,
must he a constant; but A, — h in L,(P) as Al so that h is a limit of constants
and hence itsclf constant. d

DEFINITION. A quasi-invariant distribution d is ergodically quasi-invariant
(or simply ergodic when the relevant transformation group is clearly that in-
duced from the vector translations in L) if there exists no nonconstant mcasur-
able K in L.(d) such that

UM U(x)~' = My

for all x € L, U(x) being as in Theorem 1.5.

This is the samce as requiring that a model exists for d in which the d(x) arc
measurables on a probability measure space P, and in which the automor-
phisms of the measure ring of P induced from translations of L act ergodically
on the measure ring.

ScHoLIUM 1.9. A normal distribution over a real Hilbert space with
bounded invertible covariance operator is ergodic.
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ProoF. By the argument given at the beginning of the proof of Scholium
1.6, it suffices to treat the case of the unit-variance isonormal process g on the
given real Hilbert space H. If N is an arbitrary finite-dimensional subspace of
H, any vector displacement by an element a of N leaves N invariant. The
derivative D(g,, g) is exp(— Yz(x, @) ~ Y4 {a, a)) and so is a tame function
based on N. Consequently Scholium 1.8 implies that ergodic quasi-invariance
in question follows from the same result for the finite-dimensional restrictions
£IN of g. This finite-dimensional ergodicity is equivalent to the characteriza-
tion of Lebesgue measure as the unique translation-invariant regular measure
onR". 0

Thus irreducible Weyl systems exist over infinite-dimensional spaces. but
there is no unicity within unitary equivalence, unlike the finite-dimensional
situation. There is, however, a considerable degree of unicity in the theory,
which comes from essentially three differcnt sources: (i) group invariance; (ii)
a positive spectrum condition; and (iii) C*-algebraic phenomenology. Aspects
of the first of these sources will be considered here, and the others later.

DEFINITION. A symplectic group representation is a system (L,A, G, S)
where (L. A) is a symplectic vector space as earlicr defined; G is a topological
group; and S is a continuous represcntation of G by invertible linear transfor-
mations on L leaving the form A invariant. It is a semirepresentation if, for
cach element of G, A is either invariant or transformed into its negative.

ExaMPLE 1.12. Let H be a complex Hilbert space, let A(x, y) = Im(x, y);
let G denote the group of all unitaries on H; and for U € G, let S(U) = U.
Then (H*, A, G, S) is a symplectic group representation. If V is an antiunitary
operator on H, it transforms A into its negative; replacing G by the larger
group of all unitary or antiunitary operators on H, a semirepresentation is ob-
tained.

DerFiNiTION. The symplectic group on a symplectic vector space (L, A),
denoted Sp(L,A), is the group of all real-linear invertible continuous transfor-
mations on (L, A) that leave A invariant; the extended symplectic group in-
cludes, in addition, those transforming A into its negative.

Given a symplectic group representation or semirepresentation (L, A, G, S),
4 (G, S)-covariant Weyl system over (L, A) is a triple (K. W, T"), where (K,
W) is a Weyl system over (L, A) as earlicr, and I is a continuous representa-
tion of G by unitary or antiunitary operators on K having the property that

F(@W@I(g)~' = W(S(g):2)
forall ge Gandz € L. A vector v € K such that |v| = [ and I'(g)v = v for



40 Chapter 1

all g is called an invariant or equilibrium state vector, and (K, W,T,v) is
called a G-covariant boson field over (L, A, G, §).

THEOREM 1.8. Let H be a given real Hilbert space, HE its complexification,
G the group of all unitary and antiunitary operators on H¢, and S(U) = U for
U € G. There is a unique (G, S)-covariant Weyl system (K, W, ') over HC,
such that (K, W) is the normal Weyl system over H¢, and for all U € G, T'(U)}
= 1.

PROOF. Note first that if any such covariant system exists at all, it is neces-
sarily unique by the irreducibility of the normal Weyl system. For if I', and
I'; both satisfy the conditions on T, then for z € HS, I'y(\)W(2)I'y(U)-! =
COWE(U)-1. 1t follows that ['y(U) I'(U)~' commutes with all the
W(z) and so must be a scalar Al; but since Av = v, A = 1.

Now let U be an arbitrary unitary in G and definc I'(U) as the transforma-
tion in the space K, consisting of the algebraic span of the W(2)1, given by
the cquation

Ly): 2 aWz)l — 2 a,W(Uz)1,

that this transformation is well defined. and in fact isometric, follows from the
computation
(S aW(z)l, ZBW)1) = 3 aB(W(-2z)W()1, 1)

[§]

= Ej a,B,exp(i Im(z,.z)/2) exp( —llz, = z||¥4);

the replacement of the z; by the Uz, does not affect the valuc of the last expres-
sion. Therefore ['y(U) has a unique isometric extension from K, to all of K
denoted as I'(U). From the casily verified result that [o(U,)[o(Uy) =
Fo(U,U,), it follows that the same is true of ', so that I is a representation.
To show that it is continuous, it suffices to show that (['(U)w, w') is a contin-
uous function of U, when w and w' range over a densc subset of K; c.g., the
algebraic span of the W(z)1, and a slight modification of the computation just
made, shows this.
If U is antiunitary on G, let ['(U) be defined as the representation

2 aWiz)l — T awu:)l,

then (V) is an antilinear isometric transformation, and an argument similar
to the forcgoing shows that there is a unique antiunitary transformation I'(V)
on K extending I'o(U). Now sctting I for the extension of the mappings I’
defined on the unitaries and antiunitaries separatcly to the full group, in which
the unitarics form a subgroup of index 2, the conclusion of the thcorem fol-
lows. 0
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DeFINtTION. Given a complex Hilbert space H, a conjugation on H is a
conjugate-linear norm-preserving map x from H to itself such that x? = I. The
real subspace H, is defined as the space of all vectors z € H such that ¥z = z;
such a subspace is called a real part of H.

For any conjugation % there is a natural isomorphism between H and the
complexification of H,, mapping the pair (x, y) in the complexification of H,
to the vector x + iy € H. Conversely, any orthonormal basis {e} in H deter-
mines a conjugation % such that xe, = e, and x(ie) = —ie,. H, is then the real
closed subspace spanned by the e,.

CoroLLARY 1.8.1. Let H be a given complex Hilbert space, and let H, and
H, be any two real parts of H. Then the normal Weyl system over H us the
complexification of H, is the same, within unitary equivalence, as that over H
as the complexification of H,.

Proor. If (W,K)) (i = 1,2) are the two Weyl systems in question, the
mapping
W,(2v, = W,(2)v,,

where v, and v, denote the measurable 1 in K, and K, respectively, extends
uniquely to the required unitary equivalence, by the argument in the proof of
Theorem 1.8. O

DeFINtTION. The normal Weyl system over a given complex Hilbert space
H is the system (K, W), unique within unitary equivalence, that is the normal
onc over any real part of H. The free boson field over H is the system (K, W,
T, v). likewise unique within unitary equivalence, where (K, W) is the normal
sysiem just defined, say over the real subspace H,: v is the measurable 1 on
H,; and I is the representation given by Theorem 1.8. The representation "
will be called the free boson representation of the extended unitary group on
H, and the vector v will be called the vacuum vector.

1.7. The Fourier-Wiener transform

Having obtained the representation I' of the extended unitary group, it is
natural to consider the questions of the more explicit appearance of this rep-
resentation and of its decomposition into irreducible constituents. To begin
with, thc simplest nontrivial case will be considered; that in which the real
Hilbert space H is one-dimensional. HE may then be identified with C, relative
to the inner product {a, B) = af. In this casc, the decomposition of K under
the action of I'(U(1)), where U(1) is the unitary group in 1 dimension. is
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equivalent to the expansion into Hermite functions in L,(R). However, to de-
velop the infinite-dimensional theory, it is helpful to proceed along more in-
variant lines.

Let g denote the probability measure on R:

dg = n~"1exp(—x?) dx.

The isonormal distribution of variance 1/2 on the real subspace R of C is strict
and corresponds to the measure g. Consequently, for the normal Weyl system
over R, K = L,(R, g), while W is the system derived from the Weyl pair

Ux): Flu) = F(u + x) e~ = = Yatxn),
V(y): F(u) > F(u) '@,

The vacuum v is represented by the function identically 1 on R. The general
unitary operator U on H corresponds to the operator z— ¢ z on C, 6 being a
fixed real number. The transformation I'(e’®) can be given by a singular ker-
nel, i.e., in the form

fx)— lin; I K(x, y) f(y) dy,

where K (x, y) is explicitly computable; in a different form it was given, on a
formal basis, by Mehler about 100 years ago. More exactly, by Stone’s theo-
rem, I'(e”) has the form I'(e®®) = e for some selfadjoint operator N (the
**harmonic oscillator Hamiltonian’'); and e~ is for 8 > 0 the integral oper-
ator with kemel

(1~ @ expl—(1 — @)= (@ + y) - 2am)],

where a = e~9. On analytic continuation in 8, this gives the singular kernel
indicated. In the case 8 = n/4, however, the transformation is very familiar
in another form: I'({) is similar to the Fourier transform.

Specifically, the unitary transformation of multiplication by m—%
exp(— ¥2x?), from L,(R, g) onto L,(R), transforms (i) into the Fourier trans-
form and transforms the pair (U, V) into the pair (U,, V,) given by the equa-
tions

Uo(x): f(u) = flu + x),
Vo(»): f(u) = e f(u).

The verification of this is left as an exercise.
The conventional Fourier transform on L,(R"),

f(x) > (2m) =2 [ e f(y)dy,

cannot be rigorously extended to the case of a Hilbert space (n ~ %), irrespec-
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tive of how the constants involved may be adjusted. This may be ascribed,
intuitively speaking, to the absence of an invariant measure in Hilbert space
relative to translations. One might conclude from this that there is no natural
extension of the Plancherel theory to the additive group of Hilbert space, as is
perhaps to be expected in view of its not being locally compact, but this would
be too hasty. There is a quite natural theory, invariantly associated with any
given Hilbert space, with the properties: (a) it is essentially equivalent to the
Plancherel theory when the Hilbert space is finite-dimensional; and (b) it is in
a certain sense even more invariant than the Plancherel theory. This transforms
simply under the euclidean group and fairly simply under the general linear
group. But the theory attached to a real Hilbert space is invariant not only
under the orthogonal group, but transforms simply under the unitary group on
the complexification. At the same time it extends and provides an invariant
reinterpretation of the transform in Wiener space previously developed by
Cameron and Martin.

In order to motivate the ‘‘Fourier-Wiener’* (or **Wiener’’) transform, as the
rigorous counterpart to the Fourier-Plancherel transform in infinitely many di-
mensions will be called, consider how the Fourier transform appears when
euclidean measure is replaced by the Gaussian measure dg = (2nc)-"2
e~ ‘== dx in R". If T denotes the Fourier transform on L,(R"), scaled as fol-
lows: f— (47) =2 [ e2f(y) dy; and if Z denotes the unitary transformation

f(x) _)f(x) [(23[0)""2 e-(x.x)ac]l/z

from L,(R", g) onto L,(R"), then F = Z-'TZ is the operator on L,(R} g) which
corresponds to the Fourier transform on L,(R"). It is not difficult to compute
the action of the operator F on sufficiently simple functions, e.g., polynomi-
als. The result is that for any polynomial p on R", Fp is the function

P(y) = [ p(2“x + iy) dg(x)

(the proof is left as an exercise). Observing that the form of this transformation
is independent of the dimension n (and also of the ‘‘variance’’ parameter c),
it is natural to consider the possible extension of the transform to the case of
an infinite-dimensional Hilbert space.

To facilitate the statement of a formal result to this effect, note that if fis a
complex polynomial on a real Banach space B, that is, a conventional poly-
nomial in a finite number of linear functionals on the space, then it has a
unique extension to the complexification of the space that is holomorphic as a
function on a complex space; thus f(x + iy) makes good sense for x, y € B
when f is a polynomial, although for a general tame function it is not defined.

THeoREM 1.9. Let H be a given real Hilbert space. and let P denote the
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algebra of all (complex-valued) polynomials over H. Let F,denote the map-
ping from P 10 P given by the equation

Fop = P;  P(y) = [up(2¥x + iy) dg(x),

where g is the isonormal process over H with variance parameter ¢ > 0. Then
i) Fy extends uniquely to a unitary transformation F on all of L,(g), the Wicner
Transform; and ii) Fyis onto P and has the inverse

Fo-'P =p:  p(y) = [uP(2"x - iy) dg(x).

PROOF. It should be noted first of all that any polynomial on a Hilbert space
actually lies in L,(g) as a tame measurable. The algcbra 6(P) is thus contained
in L,(g). Moreover, since P contains all linear functionals, 8(P) is mcasure-
theoretically separating (i.e., the minimal o-ring with respect to which all el-
cments of 8(P) are measurable includes all measurable sets, modulo null sets).
If the elements of 8(P) were bounded, this would imply the density of 6(P) in
Ly(g), by a result described carlier; however they are unbounded, and in gen-
eral it is falsc (even in the simple case of a polynomial algcbra on R) that a
measure-theoretically scparating subalgebra of L, of a finitc measure space is
dense in L,. It is nevertheless true that 8(P) is dense in L,(g); this is an infinite-
dimensional generalization of the density of the Hermite functions in L,(R).
This follows from the following result (which is best possible of its type, as
shown by cxamples in the theory of moments).

LEMMA 1.9.1. Ler A be an algebra of measurables on a finite measure
space M, which is measure-theoretically separating, contains the identity
function 1, and has a set of (algebraic) generators G all of which are such
that e¥'e L (M) for all p < . Then A is dense in Ly(M).

Proor. Supposc K is orthogonal to every element of A. If f,,...,f, are
among the given sct G of gencrators of A, which it is no essential loss of
generality to assumc to be real, then

J'flnlu.j;n,i = 0

for all nonnegative integers n,, ... .n, (and f° is defined as 1). Multiplying by
(ia))™ +++(ia,)"/{(ny)!+++(n,)!}, summing, and using dominated convergence—
noting that exp{|a;|| f;} +-+- + |aIf|] € L, by Holder's incquality and the as-
sumption that each exp(|f)) is in all L, for p < o,—it follows that

fexplita,f, +--+ af)I K = 0.

Setting F(b,.....b,) for the integral of K over the set A = {x e M: f,(x) <



The Free Boson Field 45

by,....[,(x) < b}, it follows from the general transformation propertics of the
integrals that

fexplitab, + -+ a,b,)] dF(b,.....b,) = 0.

By the unicity theorem for Fourier-Sticltjes transforms, F vanishes identically.
Thus [,K = 0 for all sets A of the indicated type. By the measure-theoretical
separation hypothesis, these generate the full ring of all measurable sets, mod-
ulo null sets; it follows that f,K = 0 for all measurable scts A, so that K =

0. O

ProOF OF THEOREM 1.9. There is no difficulty in verifying that F,is a lincar
map from P to P. To show that F,is an isometry, it suffices to show that E[pq]
= E|PQ), where P = Fopand Q@ = Foq, for p and q ranging over a sct D
that spans P (linearly); in particular, for the set of all functions p of the form
px) = (x, e;)m--+(x, e,)r, e,,....e, being an arbitrary finite orthogonal subset
of H, and the n, being nonnegative integers. By lincarity, it is no essential loss
of generality to take the orthonormal sets relative to which p and g have mo-
nomial cxpressions of the indicated type to be the same, so that p(x) = h,(x)™
s (xy", q(x) = hy(x}"--<h,(x), where h{x) = (x,e). Now denoting the
cxpectation of a polynomial in two variables x and y ranging over H with
respect to the variable x as E,, it follows from the stochastic independence of
the h; that

P(y) = E,lh(2"x + iy)m])---E,[h,(2"x + iv)™],

and that Q(y) is given by a similar expression. Using stochastic independence
again, it results that

EIPQ) = E|E,(h(2" + iy)™) EShy(2%x — iyyn)]--
E{E (h,(2%x + iy)™) E (h(2"x — iy)¥)).
Noting that
E| pq) = E hy(x)y™~m}--E,[h(x)m="],
it follows that it suffices to show that
EE(h(2"x + ivy)E,(h{2"x — iy)»)] = E,[h(x)ym*").

Since all the functions involved in the last equation are tame functions based
on the onc-dimensional subspace spanned by e¢,, the validity of the equation
reduces to the equality of two integrals over a one-dimensional spacc: more
specifically to the question of the validity of the cquations involving two in-
dependently (identically) distributed normal random variablcs x and y with
zero mean and variance parameter c,
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E(xm+") = E|E((2“x + iy)") E((2%x — iy)")]
(mn=20,12..) (1.6)

where E denotes expectation. To establish cquations 1.6, it suffices to show
that the products of cither side with s"/m!n!, summed overmandn = 0, 1,
..., are finite and equal for all real s and 1. Using dominated convergence, thcre
is obtained in this way on the left side the cxpression

(2rcc) =" [ expl(s + nNx — x¥2c] dx;
and on the right side thc expression
(2mc) =32 [f[ expls(2x + iy) + (2% — iy) — (x* + y* + w?)/2c]dxdydu.

These Gaussian integrals are easily evaluated using the formula 1.5, and are
equal, concluding the proof that Fyis isomctric.

That F, is onto* follows once the expression for Fg! is established. By an
argument similar to that used in the preceding paragraph, it suffices to obtain
the expression for the functionals p(x) = x" on a one-dimensional space. Thus
it suffices to show that if P(y) = E.((2"x + iy)"), theny" = E(P(2"x — iy)).
Now

E(P2x - iy)) = EJE((2"u + y + i24x)")],
so that the required equation can be expressed as
y = 2re)-' [ (2% + y + i2%x)"exp(— (u? + x?)/2c)dxdu(n = 0, 1,...).

To verify these, it suffices to show that after multiplication of either side by
s°/n! and summation overn = 0, 1, ... ,the same function of s € R is obtained.
This follows by dominated convergence and the evaluation of simple Gaussian
integrals. Noting that Lemma 1.9.1 shows that P is dense in L,(g), the proof
of Theorem 1.9 is complete.

Problems

1. Stieltjcs shows that there exist distinct probability distributions on R hav-
ing the same moments. Use this to show that there exists a measure-theoreti-
cally separating subalgebra of L, of a finite measurc space that is not dense in
L,
2. Prove Mchler's formula by the gencrating function technique of the pre-
ceding section.

* A mapping is onto (also known as surjective or exhaustive) if every member of its a priori
range is the image of some point in its domain.
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3. Let f be an arbitrary real function in H' = L,(R), let n be the isonormal
distribution on H’, and set y(1) = n(f}). where fi(x) = f(x + ). Show that y(r)
is a stationary Gaussian stochastic process, detcrmine its autocovariance func-
tion (1) = E(y(s)y(s + 1)), and show that ¢ is the Fouricr transform of an L,
function.

4. Show conversely that any stationary Gaussian stochastic process whose
autocovariance function is the Fourier transform of an L, function is of the
form given in problem 3.

1.8. The structure of I and wave-particle duality

In formulating a simple structure theorem giving the reduction into irreduc-
ible components of the normal boson field representation I' of the unitary
group, some aspects of tensor products of Hilbert spaces are needed. The basic
concept will be assumed known. In the case of identical Hilbert spaces, therc
is, as is straightforward to verify, a canonical unitary representation R of the
group S, of permutations of {1, 2....,n}, on the n-fold tensor product H" =
H®---®H of the complex Hilbert space H with itself, uniquely determined
by the condition

R(@): x,®++@x, > x,-1, 0@ x,, - 1,,,.

The elements of H" are called covariant n-tensors over H. The elements u of
H" such that R(a)u = u (resp. R(a)u = sgn(a)u) for all a € S, are called
symmetric (resp. antisymmetric). The set of all symmetric clements of H" is a
closed linear subspace K,,; it is spanned, as a Hilbert space, by the symmetric
tensors of the form x®---®x, having identical factors.

If T is a given operator on H, the tensor product 7®:+-®T (the uniquely
determined bounded linear transformation on H" that carries x,®---®x, into
Tx,®---®Tx,) will be denoted as Q,(T). The map T +— Q,(T) is a represen-
tation of the general linear group on H into the general linear group on H". It
is casily verified that R(a) and ,(T) commute for all « € S, and T € GL(H),
showing that ,(-) leaves invariant the subspace of all symmetric and all an-
tisymnietric n-tensors. The transformation Q,(5)|K, will be denoted as T',(S):
thus [",(-) is a representation of GL(H) on the space of all symmetric n-tensors
over H.

When H is finite-dimensional. it was shown by Schur that the only bounded
lincar operators on H” commuting with all Q,(T') are the linear combinations
of the R(a); from this it follows that the irreducibly invariant subspaces of H"
under Q, arc those of the form PH", where P is a minimal projection in the
algebra of linear combinations of the R(a). This algebra is a homomorphic
image of the *‘group algebra™* of §,. and the irreducible constituents of H”
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under €2, can be read off from Young’s determination of the irreducible rep-
resentations of S,,. These results can be extended to the case when H is infinite-
dimensional, but we treat here only the symmetric (and in Chapter 2 the anti-
symmetric) subspace involved in physical quantum field theory.

It will be convenient to define the space H® (resp. K,) of all 0-tensors (resp.
all symmetric O-tensors) as C, relative to the inner product: {a, B) = af, and
to define I'y(V) to be the identity map on C if U is unitary, and complex
conjugation if U is antiunitary. The Hilbert space direct sum K’ = ? K, of
the spaces of all symmetric covariant tensors over the given complex Hilbert
space H—of all ranks n = 0, 1,...—will be called the (Hilbert) space of all
(covariant) symmetric tensors over H, and may be denoted as e®. If U is uni-
tary (or antiunitary) on H, the direct sum I''(U) of the T',(U) (n = 0, 1,...)
is unitary (or antiunitary) on K’. Evidently I’ is a representation of the ex-
tended unitary group on H. Each I',(*) is continuous both in the uniform and
strong operator topologies; I''(-), however, is continuous only in the strong
operator topology.

For any x € H, (left) tensor multiplication by x, as an operator on H", is the
unique bounded linear transformation from H" to H"* " that carries x,®---®x,
into x®x,®:--Q®x,, for arbitrary x,,...,x, in H. For any n, the symmetrization
(resp. antisymmetrization) operator S (resp. A) on H" is defined to be the pro-
jection onto the space of symmetric (resp. antisymmetric) tensors. These op-
erators are determined by

S(X|®"'®x,,) = 1/n! E Xul)®"'®x;‘(,,)',

Ax,®:--Qx,) = 1/n! g sgn(\) x,,®- - ®xy,)-
S

Symmetrized tensor multiplication by x is the result of following tensor multi-
plication by symmetrization. Note that symmetrized multiplication by x in H
gives the same result whether left or right multiplication by x is used.

The complex-linearity of the underlying Hilbert space makes possible the
introduction of creation and annihilation operators, which are algebraically
quite convenient and much used in physical practice. If W is a Weyl system
over the complex inner product space H, and ¢ is the associated Heisenberg
system, the creation operator C(z) for an element z of H is defined as

2-Y%(d(2) — id(iz));

the annihilation operator C*(z) as

2-%(d(2) + id(iz)).
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ScHoLuM 1.10. Forany z € H, C(z) and C*(z) exist, are closed and densely
defined, and satisfy the relations

C(az) = a C(2), C*(az) = a C*(2)

for arbitrary nonzero o. € C. For any z € H, C(z) and C*(z) are mutually
adjoint on D(b(2))ND($(i2)). For arbitrary zand z' in H,

[C@), C*u = —(z,2')u
for all u for which the left side is defined.

Proor. This follows from Theorem 1.1; details are left as an exercise. [

In the statement of Theorem 1.10, primes are introduced to differentiate
between the two Hilbert spaces K and the two representations I introduced in
connection with integration in Hilbert space on the one hand, and tensor
spaces on the other. As a result of the theorem, however, the primed and un-
primed structures are seen to be unitarily equivalent, with the effect that the
primes may be dropped and the coincident notations justified.

THEOREM 1.10. Let H be a given complex Hilbert space, and let (K, W,
[, v) denote the free boson field over H. Let K' denote the Hilbert space e
= @ K,,. For any unitary or antiunitary operator U on H, let I''(U) denote
the &irect sum of the operators I (U) on K, where I (U) is the restriction to
K., of the n-fold product U®++-QU (n = 0, 1,...). Let v' denote the O-tensor
1. Then there exists a unique unitary operator T from K' onto K with the
properties

1) T-'\T(U)T = T'(U);

)TV = v;

3) if C(2) is the creation operator for z corresponding to the normal Weyl

system, then T~ *C(2)T is the closed direct sum of the operators (n + 1)1
times symmetrized tensor multiplication by z, acting on K,.

ProoF. The unicity of 7 will follow from the irreducibility of W. The exis-
tence of T will be shown by an explicit construction. To this end and for later
purposes some further aspects of tensor algebra over Hilbert space are noted.

Let H be a given complex Hilbert space. If u = ? u, with u,, in H", and if
u, vanishes for all sufficiently large n, then u is said to be of finite rank k,
where £ is the maximal index n such that u, # 0 (0 is of rank — ); if all u,
= 0 except when n = k, u is called a pure tensor of rank k. If u and u' are
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tensors of finite rank their product u®u’ is defined as the tensor 5? w,, where
W, = Z, e tQuy!

ScuoLiuM 1.12. The tensors of finite rank over a given Hilbert space form
an associative algebra with unit over C, and multiplication is continuous, rel-
ative 1o any subset of bounded rank.

Proor:. The proof is left as an exercise. O

DEFINITION. The symmetric (resp. antisymmetric) product of two tensors of
finite rank is defined as their ordinary product, followed by symmetrization
(resp. antisymmetrization). This result is the same as the projection of the
product on the subspace of all symmetric (resp. antisymmetric) tensors, where
the tensor u is said to be symmetric (resp. antisymmerric) if each of its com-
ponents is such. The symmetric product will be denoted by the symbol \/ and
the antisymmetric product by the symbol A.

ScHoLiuM 1.13. The symmetric (resp. antisymmetric) tensors of finite rank
over a given Hilhert space H form an associative algebra with unit over C;
relative to symmetric (resp. antisymmetric) multiplication.

The symmetric algebra is commutative. In the antisymmerric algebra x/\y
= —y/Ax for arbitrary x, y ¢ H.

PrOOF. Left as an exercise. a

The multiplication of tensors can be extended to be continuous when only
onc of the tensors is of finite rank. or to put it another way:

SCHOLIUM 1. 14. The set of all tensors over H (resp. symmetric or antisym-
metric tensors) form an associative left and right module over the algebra of
tensors of finite rank (resp. symmetric or antisymmetric tensors) in a unique
fashion extending the earlier defined multiplication so that multiplication is
Jointly continuous in the two factors, when the factor of finite rank is restricted
to have bounded rank.

Proor. Straightforward and again left as an exercise. a

An algebraic tensor over H is defined as a tensor u of finite rank such that
u, € H""", wherc “'alg’ indicates the algebraic tensor product. It is evident
that the sct of all algebraic tensors is a subalgebra in the algebra of all 1cnsors
of finite rank, and is dense in the full tensor algebra (and the same is truc with
symmetric or anlisymmetric restrictions). In the symmetric case, the algebra
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of all algebraic tensors is identifiable as follows, where the notation x* indi-
cates the n-fold product x\/x\/++\/x.

ScHOLtUM 1.15. Let H denote the complexification of the real Hilbert space
H,, and for any algebraic symmetric tensor u over H, let f, denote the func-
tional on H,.: f,(x) = Z,{u,, x"). Then the mapping M: u\— f, is an algebraic
isomorphism of the algebra of all algebraic symmetric tensors over H onto the
algebra of all polynomials over H,, and is the unique such isomorphism that
carries any element x € H,, into the corresponding linear function on H,.

ProoF. This is for the most part a well-known algebraic fact. The proof is
again left as an exercise. O

The gist of the next lemma is the existence of the operator T on a dense
domain.

LEMMA 1.10.1. Let P’ denote the set of all algebraic symmetric tensors.
For arbitrary c > 0 let Z_denote the linear operator on P' that divides a tensor
of rank n by (2c)y(n')"1. Then the map T, = F.MZ_, where F, denotes the
Wiener transform for the isonormal distribution of variance parameter c, is
isometric into L,(H,,, g..), where g denotes the isonormal distribution of vari-
ance parameter 2c¢, and extends uniquely to a unitary transformation from K’
onto L,(H,, g.,).

ProoF. Note that the Wiencr transform is involved here with respect to the
isonormal process whose variance is half that of the process with respect to
which the cited L,-space is formed; it would bc impossible to have the same
variance in both cases, for the Wicner transform is then unitary, while the
factor MZ, is not. Note also that although the Wicner transform F.. has no
meaning in the entire space L,(H,, g..), it is well defincd on polynomials, and
maps into polynomials, which are in all the spaces L,(H,, g,) for arbitrary k.

To establish the lemma it suffices to show that the operator T, = F.MZ,
carries an orthonormal basis for P’ into an orthonormal basis for L,(H,.. g..).
which may be denoted here as K. To this end. let {¢,} be an indexed ortho-
normal basis for H,, where A varies over the index set A; let n(-) denote an
arbitrary function from A to the nonnegative integers, having the property that
n(x) = 0 except for at most finitely many A; and let N denote the set of all
such functions n(-). For each n(-) € N, let x,,, denote the polynomial in the
symmetric algebra (n!/IT,n(A)1)" I e,"™; busis vectors e, having zero expo-
nents arc defined as |, and so may be deleted; and n = Z,n(R). The elements
X, Span P’ algebraically, by an essentially finitc-dimensional argument. They
are also orthonormal. To see this, note that for arbitrary v,....,v, in H.
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Applying this computation to the case in which the x, and y, arc clements of
the orthonormal basis {e,} it follows that x,, is orthogonal to x,., unless
n(+) = n'("), and that {x,.,, x,.,) = (M/TLaA)) (n!)- ' TL,n(A)! = 1.

Thus, to establish the lemma, it suffices to show that the Tx,,, are orthog-
onal and span K (topologically). The latter follows from (i) the fact that if p(x)
is any polynomial on H, in the inner products (x, e,), then p = T,u, where u
is the algebraic clement Z-'M-'F- 'p of K'; and (ii) the observation that poly-
nomials over H, in the inner products with the clements of a fixed orthonormal
set are dense in Ly(H,, g), by thc same argument as in the case of all poly-
nomials. It is only necessary to observe that the subalgebra in question is mea-
sure-theoretically separating. The linear functionals (x, a), a being arbitrary in
H,, are separating. If a, — a, 8((x, a,)) = 0({x, a)) in L,, so the {x, a) are
separating when a ranges over a dense set, and hence also if a ranges over any
orthonormal set, such as the e,.

To show that the Tyx,, are orthonormal, note that T,x,,, is the polynomial
F.(I, ps..any), Where p, , is the polynomial on H,: p, (x) = (x, e,)’r,(c), where
r(c) = [j! (2c)’1" with the convention that p, 4(x) is defined as being identi-
cally 1 for all A. The Wicner transform (of any variance parameter) carries a
product of polynomials based on orthogonal subspaces into the product of their
Wiener transforms by inspection of the definition and the stochastic indepen-
dence of polynomials based on orthogonal subspaces. Thus F(I1, py o) =
IT,F.(p,..a,), showing that it suffices to show that the F.(p, ,.,) form an or-
thonormal set in K as A and n(-) vary, or simply that the F (p, ) are such for
any fixed A as j varies. The latter polynomials are based on the onc-dimen-
sional subspacc spanncd by e,, so the problem reduces to the treatment of the
casc in which H, is one-dimensional.

It is sufficient therefore to show that if H, is R with the inner product {(a, b)
= ab, and if p,(x) = r(c)x, then the F,p, are orthonormal in Ly(R, g,,), where

dg(x) = (25c)~ " exp( — x¥2c) dx.

To this end, the expression

Y (F.p,, F.p) st j k! r(2c) ri(20))

Jk=0
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can be evaluated by dominated convergence as (F e, F.e*) (all inner products
being in L,(R, g,.), and x being a dummy variable). This is readily evaluated

in turn as e> = 2 (2cs1)//j!, implying the stated orthonormality.

)=0

DEFINITION. For arbitrary z € H, Cy(z) denotes the linear operator in K’
with domain P’ consisting of the algebraic symmetric tensors, such that if u €
P’ and if u is pure of rank n, then

Co(2) = (n + D)% 2\u.
&y(2) is defined by the equation
bo(2) = 27(Cy(2) + Col2)*);

it follows that Co(z) = 2~ %(dg(z) — idg(iz)). (In this connection, note that
Ci(2) is bounded from the algebraic n-tensors to the algebraic (n + 1)-tensors.
Ci(2)* is consequently bounded from the algebraic (n + 1)-tensors to the al-
gebraic n-tensors, and in particular its domain contains P’; thus ¢(z) has do-
main P'.)

For x € H,, &4(x) is denoted as Pq(x) and — dg(ix) as Qq(x); thus 2Cy(x)
= Po(x) + iQq(x).

If W is an arbitrary Weyl system over the complex inner product space H,
with associated Heisenberg system &, then relative to a given real subspace
H, corresponding to a conjugation » on H, P(-) and Q(-) are defined as follows:
for arbitrary x € H,, P(x) = &(x) and Q(x) = — &(ix). In the case of the free
boson field, the restrictions of ¢(z), P(x), and Q(x) to the polynomial algebra
P will be denoted as dy(2), Po(x), and Qy(x) (resp.).

LemMA 1.10.2. Let h be a real measurable function on a measure space M,
and let E denote a dense subset of L(M) such that hf € E for all fe E. If e f
€ L(M) for all sufficiently small € > 0 and f € E, then the operator f+—> hf in
LA(M) is essentially selfadjoint in E.

Proor:. Otherwise there would exist a nonzero element g in L,(M) such that
cither (hf + if.g) = O forall fe E, or (hf — if, g) = O for all fe E, The
following argument applics in either case (for specificity, suppose (hf — if. g)
= 0 for all fe E): defining h° as 1, (h'f, g) = i(f. g) fork = 0. I.....s0 that

> (. g)ie)ik! = 2 (—€Wk! (f. g).

The assumption that e'™f € L,(M) for all f € E validates the interchange of
summation and intcgration, and it results that
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[enfg = e 3.
Since E is dense, this equation must hold for all fe L,(M). It follows that e**g
= e~<g almost everywhere, for all sufficiently small positive €. It follows in
turn that ih -+ | vanishes a.e. on the set where g is nonzero; as h is real valued,
this set must be of measure zero, i.e., g = 0. O

LEmMA 1.10.3. Let x be arbitrary in H,, and let {e,} be any maximal or-
thonormal set in H,; the restrictions of &(x) and of $(ix) to the algebra of all
polynomials p(y) on H, in the inner products (y, x) and (y, e,) are then essen-
tially selfadjoint.

PrOOF. The algebra in question is dense in K, and invariant under ¢(ix),
which is multiplication by (y, x) within a constant factor. Furthermore, et
is in L,(H,, g) for all p < «, where g denotes the isonormal distribution on
H,, since (x, y) may be identified with a normally distributed random variable.
Consequently, Lemma 1.10.2 is applicable and shows that the indicated re-
striction of ¢(ix) is essentially selfadjoint. Since the cited algebra is invariant
under the Wiener transform, and this carries ¢(x) into ¢(ix), the indicated
restriction of ¢(x) is also essentially selfadjoint. O

LEMMA 1.10.4. T, transforms Py(x) and Qy(x) into Py(x) and Q(x) respec-
tively, for all x € H,.

ProoF. Consider first the case of Qy(x); it is to be shown that T 'Qy(x) Tou
= Qo(x)u, for every x € H, and algebraic symmetric tensor u. Choosing a
maximal orthonormal set {e,} in H, which contains a nonzero multiple of x
and such that « is a finite linear combination of symmetric products of the e,,
it follows that it suffices to show that

T 'Qu(X)Tg X,y = Qu(x) X,

for all x,,, as involved in the proof of Lemma 1.10.1, where x = ¢, for some
fixed p. It is readily computed that

2% 0 Qg(x) Xpy = (A(W) + 1) Xy — (M(W))*: X,

where n'(A) = n(d) + 8,, and n"(A) = n(A) — 8,,,, with the convention that
X, = 0if n(A) < O for any A. Thus

2% Ty Qo(x) X
= (n() + D% Tyx,, — (AW)*% To X,
= (n(w) + 12 IL{r.ac) F(, e)"™)]
— ()" TLreoc) FAC, e)™)].
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On the other hand, the formula

St () e, ) = expl(e/2)  + is -, x)] (1.7)

n=0

is obtainable by dominated convergence and the evaluation of a Gaussian in-
tegral, x' being arbitrary in H,. Differentiation with respect to s and compari-
son of coefficients yields the equation

CxVFLlx)) = den FA»C, X'y = iF L, 1))

(n = 0,1,2,...; as earlier a negative index denotes a vanishing quantity).
Setting x* = e,, it follows by a simple computation that

2% (‘v‘-’u) ToXuy = (n(p) + 1)% ToX,y — (n(w))* ToXory

Thus T 'Qy(x)T, and Qg(x) agree on the algebraic symmetric tensors.
In the case of Py(x), it suffices similarly to show that

T5 'Po(X)ToXp = Po(x) Xy,

For any x' € H, let d,. denote Frechet differentiation in the direction x’, applied
to functions F on H,;: 8,.F = lim_ o€ '[F(y + €x') — F(y)]. The application
of 9, to both sides of equation 1.7 and comparison of coefficients show that

O F((-, X)) = inF (-, x' )"~ ") (x’ x').
From this it can be inferred, as in the case of Q,(x), that
2% Po(x,)ToXn = (n(W) + 1) Tox,y + n(1))* ToX iy

A simple computation shows that this is the same as 2"2T0P(,(x,.)x,,,,,. 0
LEMMA 1.10.5. T, transforms Cy(z) into Cy(z), for all z € H,.

Proor. This is an immediate consequence of the more detailed Lemma
1.10.4 and the complex-linearity of C(z) as a function of z. (|

COMPLETION OF PROOF OF THEOREM 1.10. Note first that for any unitary
operator U on H, I'"(U)Co(2)I ()~} = Cy(Uz), by straightforward applica-
tion of the definitions involved. Now setting T for the closure of T *. to show
that the two unitary operators TT'(U)T - and I"'(U) agree, it suffices to show
that they agree on a set of vectors spanning a dense domain in K'. The vectors
of the form C;(z,)+++C¢(z,) v'. where z,, ...z, is an arbitrary finite ordered set
of vectors in H,, form such a set; indeed, the x,,, have this form, within a
constant factor. That is, it suffices to show that

C(U)T~1 Colzy)++Co(z,) v/ = T T"(U) Cy(z,)---Colz,) v'.
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Now
T-'T'(U) Co(z))++-Culz,) V'
= T-'T'(U) Cyz) T'(U)~ 4+« T'(U) Coz) T'(U)-'T'(U) v
= T-'Co(Uzy)++-Co(Uz, V',

applying Lemma 1.10.5, the latter vector is Co(Uz,)++Cy(Uz,)v. On the other
hand, T-'Cy(z,)++-C¢(z,) »' is, by Lemma 1.10.5, equal to Cy(z,)+--Cy(z,) v.
Applying I'(U) to this vecetor gives

LW)Cz)rWw)-t---rU)C(z,)I'U) - 'v.

Since T(U)W(2) T(U)-' = W(Uz) for arbitrary U and =z, ['(U)d(z)[(U)~?
= ¢(Uz), hence I'(U)C(2)I(U)-' = C(Uz). The vector in question is there-
fore C(Uz,)-+-C(Uz,)v, as required. a

Problems

1. Show that T, (that is, the representation I restricted to K,) is continuous
in the uniform, strong, and weak operator topologies, while I' itself is contin-
uous in the strong and wcak topologies but not the uniform topology.

2. Prove that multiplication of tensors of finite rank over a Hilbert space H
is not jointly continuous (rclative to the Hilbert space topology on EB H") if
ncither factor is restricted to have bounded rank.

3. Given a selfadjoint operator A in H, show that dI'(A) restricts to a
densely dcfined selfadjoint operator in K, with range contained in K,,, and
describe this operator (as well as its domain) explicitly.

4. Show, using Problem 3, that if A is a nonnegative sclfadjoint opcrator in
H then al'(A)" = aI'(A") forn = 1.

5. Show that, up to normalization, the Wiener transform of the function x"
on (R, g) is the nth Hermite polynomial.

6. Let A be a selfadjoint operator in H such that there is an orthonormal
basis {¢,} of H with Ae, = Ae,. Show that aI'(A) cquals the closure of Z, ),
C(e)Cle)*.

7. a) Show that the restriction of I, to the subgroup U,(H) of all rcal uni-
taries on H that commute with the (arbitrary) given conjugation x on H is
irreducible if and only if H is infinitc-dimcnsional.

b) Generalize (a) to the other irreducible components of the n-fold tcnsor
product of H with itself, for the case when H is infinitc-dimensional.

(Results a) and b) arc duc independently to K. Okamoto et al. and J. Pe-
dersen.)
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1.9. Implications of wave-particle duality

COROLLARY 1.10.1. For each x € H,, Py(x) and Qy(x) are essentially self-
adjoint, and their closures P'(x) and Q'(x) are such that (K, P, Q') is a Hei-
senberg pair over H,,.

PROOF. Since Pg(x) and Qq(x) arc unitarily equivalent via T to essentially
selfadjoint operators having the indicated propertics, they themselves have
these (unitarily-invariant) propertics. 0O

COROLLARY 1.10.2. T transforms I'(ily) into the Wiener transform.

PROOF. It has earlier been shown that the Wiener transform carries P(x) into
—Q(x). and Q(x) into P(x), for ali x. On the other hand, from the relation
[U)Co2T'(U)-* = Cy(Uz2) it follows on taking U = il that I''(il) trans-
forms Py(x) into — Qq(x) and Q,(x) into Py(x), and hence transforms their clo-
sures similarly. By the irreducibility of the totality of the e’ and "¢, the
Wiener transform is uniquely determined within a constant factor by this prop-
erty; the constant factor is determined by the property that 1 is carried into 1.
It follows by unitary equivalence that I''(il) is similarly characterized within
a constant factor by the manner in which it transforms P’(x) and Q'(x), and
the constant factor may be fixed by the requirement that v’ be carried into v'.
Since T carries v into v', it must transform I'(il) in the indicated fashion. [

COROLLARY 1.10.3. Let {e,} be a maximal orthonormal set in H,. The Hil-
bert space K’ of all symmetric tensors over H is unitarily equivalent to the
space Lo(M), where M is the tensor product of dimH, copies of (R, g.), where
dg. = (2mc)~'2e " dx, in such a way that Q'(e,) is the operation of multi-
plication by (2c)~** a,, where a, is the function on M mapping the generic
element a € M into its A-th coordinate. P'(e,) is represented in its action on
the representative in L.(M) of an algebraic symmetric tensor as follows:

[ —i(2c) dfida, + i{2¢) " a,f

(any such representative f being equal a.e. to a polvnomial in a finite number
of the a,).

Proor. The tensor products of the members of an orthonormal basis in
L.(R. g). including 1, form an orthonormal basis in L.(M). Setting F, for
(n!)~* Fy(x") on R (where x is a dummy variable) provides such an ortho-
normal basis in L,(R, g). The proof of Lemma 1.10.4 shows that P'(x) and
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Q'(x) correspond in the representation of Corollary 1.10.3 to the indicated
operators.

CoROLLARY 1.10.4. If U is a real unitary on H (i.e., one leaving H, in-
variant), then T'(U) acts on P, the algebra of all polynomials over H,, as
Sollows: f(x) > f(U-'x), for f€ P.

PROOF. It is casily seen that the mapping f(x) — f(U- 'x) extends uniquely
to a unitary transformation V on K. To show that V = I'(U), it suffices to
show that these two unitaries transform P(x) and Q(x) in identical fashions,
and leave | invariant (the latter fact is already cstablished). To show that V
transforms P(x) and Q(x) in the same fashion as ['(), it suffices to treat—
instead of P(x) and Q(x)—their restrictions to P, in view of the esscntial self-
adjointness of these restrictions. This computation is straightforward.

LexicoN. The unitary equivalence of the particle representation on the one
hand, involving the symmetrized tensor products of the Hilbert space H with
itself, and of the wave representation in the space of squarc-integrable func-
tionals over a rcal part H, of H, is the mathematical manifestation of the so-
called **wave-particle duality’” which has evolved during scveral centuries of
the study of physical light. From the point of view of an experimentalist, par-
ticularly one concerncd with *‘scattering’” experiments in which incoming and
outgoing free particles are compared, the chicf physical observables are the
occupation numbers. Physically, these specify the numbers of particles of des-
ignated specics and parameters in a given state. For example, the statcment
that the incoming state in a certain physical system consists of so many mesons
of such and such energy and momenta can be formulated in terms of state-
ments that certain selfadjoint operators have the state vector in question as an
eigenvcctor, and that the corresponding cigenvalues are the nonnegative inte-
gers corresponding to the designated composition of the state. It is quite anal-
ogous to the description of the population of a given country at a given time
in, say, economic terms. Significant indices of the economic statc might be
the numbers of individuals of specified income. capital. investment and saving
rates, ctc.

To deal theoretically with this key experimental object, onc makes the fol-
lowing entry in the basic physical-mathematical lexicon. The *'number of par-
ticles'" in the free boson field over H in the state represented by the vector x
in H, is aT'(P,) where P, is the projection of H onto the one-dimensional sub-
space spanned by x. and dI'(A) denotes for any selfadjoint operator A the
selfadjoint generator of the one-parameter unitary group I'(e*). More gen-
erally. the number of particles in states represented by vectors in the given
subspace M of H is aI'(Py). where Py, is the projection with range M. In
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particular, the (total) number of particles is aI'(1). This physical-mathematical
correspondence is justified by a variety of considerations involving mathemat-
ical consequences that are in agrecment with physical observation. The main
qualitative mathematical considerations are these:

1) aI'(P) has nonncgative integral eigenvalues, as is physically to be ex-
pected of an occupation number. Morcover, the only state vector in K in which
the expected total number of particles is zcro is the vacuum vector v.

2) The occupation number has the natural additivity properties: aI'(P) +
al'(P') has closure equal to d['(P + P') for any two orthogonal projections P
and P’ in H. Indeed, oI is not only additive in this sense, but countably
additive.

3) The occupation number has the natural connection with total attributes.
Just as the total income of a population should be the sum of the products of
the various incomes with the corresponding occupation numbers for these in-
comes, so one has for any selfadjoint operator A in H, with spectral resolution
A ~ [ ME(M) the relation a(A) ~ f ML(E(A)). In particular, if the *‘single-
particle energy’” A has the cigenvalues ay, a;,....then the *‘field energy™
al'(A) has the cigenvalue nja, + nya, +---in the statc in which n, particles
cach of energy a, arc present.

4) The occupation number has the appropriate transformation propertics un-
der automorphisms of the system, in particular under Lorentz transformations
in a relativistic field. This is the relation:

L(U)ar(AI(U)-* = al(UAU-Y).

The proofs (and in the case of problem 3), the detailed mathematical formu-
lation) of these results are left as exercises.

On the other hand, just as the description of the economic state of a country
in terms of occupation numbers may not be the best basis for the consideration
of economic dynamics, i.c., the temporal development of the state, so in a
quantum process the occupation numbers give no specific indication of the
dynamics (apart from what may be corollary to kinematical considerations
such as Lorentz-invariance). The treatment of the dynamics of quantum sys-
tems turns out to be naturally undertaken in terms of field rather than particle
concepts, by virtue of the local character of relativistic interactions. In math-
cmatical terms, the field is diagonalized in the functional integration represen-
tation, just as the particle numbers arc diagonalized in the tensor product rep-
resentation.

Chapter 6 will treat quantization in the simple but basic case in which thc
dynamics is linear. In essence. this is the study of the free boson ficld over a
Hilbert space on which is given a distinguished unitary (or, more gencrally.
symplectic) one-paramcter group. The classical linear relativistic wave cqua-
tions of ‘*cven spin’’ (i.c.. involving singlc-valued representations of the
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Poincaré group, rather than of its covering group) can be quantized as a very
special case of the general theory. But the quantization of nonlincar wave
equations, treated in Chapter 8, naturally involves qualitatively new consid-
erations.

There is a third represcntation for the free boson ficld that has remarkable
mathematical properties, although physically it is less readily interpreted than
the two that have already been treated. Recall that one of these, the Fock-
Cook, or particle representation, diagonalizes the occupation numbers; the
other—the *‘renormalized Schridinger,’’ the *‘functional integration repre-
sentation,’’ or the ‘‘real wave representation’'—can scrve to diagonalize the
**field variables'" at a fixed time throughout spacc.

The third, or complex wave, represcntation gives a kind of diagonalization
of the creation opcrators. Since the latter are nonnormal, a literal diagonal-
ization is impossible. What is achicved instcad is a simple representation of the
creation operators as multiplication operators, not in L, over a measure space
(this would contradict the nonnormality of the operators), but in a closely re-
lated space, consisting preciscly of the holomorphic (or more conveniently,
for present purposcs, antiholomorphic) members of L, over a space having
both a measure and a complex structure.

In the rough terminology employed by physicists one might say that we
make an expansion of the statc vectors into the (virtual) eigenfunctions of the
annihilation operators; these arc the so-called ‘‘cohercnt’” states.

Before entering into the complex wave representation itself, we discuss and
trcat Bose-Einstein quantum fields from historical and axiomatic points of
view, from which the relation to the other two representations may be better
appreciated.

The concept of a free quantum field of particles satisfying Bose-Einstein
statistics is commonly introduced in a highly structured manner involving
space-time, invariant wave equations thercon. etc.; hut in algebraic essence,
all that is involved is a given complex Hilbert space H, as carlier indicated.
The concrete structure of this space may vary from application to application,
but many of the central results of the theory are independent of this special
structure.

Mathematically, the free boson field over a given complex Hilbert space H,
to be denoted as B(H), may be defined as a quadruple (K, W, T, v) consisting
of

1) a complex Hilbert spacc K:

2) a Weyl system W on H with values in U(K); i.c. a (strongly, as normally
understood) continuous mapping z — W(z) from H to the unitary oper-
ators on K satisfying the Weyl relations

WW(') = e Im=W(z + 2')
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for arbitrary z and z' in H;
3) a continuous representation I" from U(H) into U(K) satisfying the rela-
tion

TUWE TW) - = W(U2)

for arbitrary U € U(H) and z € H; and
4) a unit vector v in K having the propertics that ['(U)v = v for all U €
U(H), and that the W(z)v, z € H, span K topologically. (For brevity, we
cite the latter condition as cyclicity of v for W.)
The constraints 14 do not uniquely determine the free boson field,
but serve to do so with the addition of
5) I' is **positive’’ in the scnse that if A is any nonnegative selfadjoint op-
erator in H, then dI'(A) is likewise nonncgative—where for any selfad-
joint A in H, aI'(A) denotes the selfadjoint generator of the one-param-
cter unitary group {I'(e**): ¢ € R} provided by Stone’s theorem.

We may take conditions 1)-5) as the definition of the free boson ficld. This
axiomatic characterization must, of course, be supplemented by suitable ex-
istence considerations, which are supplied by the concrete representation of
B(H) given earlier, or by that given later.

Historically, the free boson field was introduced quite heuristically by Dirac
in 1926 in purely formal analogy with the Heisenberg quantization of a single-
particle system. The Hilbert spaces H and K and aspects of I' are rather im-
plicit in this treatment, and the Weyl system W appears in the form of an
infinitc sequence of putative operators: p,, ¢,: Pa. 42; .. . satisfying the Heisen-
berg commutation relations, whose existence Dirac mercly hypothesized. An
cxplicit representation of this carly version of the free boson field was first
given by Fock (1932) in a nonrelativistic and mathematically heuristic format.
A rigorous construction, which assumes and exploits the Hilbertian character
of the so-called single-particle space H and is adaptable to the relativistic con-
text, was first given by Cook (1953). The Fock-Cook representation satisfied
conditions 1)-5), except that 2) was clear only in its infinitesimal form. The
global form of 2) in the Fock-Cook, or particle, representation follows from
the unitary equivalence of this representation with the functional integration
representation. This **wave’’ representation was implicit in theoretical physi-
cal practice which, however, dealt with functional integrals only at a quite
formal level.

In a genceral scientific way, the Fock-Cook representation expresses the par-
ticle properties of the quantum field by providing explicit diagonalizations for
the so-called occupation numbers aI'(P), where P ranges over a maximal com-
muting sct of projections on H. These are the properties typically most directly
observable in high-cnergy experinients. The functional integration represen-
tation expresses the wave properties. by virtue of its explicit diagonalization
of the values of the field at different points of space. at a fixed time. The wave
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propertics are conceptually fundamental, and technically the functional inte-
gration representation has been the primary basis for progress in constructive
quantum ficld theory in recent decades.

However, in each of the two classic representations—particle and wave—
for the free boson ficld, some of the important operators have highly compli-
cated actions. On the other hand, in the complex wave representation, virtu-
ally all of the important operators have a remarkably simple formal appear-
ance, despite the greater complexity of the physical interpretation of the
representation.

The relation with heuristic developments due to theoretical physicists may
be amplified as follows. In the case of wave functions in onc dimension, the
harmonic oscillator hamitonian N = Y2(p* + ¢* — 1), the position operator
g, and the creation operator C = 2-"(p + ig), all have simple spectra in the
sensc that they admit a cyclic vector. According to the general ideas of quan-
tum mechanics, any onc of them may be used as a complete state labeling
operator. In Fock (1928) the use of C was originated in this connection, and it
was noted that this led to the consideration of holomorphic wave functions;
but no Hilbert space of such functions was formulated, and the only specific
domain of definition cited was the unit disc. The more comprehensive treat-
ment of Dirac (1949) remained formal, and the case of a quantum field is
reduced to the one-dimensional case via a representation as a direct product
that is not invariant. In this work there is again no actual Hilbert space K, or
representation I of U(H), and only formally defined ficld operators. Rigorous
mathematical correlatives to some of the theoretical physics initiatives toward
the representation of boson fields by analytic functions arc given at the end of
this chapter, but precise formal correlation is somewhat elusive.

1.10. Characterization of the free boson field

Constraint 5) in the preceding section, whose notation is used here. is equiv-
alent to the apparently much weaker condition that its conclusion holds for just
one positive operator A. This is a consequence of the following abstract char-
acterization of the free boson field over a Hilbert space.

THeoreM 1.11. Let H be a given complex Hilbert space. and let W be a
Wevl system over H with representation space K and eyvrlic vector v in K.

Suppose there exists a positive selfadjvint operator A in H that annihilates
no nonzero vector, and a one-parameter unitary group I'' on K with the prop-
ertics

a) "W (—1) = Wiez) forall te Rand z € H;

b) T'uw = vforallieR,
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c) I''(r) = e, where H is selfadjoint and nonnegative.

Then there exists a unique representation I' of U(H) into U(K) which ex-
tends T’ in the sense that T'(e") = TI''(1) for all 1 € R, and such that (K, W,
T, v) satisfies conditions 1)-5) of Section 1.9.

PROOF. Sct
fu) = (e~ “"W(z)v, W(2)v),

where 4 = 5 + it with s = 0, and z is arbitrary in H. Then f is bounded and
continuous in the half-plane s = 0, and holomorphic in the interior s > 0; we
denotc the totality of all such functions as 3. By virtuc of the Weyl relations,
the boundary values f(if) may be expressed as

Slit) = et (W(z, — z)v, v); z,=e Mz,
Now sctting
gy = exp{— Va(e~-w 2, 2)}.
then g € B also. Accordingly, fg € 3. and fg has the boundary values
falit) = (W(z, — v, v) e~ "sketzin),
Replacing = by —z. it follows that (W(—z, + z)v. v) e~ %Rt s also the
boundary value function of an element of 8. But this function is the complex

conjugate of the function ( fg)(if). Accordingly, fg must be a constant, which
may be cvaluated as e~¢"?by setting t = 0. yielding the equation

(w(zl = ") = cxp(_":I - :"2/4)

By virtue of the triviality of the null space of A, the z, — = arc dense in H as z
and ¢ vary, as follows from the spectral theorem; and it follows in turn by
continuity that

(W), v) = exp( —[lzIF/4)

forall z € H.

This result implics that the inner product (W(Uz)v, W(U=')v), where - and
=" arc arbitrary in H, is independent of U € U(H): and this implics in turn that
the lincar transformation 7,

za,W(z,)V — Eu,W( Uz)v

is well defined and isometric on the domain D of all finite linear combinations
of the W(z)v, z € H. Since D is densc in K, 7|, extends uniquely to a unitary
operator on all of K. which we denote as I(U): by construction,
FWWEN) - = WUz)and T(Uw = v for all U € UH). That T is a
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representation of U(H) follows from its intertwining relation with W, noting
also that ['(U) is the unique unitary operator on K that transforms W(z) into
W(Uz) and leaves v invariant, by virtue of the cyclicity of v. In order to show
that T is continuous from U(H) into U(K), it suffices to show that [(U)W(z)v
is a continuous function of U, for any fixed z € H, at the clement U = 1 of
U(H). To this end it suffices in turn to note that

(C(U)YW(z)v, W(2)v) = exp(Y2i Im(Uz, z)) exp(—||Uz — z|*/4),

which is continuous in U.

To show the positivity of the representation I', suppose now that A is any
nonnegative selfadjoint operator in H; it suffices to show that I'(e**) is a pos-
itive-frequency function of 1, i.e., that [ ([(e**)w, w')g(r)dt = O for functions
g € L,(R"), whose Fouricr transforms vanish on the negative half-axis, and for
arbitrary vectors w and w' in K. To this end it suffices to show that
(C(e")W(z)v, W(z")v) is a positive-frequency function of ¢ for arbitrary z and
2" in H. But, by the carlier cvaluation of (W(z)v, v) and the Weyl relations, this
function is

exp Ya(— [l — l2fl2 + 2z_, 2'));

since (z_,, ') is a positive-frequency function of 1, so also is exp Yx(z_,.z').
Finally, the unicity of the representation I follows from the cyclicity of v

under W, which implies that any unitary operator that commutes with all W(z)

and leave v invariant must be the identity. 0

CoroLLARY 1.11.1. Any two systems (K, W, ', v) satisfving conditions 1)~
S) are unitarily equivalent.

Proor. Given a second such system, denoted by primes, there exists a
unique unitary transformation 7 from K onto K' that carries W(z)v into
W'(z)v', for all z € H, by an argument employed in the preceding proof. The
respective Weyl systems are then unitarily equivalent via 7', and the definition
of ['(U) as the unique unitary on K that transforms W(z) into W(Uz) and leaves
v invariant shows that it is transformed by T into I''(U). 0

1.11. The complex wave representation

The existence of the free boson field has becn established, but it will be
illuminating to give a new construction, which will serve at the same time to
definc the complex wave representation. This construction is based on func-
tional integration, in connection with which the following notation will be
employed: if H is a rcal Hilbert space, § will denote the space of **L."" or
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**square-integrable’’ tame functions on H, i.e., those tame functions f for
which E(|f]?) < =, where E denotes the expectation relative to the isonormal
distribution g on H. If f is a tame function on H, the corresponding random
variable in (H, g) will be denoted as 8( f) and also called tame. In particular,
iffeS,8(f) e L(H, g).

Now if H is a given complex Hilbert space, it has also the structure of a real
Hilbert space H*, with inner product equal to the real part of the complex inner
product given in H. The isonormal distribution g on H is defincd as that on
H*, and L,(H, g) is defined as L,(H*, g). In the case of a real space H, the
space L,(H, g) is the completion of the algebra of all polynomials on H, with
respect to the inner product

(8(f). 8(f") = Jo f(x) f(x) dg(x),

L being any finite-dimensional subspace of H on which the polynomials f and
f' are based. Recall that a polynomial on H is defined as a function of the form
fix) = p(x. &), ....(x, e,)), where p is a polynomial function on R", and the
¢, are arbitrary vectors in H, finite in number; it is no essential loss of gener-
ality, and it will henceforth be assumed, that the ¢, are orthonormal in this
representation. The possibility of defining L,(H, g) as the completion of the
polynomials rather than of the bounded tame functionals may, as earlier noted,
be regarded as a generalization of the completeness of the Hermite functions
in L,(R).

This means that if H is a complex Hilbert space, then L,(H, g) consists of
the completion of the algebra P,(H) of the functions of the form

fix) = p(Re(x, e,), ..., Refx, e,)):

such a function we call a real-analytic polynomial. But in addition to the al-
gebra P(H), there are two other simple unitarily-invariant algebras of poly-
nomials: the complex-analytic, defined as those of the form

f(x) = P«x- cl)v .(X. en))-

where p is a polynomial function on C”; and the complex-antianalviic, i.c.,
the complex conjugates of those just indicated. The totality of complex-an-
tianalytic polynomials on H will be denoted as P(H); the representation space
K for the complex wave representation will consist of the closure of P(H) in
Lz(“, £).

To begin with, a system (K; W' T, +') will be defined that fails to represent
the free boson ficld only in that condition 5 is violated and that v' is not cyclic
for the W'(z). Let g denotc the isonormal distribution on H with variancc pa-
rameter ¢ = 0%, and let K’ = L,(H, g). For any vector = € H, definc the
operator W;(z) on the subspace 8(S) of K’. where S denotes the totality of all
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squarc-integrable tame functions on H, as follows: for any function fon H, let
f: denote the function given by the equation

.,;(W) = f(W - 0z) ofzwilo = (.04

If fis tame, so also is f,; and if 6( f) = 0, 6(f;) = 0 also, since straightforward
computation show that Jle(f)|? = ||e(f,)|? for arbitrary tame functions f and
vectors z in H. The mapping 8(f) — 0(f;) is thercfore a well-defined isometry
of 8(S) into itself, and defines an opcrator Wq(z) on 6(S).

It is straightforward to verify that

Wo(2) Wy(2') = e imed Wiz + 2')

for arbitrary z and z' in H. Setting z' = —z, it follows that W(2) is invertible,
and so extends to a unique unitary transformation, to be denoted as W'(z), on
all of K'. By continuity, the Weyl relations remain valid for W’. It is not
difficult to show in addition that the mapping z — W'(z) is continuous from
H to U(K'), and it follows that W’ is a Weyl systcm on H with representation
spacc K'.

A representation Iy of U(H) on 8(S) will now be defined as follows: for
arbitrary f € S and U € U(H), I'o(U) sends 6(f) into 8(f,), where f,,(z) =
S(U-'2). Since it is readily verified that f, ¢ S when f € S, and that the map
J > fy preserves the cxpectation functional E, I'y(U) is well defined and is
isometric from 8(S) into itsclf. It is straightforward to verify also that [y(UU’)
= (V) IT'y(U') for arbitrary U and U’ in U(H), and that [3(ly) = 1, so [y
is a representation of U(H) on 6(S). In particular, Ig(U) is invertible for all U
€ U(H), and so extends uniquely to a unitary operator I''(U) defined on all of
K'. It follows that I'' is a representation of U(H) into U(K'), and it is not
difficult to verify that I'" is strongly continuous from U(H) into U(K') by
checking continuity on the spanning subset of K’ consisting of the finite prod-
ucts of real-lincar functionals.

Now let v’ denote 6(1) € K'; then T'(U)v' = v for all U € U(H), and the
required intertwining relation between I'" and W' is readily verified on the
dense subset 8(S). and hence by continuity holds on all of K’. Thus the quad-
ruple B' = (K, W, T, v') satisfies all of the conditions on the free boson field
over H except the positivity condition 5 and the cyclicity for v'. We call B
the regular boson field over H in analogy with the term *‘regular representa-
tion"" for groups.

The complex wave representation may now he defined as that given by re-
striction to the subspace spanned by the complex-antianalytic (or antiholo-
morphic) polynomials.

THEOREM 1.12. Let B' = (K! W. T v') denote the regular boson field over
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the given complex Hilbert space H. Let K denote the cvclic subspace under
the action of W' generated by v'. Then
1) the complex antianalytic polynomials P on H are dense in K;
2) setting W(z) = W'2)|K and TWU) = T'(V)K for all z ¢ H and U ¢
UH), and v = V', then the quadruple B = (K, W, T, v) is a represen-
tation of the free boson field over H.

Proor. By direct computation W(z)v = 6(f), where f is the tame function
on H, f(x) = e%»30 - ¢4 Thus the functionals 8(b,) are all in the subspace
spanned by the W(z)v, where b,(x) = e**, z€ H. Since b_, .- = b,b... the set
of all finite combinations of the b, forms a ring, which contains, for any € >
0 and finite ordered orthonormal set of vectors e, ... e, € H and positive in-
tegers n,, ..., n,, the vector

c, = ﬁ l(expele,.u) — 1)/el";
J=1
It follows by dominated convergence that
8(c.)— 0 ( ﬁ(c,. u)"/).
1=

showing that the image under 6 of any complex antianalytic polynomial is in
K. Conversely, the application of dominated convergence to the power series
cxpansion of b, in terms of (z. x) shows that W(z)v is in the closure of 8(P).
Thus v is a cyclic vector for W, and to conclude that B is the free boson field
over H it is only necessary to show that the representation I is positive (con-
dition 5). It suffices to show that the number of particles operator 8I'(I) has a
nonnegative spectrum. In fact, I'(e”) sends the monomial 8(w), where w(u) =
(), u)"1++(e,,, )™, into e * *** *7m) 8(w), showing that 8T(1) has spectrum
consisting of the nonnegative integers (and, incidentally. is diagonalized by
the totality of the 6(w) relative to a fixed orthonormal basis). ]

DEFINITION. An entire function on H is a function F with the property that
for every finite-dimensional subspace M of H, the restriction F|M is an entire
function in the usual scnse of dim M complex varniablies. An antientire function
is one which is the complex conjugate of an cntire function.

THEOREM 1.13. Given z € H, let b. denote the square-integrable tame func-
tion - on H. If u is any vector in K, then
1) the function F on H given by the equation

F(z) = (u, 8(b.))
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is an antientire function on H;

2) supy, [.|F(2)? dg(z) = |lu|l%. the supremum being taken over the set of all
finite-dimensional (complex) subspaces L of H;

3) if u = o(f), f being a square-integrable tame antientire function, then
F(z) = f(2), ze H.
Conversely, if F is an antientire function such that

sup IF(2)* dg(z) < =,
then there exists a unique vector u € K such that the foregoing holds.

ProoF. The term antimonomial will be used for a vector in K (or, when
indicated by the context, a function on H) that is a constant multiple of one of
the form e(w) (respectively, w), where w(x) = (e,, x)"1**+(e,, X)'m.

Observe next that the antimonomials W, = 2-"*(n!)-“0-"8(w), where n
stands for the multi-index n,, n,, ... ,w being as earlier and n being Z, n,, form
an orthonormal basis in K, relative to any given orthonormal basis e, e,, ...
in H. Orthogonality is a consequence of the vanishing of the integrals [¢ |2|* 2
dg(z) when s and 1 are nonnegative integers with t # 0, as follows from rota-
tional invariance; normalization follows by evaluation of the integral when ¢
= 0. It follows that for any vector u € K, [lu]> = Z,|a,}* where a, = (u, W,).

Suppose that 1 = 8(f), where fis a squarc-intcgrable antientire tame func-
tion based on the finitc-dimensional complex subspace L of H. Then the co-
efficients a, vanish unless n € n(L), where n(L) denotes the set of all multi-
indices n such that n, = 0 when ¢, is not in L. Thus f = 2., a,W,. where
as usual we omit reference to 0 in the finite-dimensional context. A calculation
shows that

JLWo(x) b.(x) dg(x) = W,(2)

for n € n(L); this is known as the *‘reproducing' property of the kernel b,(x).
It follows that

F(z) = Z)a,w,. b) = 2 a\W,(2) = flz),

nen(l. nen(L)
where the sums converge in L,(L, g). As a consequence we have
P = S IF() dg(2).

Statement | now follows from the expansion of exp[{z/20?,+)].

Concemning 2), let 1 be arbitrary in K. Given a finite-dimensional complex
subspace L spanned by the {¢}. let 4, = =, a,¥,. Clearly u,_is a square-
intcgrable tame function based on L, and the supremum over L of |lu, ] is ||«[].
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Moreover, if Fy(2) = (u., 8(b,)). it is easily seen that F and F,_agrec on L.
Thus we have

sup JLIF@)? dg(z) = sup Nl = Hulf.

Taking note of the arbitrariness of the given orthonormal sct in H, 2) follows.

For 3), suppose converscly that F is a given antientire function on H for
which |lF|LIl,_,", o femains bounded as L ranges over the set of all finite-dimen-
sional complex subspaces of H. Let f; be the function on H given by the equa-
tion

L= 2 a.W,(2),

nan(l.
where
Wo(2) = 272 (n!)~"0-"(e,, 2)"+(€u, 2)™m

and a, = (F|L, W..). Then f, is a square-intcgrable tame function on H that is
antientire and bascd on L. Evidently
M= fif= 2 laf,
men(MIAML)
where A denotes the symmetric diffcrence. 1t follows that as L — H, {e( f.)}
is convergent to a vector 4 € K. By the same argument as in the preceding
paragraph, the anticntire function z+—> (u, 6(b.)) corresponding to u is identical
with the original antientire function F. Unicity of u is evident from the fact
that
F(z) = 2 a,2-"2(nl)~"2a-"(e,, 2)"++{e,, 2)"n,

as follows by a limiting argument from the finite-dimensional case, the scries
being convergent by virtue of the Schwarz inequality. O

It follows that the Weyl system operators W(z) and the representation I of
U(H) for the free boson field may be defined in a pointwise fashion, and not
merely as Hilbert space limits, in accordance with

CoroLLARY 1.13.1. The free boson field B(H) over H may be represented
as follows:

1) K is the Hilbert space of all antientire functions F on H for which the
norm

W1l = sup IFILlL .0
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is finite, the supremum being taken over all finite-dimensional subspaces
L of H, with the inner product

(F,F') = lim (F|L, F'IL)L,(L.;:)-
L—H

2) For any z € H, W(2) is the operator
F(x) > F(x — 0z) et-x20 = .24 FeK.
3) For any U € UH), I'(U) is the operator
F(z)r—> F(U-'2), FeK.

4) v is the function identically 1 on H.

PRrOOF. This involves straightforward limiting arguments of the type already
employed, and the formalities are omitted. O

Problems

1. Show that in part 2 of Theorem 1.13 the integrals [, |F(2)|* dg(z) over
real subspaces may be unbounded, as shown by the following example due to
M. Vergne: F(z) = exp(—a,fe,. 2)?), where [£ a,| < 0, Zla |2 < ®, and Z|a,|
= 00,

2. Show that a linear differential operator with polynomial coefficients on
L,(R) is carried by the unitary equivalence of the real- and complex-wave rep-
resentations into a linear differential operator with polynomial coefficients on
the present space K of antianalytic functions in L,(C, g).

1.12, Analytic features of the complex wave representation

This representation is less familiar than the other two treated in Chapter 1,
but has probably the richest mathematical theory. In this section a number of
useful analytic features that emerge in the coursc of the proof of Theorem 1.13
will be made more explicit.

A natural orthonormal basis in the complex wave representation is given by

COROLLARY 1.13.2. If e,, e, ... is any orthonormal basis for H, then an
orthonormal basis for the preceding space K is provided by the antianalytic
polynomials

pz) = 27" (n,!nyt ... )"0 (e, 2)"1 {ey, 2)™...,



The Free Boson Field 71

as the n,range independently over the nonnegative integers subject to the con-
straint that n = Z,n, be finite.

The corresponding expansion for any vector F € K is convergent pointwise,
and

IF@@)| < IFll exp({z, 2)/(40%)), zeH.
ProoF. This is a straightforward consequence of the theorem. |

We now rationalize the term ‘‘complex wave representation’’ by making
explicit the sense in which this representation pseudo-diagonalizes the creation
operators. We first recall the

DerFiNITION. For any representation B = (K, W, T, v) of the free boson
field over the given Hilbert space H, and vector z € H, the creation operator
for the vector z, to be denoted as C(z), is defined as the operator 2~ "3(d(z) —
id(iz)), where &(z) denotes the selfadjoint generator of the one-parameter
group {W(t2): t € R}. The annihilation operator for the vector z, to be denoted
as C*(2), is defined as the operator 2~ %(d(z) + id(iz)); this is in fact identical
to C(z)*, by virtue of

COROLLARY 1.13.3. The operators C(z) and C*(z) are closed, densely de-
fined, and mutually adjoint. In the complex-wave representation, C(z) has do-
main consisting of all F € K such that {z,-) F(-) € K, and sends any such
function into a=\(z, *) F(), where a = i2"i0. C(2)* has domain consisting of
all F € K such that 0_F(-) € K, where 3.F(u) = lim,_ o€~ "(F(u + €2) — F(u)),
and sends any such function into —a d.F.

ProoF. That C(z) and C*(z) are closed, densely defined, and mutually ad-
joint is valid for an arbitrary Weyl system, by familiar smoothing arguments,
as in Theorem 1.1, and we omit the proof. Since convergence in the Hilbert
space K implies pointwise convergence of the corresponding antientire func-
tions on H, the action of C(z) and C(z)* may be computed by taking pointwise
limits. This is straightforward and has the stated results.

It remains to show that the domains of C(z) and C(z)* include all vectors to
which the corresponding pointwise-defined operators are applicable as opera-
tors in K. To this end let K, denote the subspace of K consisting of the closure
of homogeneous polynomials in K of degree n, and let F denote any element
of K such that (z, ) F(-) is again in K. It is easily seen that multiplication by
(z,") is bounded on K, and maps it into K,. ,; consequently, |z, -} F()|? =

2 [Kz. ) F,()|I?, where F, denotes the component of F in K,. On the other
n=0
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hand, it is readily verified that K, is in the domains of all the C(z) and C(2)*.
Setting F¥ = X, ., F,, it follows that F¥— F and that C(z)F¥— a~'(z, *) F(*),
and, since C(z) is closed, it follows in turn that F is in the domain of C(z). The
same argument applies to C(z)* with n + 1 replacedby n — 1. (]

Lastly, the intertwining operator between the complex and real wave rep-
resentations is given as follows: let H be a complex Hilbert space, let a be an
arbitrary positive number, and let g, denote the isonormal distribution of vari-
ance a on H. For arbitrary z € H, let W/(z, a) denote the following operator on
functions over H, where 0 = a*:

Wiz, a): flu) = f(u — 0z) et-w¥2o - s

Let W.(z, a) denote the unitary operator on the subspace K of L,(H, g,) that
carries 6(p) into 8(W,(z, a)p) for any antiholomorphic polynomial p on H (as
in Theorem 1.13). Now let b be an arbitrary positive number, and let H' be an
arbitrary real part of H. The rcal wave representation may be defined as fol-
lows: let K’ = Ly(H' g,), and for arbitrary z = x + iye H, where x, ye H',
let W;(z, b) denote the following operator on functions over H', where v =
[ R

Wiz, b): f(u) = f(u — v2"x) expl{z, u)v2" — Va(z, x)).

Let W,(z, b) denote the unitary operator on K' that carries 6(f) into 8(W,(z,
b)f) for any tame squarc-integrable function f. The vacuum vector is repre-
sented by the unit function 1y in K and 1, in K’. (The respective I''s arc
determined by the invariance of the vacuum vectors and their intertwining with
the Wey! systems, and need not be involved here.)

By Theorem 1.12, for any given a and b, there exists a unique unitary trans-
formation T from K onto K’ such that W.(z, @) = T-'W,(z, b)T and T(6(1,))
= 8(ly). The explicit expressions for T and T~ ' on sufficiently regular func-
tions are simplest when b = 2a (which in fact exemplifies the impossibility of
entircly transforming away the 2% factor sometimes involved in boson field
analysis). Because of the simplicity of scaling considerations, it will suffice
here to trcat the casea = 1/2, b = 1.

TneoreM 1.14. The (unitary) intertwining operator T from the complex
onto the reual wave representation for the free boson ficld over H has the fol-
lowing action on antientire functions F on H: F — o(f), where

Sw) = [uexpl(z, u) — V2 (2, DIF(2) dgy(2). (1.8)
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The integral exists in the Lebesgue sense for tame antientire functions of order
< 2, or as a limit in mean otherwise.

T~ carries any tame functional 6( f) € Ly(H', g,) into the antientire function
F on H given by the equation

F(2) = exp(—(z. 2)/2) fy-exp((u. 2)) f(u) dg,(w). (1.9)
More generally, for arbitrary fe K', T-'f = F, where
F(z) = exp(—(z. 2)/4) (f, o(e)).

PRrROOF. Since TW (z, Y2)v = W,(z, 1)Tv', where v and v’ are the respective
vacua, it follows that T carries exp(2~%(z, w) — ¥4 ||z[]?) into exp(2~"(z, u) —
Ya(z, x)). where w is variable in H and u is variable in H’, for any fixed z € H.
Thus T sends e into e~ =~ “=2_The reproducing kernel property (which by
complex conjugation applies to holomorphic as well as antiholomorphic entire
functions) shows that the integral expression given in the theorem is correct
for functions F(w) of the form F(w) = e for some fixed z € H. It follows
from the unitarity of T and Lebesgue convergence theory that equation 1.8 is
valid also for arbitrary antiholomorphic polynomials F; it then follows, in
turn, that equation 1.8 holds with an absolutely convergent Lebesgue integral
on the right for arbitrary tame antientire functions of order less than 2. The
general case follows by formation of a limit in mean, as justified in part by the
functional integration theory earlier developed.

To establish the form given for T-', note that in case f(u) = e“* for some
fixed z € H, the integral expression may be evaluated explicitly as an clemen-
tary Gaussian integral and found to agree with the expression for T-! given
above on functions of this typc. More gencrally, equation 1.9 holds lor arbi-
trary tame vectors in L,(H', g,) by virtue of their approximability in this space
by finite linear combinations of the ¢, It follows for gencral f from the
unitarity of T, the density of tame functionals in K’, and the continuity of F(z)
as a function of F for fixed z. O

It is interesting to note that, as a result of the standardizations and choice of
respective variance parameters, the projective mapping corresponding to T
(i.e.. from L,(H, g,,) modulo equivalence via constant factors to L,(H' g,)
similarly projectified) is simple restriction from H to H' for the vectors of the
form e, these have been interpreted as *‘coherent states’” in physical appli-
cations.

We also note that the intertwining operators between the particle and wave
representations arc of a different nature from those between the two wave
representations, since the particle representation is in a space of tensors of
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varying rank, rather than a function space. In the case of the real wave repre-
sentation, the intertwining operator is given earlier in this chapter; for the com-
plex wave representation it is simpler, and readily derived from that for the
rcal wave representation.
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The Free Fermion Field

2.1. Clifford systems

The theory of the free fermion field is essentially distinct from but neverthe-
less parallel to that of the free boson field, and the underlying formal analogy
is close and useful.

DEFINITION. An orthogonal space is a pair (L, S) consisting of a real topo-
logical vector space L and a given continuous symmetric nondegenerate bilin-
ear form S on L.

Concerning the notions of nondegeneracy, symmetry, and of the algebraic
topology on a real vector space, see Chapter 1.

ExaMpLE 2.1. Let M be finite-dimensional real vector space and M* its
dual. Let L denote the direct sum M@M*, and let S denote the form

S(x@®\, x'@A') = A'(x) + Mx")

for arbitrary xB)\ and x'®\’ in L. Then (L. S) is an orthogonal space. and
will be called the orthogonal space built from M. Similarly for the case of an
arbitrary given dual pair of topological vector spaces.

DEFINITION. Let (L, S) be a given orthogonal space. A Clifford system over
(L. S) is a pair (K, &) consisting of a complex Hilbert space K and a contin-
uous lincar mapping ¢ from L to the bounded selfadjoint operators on K (in
their strong operator topology) such that

d(2)d(2") + &2 )d(z) = S(z, 2')l. (2.1

The equations 2.1 are called the Clifford relations (later, the real Clifford re-
lations).
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If H is a given complex pre-Hilbert space, and S is given by S(z,2') =
Re(z, z'), then the pair (H% S), where H* is H as a real vector space, is an
orthogonal space, a Clifford system over which is called simply a Clifford
system over H; if S(z,z') = ¢ Re((z, z')), where c is a positive constant, we
speak of a Clifford system with variance (parameter) c.

ExaMpLE 2.2, Let H denote an n-dimensional complex Hilbert space, n <
o, and let H* and S be as just indicated. Let C denote the Clifford algebra
over H*, i.e., the unique associative algebra over the complex number field
generated by H* together with a unit e, with the following relations for the
clements of H?: xy + yx = c Re(x, y) (x and y being arbitrary in H?). Let E
denote the unique linear functional in C such that E(AB) = E(BA) for arbitrary
A and B in C, and with E(e) = 1. Let * denote the unique adjunction operator
on C such that x* = x for all x e H®. (An adjunction operator on an algebra
is characterized by the properties (A +B)* = A* + B*, (AB)* = B*A*,
(xA)* = WA* if a € C, and A** = A.) Let K denote the Hilbert space con-
sisting of C completed with respect to the inner product (A, B) = E(B*A).

For arbitrary A € C, let L, denote the operation B —> AB on C, and R, the
operation B — BA on C. For any z € H?, it follows from the relations (LA,
B) = E(B*zA) together with (A, L.B) = E((zB)*A) = E(B*zA) that L. may
be identified with a densely defined hermitian operator on K. This operator
extends uniquely to a bounded operator on K because L2 = c|iz|*/2. Define
&(2) to be the unique extension to a bounded selfadjoint operator on K of L,;
thus one has an example of a Clifford system of variance parameter ¢ (simi-
larly if ¢(z) is defined as R,). It is evident also that if V is any orthogonal
transformation on H, i.e.. one preserving the form S, and ¢ is a Clifford sys-
tem, then so is ¢, where ¢ (x) = &(Vx). Again, if ¢ and ¢ are Clifford
systems of the same variance that anticommute, in the sense that

S)P() + P(y)dx) = 0

for all x, y € H, and if « and b arc any rcal numbers such that |a]> + |b? = 1,
then &(x) = ad(x) + by(x) defines a Clifford system of the same variance.
The last remark can be applied to yield an interesting class of Clifford sys-
tems as follows: let © denote the unique automorphism of C that carries z into
—z forall ze H. Then Q anticommutes with all L, and R, and Q* = 1; hence

2 iL.Q and 2> iR.Q

are Clifford systms. Moreover, since L, and R,, commute for all z and z’, L.
and R..Q anticommute for all z and z’. It follows that

2z al. + biRQ

is a Clifford system of variance c. if a and b are as carlier.
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A Clifford system (K, &) is called irreducible in case the only closed linear
subspaces that are invariant under every ¢(z) are K and {0}. None of the ex-
amples given is irreducible. This is clear from the fact that a Clifford system
extends by gencral algebra to a representation of the Clifford algebra C by
operators on K. As is well known (sec the proof of Lemma 2.3.1), the Clifford
algebra over an n-dimensional complex Hilbert space is isomorphic toan N x
N complete matrix algebra, where N = 2%, and the only irreducible represen-
tation of an N X N complete matrix algebra is its natural action on an N-
dimensional vector space, whereas in the examples K has dimension N2. It
will later be seen that irreducibly invariant subspaces can be picked out by
various side conditions, including an analogue to holomorphy.

The analogue of the Stone—von Neumann theorem here is the result that
every *-representation of a complete complex matrix algebra is a direct inte-
gral of copies of its natural, unique, irreducible representation cited. The ar-
gument just given shows that this representation occurs with multiplicity N in
the reducible representation given above.

Additional concrete examples of Clifford systems are afforded by analogues
of the particle and wave representations already given for the free boson field,
which are treated below.

The fermion field is simpler than the boson field in having bounded rather
than unbounded operators for the field quantities, here ¢(x). This facilitates
the treatment of the creation and annihilation operators, which can be defined
in formally the same way as in the boson case:

C2) = 27%(d(2) — id(iz)).  C@)* = 27" (d(2) + idbliz))i

&(-) can then be recovered from C(-) by the equation ¢(z) = 2-"(C(z) +
C(2)*), while C(*) and C(-)* are respectively complex linear and antilinear. as
functions of their argument.

ScHovium 2.1. For any Clifford system of variance c over the complex
Hilbert space H,

C(2)C(2')* + C(z')*C(2) = c(z.2'), C(iz) = iC(2), (2.2)
C@)CE') + CE")C(z) = 0

Jor arbitrary z and :' in H.

Conversely, if C is any continuous complex-linear mapping from H into the
bounded linear operators on a Hilbert space K satisfving the relations 2.2 and
if &(2) is defined as 2-(C(z) + C(z2)*), then (K, &) is a Clifford system over
H of variance c.

Proor. Straightforward computation. ]
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DeriniTioN. A pair (K, C) consisting of a complex Hilbert space K to-
gether with a linear mapping C from a complex Hilbert space H to the bounded
linear operators on K, satisfying relation 2.2, is called a complex Clifford
system over H (of variance c). The earlier-defined Clifford system is desig-
nated as real, when the context requires this distinction. When ¢ = 1, we omit
the specification **of variance ¢.”’

The **free fermion ficld'' is defined in the same way as the free boson field,
except for the substitution of anticommutators for commutators, and for the
elimination of the analytical considcrations required to deal with the interven-
tion of unbounded operators in the boson case. That is to say, in the fermion
case there is no need to introduce an analogue to the Weyl relations; the ana-
logue to the Heisenberg relations is fully viable, unlike the Heisenberg rela-
tions themselves.

DurNiTION, Let H be a given complex Hilbert space. A free fermion ficld
over H is a system (K, C, I, v) consisting of

1) a complex Hilbert space K;
2) a linear mapping C from H to the bounded linear operators on K, satis-
fying the relations

C@R)CE')* + C(Z')*C(z) = (z,2').
C)C(i") + C(")C(2) = 0;

3) a continuous represcntation I of the unitary group on H into the unitary
group on K, such that [(C@)I(W)-' = C(Uz) for all z ¢ H and
unitary U on H;

4) aunit vector v in K that is cyclic for the C(z), z € H, and such that ['(U)y
= v for all unitaries U on H; and satisfies the condition that

5) for any nonncgative selfadjoint operator A in H, aI'(A) (defincd as the
sclfadjoint gencrator of the one-parameter unitary group I'(e4)) is also
nonnegative.

It seems natural 10 begin with the question of unicity. Here as in the boson
casc a much stronger result holds and is physically relevant. Specifically, the
positivity postulated in condition 5) need not be assumed for all nonnegative
sclfadjoint operators A on H. but only for any oe nontrivial such operator. In
physical practice, the relevant latter such operator is usually the Hamiltonian
for the single-particle system under consideration; but it may also be the gen-
erator | of the phasc transformations z — ez, dI'(I) being the number of par-
ticles.

Tueorem 2.1. Let U(+) be a continuous one-parameter unitary group on the
given Hilbert space R, the selfadjoint generator of which is positive.
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Let (K, C. T, v) be a system consisting of a) a complex Hilbert space K ;
b) a linear mapping C from H to the bounded linear operators on K such that
C(2)C(z")* + C(2')*C(2) = {z,2") and C(z)C(=") + C(z')C(z) = 0 for all z,
2’ € H; ¢) a continuous one-parameter unitary group Ty, on K, with nonneg-
ative generator, such that

Fo(NC@Ty(0) ! = CU()2),

forall ze Hand t € R; and d) a unit vector v in K such that T(r)v = v for all
t e R, and that is cyclic for the C(z).

Then if (K’ C: [y, v') is another system satisfving (a) — (d). there exists a
unique unitary operator from K onto K' that carries (C,v.T) into (C.
v' o).

PrOOF. In essence, the proof parallels that for the boson casc by utilizing
the positive energy condition in the form of its implications regarding bounded
holomorphic functions in a half-plane, which arise from temporal evolution of
vacuum expectation values.

Let z be arbitrary in H and w be arbitrary in K; let H denote the generator
of I,. Since H = 0, the function

SN = (e~Md(2)v, v),

where &(z) = 2-%(C(z) + C(2)*). is holomorphic and bounded in the open
half-plane Re A > 0 and continuous on the closed half-plane Re A = 0. Setting
A = 5 + ir with s and ¢ real, then

Sflin) = (e=d(2)v, v) = (b(z)v, v),

where z, = U(— 1)z, showing that as a function of r, (¢(z,)v, v) is thc boundary
value function of a bounded holomorphic function in the half-planc s > 0. By
moving e~ *¥ to the right side of the inner product, it follows that f(ir) is a
constant (independent of £); but more parallel to the later induction argument
is the observation of the selfadjointness of ¢(z,). from which this result follows
by basic complex variable theory. Setting u (=) for the constant f(ir). then |u(z)|
= Jjz]|. so that p is a continuous real-lincar functional on H. 1t has consequently
the form

u(z) = Re(z. 1)

for a unique element « € H. But u(z,) = p(z) for all 1. which implies that
U(—tu = « for all 1. Since, however, the gencerator A has positive spectrum,
U lcaves no nonzero vector fixed. Henee 1 = 0, implying that p = O, which
shows that (¢(z)v,v) = Oforall ze H.

An induction argument may now be used to show that for arbitrary «,. ...,
u, in H. ($(u,):--d(u;)v, v) is uniquely determined by the Clifford relations
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and the positive-energy condition, i.e., is the same for the corresponding
primed quantitics. Note first that it follows from the Clifford relations that

O(u)d(uy) = dbw,) = = dlwy) -~ d(u)d(wy) + G,

where G is in the linear space of products of not morc than & ~ 2 of the ¢(u,).
Now suppose that the (¢p(u;)+**d(u,)v, v) are uniquely determined when k <
n in the sense indicated; this has been shown to be the case for n = 2. To
establish it for the indicated value of n, replace u, by z,, and note that

(buy):++dlu,- )2y, v) = (b(z)v, S(up- 1)+ dlu)d(u,)v).
This expression differs from its complex conjugate

(D(Uyo 1) D) ). D(z)V) = (D(z2)D(Un- 1) DU D))V, V)

by vacuum expectation values of products of fewer than a of the ficld operators
&(u,), by the observation made above, and a possible sign depending on the
parity of n. Applying the induction hypothesis, it follows that either the real
or the imaginary part of g(1) = {(d(z,)b(u,_,)-*-d(u)d(u,)v, v) is determined
uniquely, i.e., is the same as that of h(1) = (b'(2)d' (U, _ 1)+ d'(u3) &' (u))v,
v). But the same argument as carlier shows that g(r) — h(s) is the boundary
value function of a bounded holomorphic function f on the right half-plane.
Since the generator of U has positive spectrum, lim,_.... f(r) = 0. Consequently
8() = h(1), and the induction argument is completc.
A similar argument to that in the boson field case now concludes the proof.
0O

2.2. Existence of the free fermion field

Having shown the unicity of the frec fermion field, consider now the exis-
tence question. The construction that is closest to that in the boson case is via
the particle representation, which is described in

THEOREM 2.2. Let H be a given complex Hilbert space. Let K denote the
Hilhert space direct sum ®,,.,K, of all (covariant) antisymmetric tensors over
H of rank n. For any unitary or antiunitary operator U on H, let T'(U) denote
the direct sum of the operators T (U) on K, where T, (U) is the restriction to
K, of the n-fold tensor product UQU®---@ U (n = 0. 1,...). Let v denote the
O-tensor 1. Let C(2) denote the closure of the linear operator on the algebraic
direct sum of the K, whose action on K, consists of antisymmetrized tensor
multiplication by z, followed by multiplication by (n + 1)*.

Then (K, C, T, v) is the free fermion field over H.
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Prook. Recall from Scction 1.8 that antisymmetrization A takes the form
A(x,®-+®x,) = k! 2_‘, (sgn \) 30,0+ ®Xyem)
Sk

where the summation is over the group S, of all permutations of 1,... ,k, and
that tensor multiplication followed by antisymmetrization is denoted A. In
these terms, C(2)u = (n + 1)“z/\u for u € K,. Let P denote the subset of K
consisting of the algebraic linear span of the tensors of the form x,\««+Ax,,
the x, being arbitrary in H. Then P is dense in K, and includes an orthonormal
basis {x..,} for K of the following form: let e, be an arbitrary orthonormal basis
for H, p ranging over a well-ordcred index sct M. Let n(-) be any function
from M to the set {0, 1} that vanishes except for finitely many, and possibly
all, values, of u. If n(u) = O for all u, define x,, as v; otherwise, let x,,, be
defined as (k!)" e,/ \*+* ey, Where p(1) <:++< p(k) and these arc the val-
ues of p for which n(p) = 1. The x,,, are evidently mutually orthogonal, and
(Ko Xuia) = (K1)(y, ¥), where

y = Uk!'Y, (sgn ) 1, ®eryy
AeS)

the indices p(1), ..., u(k) being redesignated as 1,...,k for simplicity. Now
(Yv_)') = (L')_!g (sgn A) ("un®"'®"km ’ ek'(l)®"'®ex'lli)
= (kD22 D O = (k)2 1 = k!
AN A

Thus the x,, form an orthonormal basis for K.

Obscrve next that the indicated operation C(z): u— (n + 1)*: z/A\u for u €
K, is bounded by [lz]l. To show this it suffices to consider the case in which z
has unit norm; it may then be included in some orthonormal basis for H, which
may be taken as the given one {¢,}. But for any basis vector x,,, of the indi-
cated form,

Cleghtyy = (n + D(n") e/ \(e,/\:--Ne,) = x,.,

where n'(R) = n(p) + O, 0 While C(e)x,,= 0if 1l =k = n.

Since C(z) as given is uniformly bounded from K, to K, |, it has a unique
cxtension to a bounded linear operator from all of K to itsclf, also denoted as
Ctz). Consider now the verification of the complex Clifford relations. In order
to show that C(2)C(z") + C(z")C(z) = 0. it suffices to check the action on the
X..,» employing an orthonormal basis {e,} in H for which = and =’ arc linear
combinations of e, and ¢,. To verify that C(2)C(z")* + C(z")*C(2) = (z. "),
a similar procedure may be followed (alternatively, direct computation in an
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arbitrary basis gives the result). The remaining defining propertics of the free
fermion field follow straightforwardly. O

It follows from Scholium 1.14 that the space P of algebraic antisymmetric
tensors forms an algebra relative to tensor multiplication followed by antisym-
metrization. This algebra, generated by H, is isomorphic to the **Grassmann’'
algebra over H, which is generated by H and a unit, with the relation x2 = 0
for all x in H. An essentially distinctive property of the symmetric and anti-
symmetric tensors, relative to other symmetry classes of tensors, is that the
subsets annihilated by symmetrization or antisymmetrization form ideals in
the algebra of all tensors (Segal, 1956a).

2.3. The real wave representation

In order to treat the analogue of the wave representation of the Irec boson
field, in which the canonical Q's are simultaneously diagonalized, it is con-
venient to introduce a formulation of Clifford systems in terms of P’s and Q's
analogous to that for boson fields.

DEFINITION: Let % be a conjugation on the complex Hilbert space H. A dual
Clifford system aver (H, %) (of variance ¢) is a system (K, P, Q) consisting of
a complex Hilbert space K, together with linear mappings P and Q from H,
into the bounded selfadjoint operators on K with the propertics

P(x)P(y) + PO)P(x) = clx, y) = @()Q() + QOQ(x);
Px)Q(y) + QUP(x) =0

for arbitrary x and y in H,.

If (K, &) is a given real Clifford system over H, the dual Clifford system
over (H, ») is defined as (K, P, Q) with P(x) = &(x) and Q(x) = &(ix) forx e
H,. Conversely, if (K, P, Q) is a given dual Clifford system, the correspond-
ing real Clifford system over (H, ®) is defined as (K, ¢) with &(2) = P(x) +
Q) ifz =x + iywithxand yin H,.

Where it is a matter of indiffercnce, or the context makes clear, the type of
Clifford system under consideration—real, complex, or dual—the simple term
Clifford system will be used.

ExaMpLE 2.3. The dual Clifford system associated with the free fermion
field transforms less simply under the representation I' of U(H) than do the
corresponding real and complex systems, but enjoys the following propertics:

1) If U e U(H) is such that ®Ux = U, then
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CWPXLW)-! = P(Ux),  T(WQRXI(W)-' = Q(Ux)

for all x € H,.

2) If M is any closed (complex-linear) subspace of H, and i(M) is the uni-
tary operator on H such that i(M)x = ix for all x € M while i(M)x = x
for all x e M+, then for x e M,

CEM))PIEM)) ' = Q(x), FEM)QIr M)~ = —P(x),
while for x € M+, I'(i(M)) commutes with both P(x) and Q).

The wave representation for the fermion field cannot simultaneously diag-
onalize the Q's, since they do not commute with each other, but is analogous
to the wave representation for the boson field in representing them simulta-
neously as left multiplications acting on an algebra, which has also the struc-
ture of a pre-Hilbert space. In the boson case this algebra happens to be com-
mutative: it can be taken to consist of all sufficiently regular elements of L,(M)
for a suitable measure space M. In the fermion case, the relevant algebra is
noncommutative, and some preliminaries arc required to set it up. Later it will
be seen that both the fermion and boson cases can be viewed as representations
associated with an operator ring A in Hilbert space and a particular vector v
which may be called a *‘trace vector'' (in physical applications, it is the free
vacuum state vector). For any such pair (A, v), there is a corresponding inte-
gration and L,-theory analogous to the Lebesgue theory, as applicd to a prob-
ability measure space M in which A is all multiplications on L,(M) by bounded
measurable functions and v is the function identically 1.

DerNiTION. Let H, be a real pre-Hilbert space of infinite or even dimen-
sion. The Clifford algebra over H, (of variance c) is the algebra C (over the
complex ficld) generated by a unit ¢ together with the elements of H,, with the
relations xy + yx = c{x, y)e, for arbitrary x and y in H,. The unique linear
functional E on C such that E(ab) = E(ba) for arbitrary a and b in C, and
such that E(¢) = 1, is called the trace on C. The canonical injection of H,
into C will be denoted as 1.

Before continuing, we explain why the functional E exists and is unique.
We use the fact that when H, is of finite even dimension n, C is *-algebraicaily
isomorphic to the algebra of all complex matrices of order 2%2, where the * on
C is the unique adjunction operator relative to which every element of H, is
invariant, and the usual hermitian conjugate on the matrices. Only multiples
of the usual matrix trace have the indicated centrality property that E(ab) =
E(ba) for all a and b, among linear functionals on the matrices. and its multiple
by 272 is then the present trace. It follows that even when H, is infinite-
dimensional (the casc of primary concern), the trace is unique if it exists at all:
for any element lies in the Clifford algebra over some finite and even-dimen-
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sional subspace of H,, and the restrictions to this algebra of any two putative
traces defined everywhere on C must agree. On the other hand, £ may be
defined by essentially the same argument. More specifically, if « is a given
clement of C, which is generated as an algebra by H,, then u is contained in
the subalgebra C(M) generated by some subspace of finite even dimension;
and E(«) may be defined as the trace (normalized in the indicated fashion) of
the matrix representing u in the isomorphism of C(M) with a matrix algebra,
If N is another subspace with the same properties as M, the same valuc of
E(U) will be obtained because N and M may be simultaneously imbedded in
a larger subspace L of H, of finitc even dimension. The restriction of the trace
on C(L) to C(M) has the characteristic properties of the trace on C(M), hence
agrees with it; the same is true with M replaced by N. Therefore, the traces on
C(M) and C(N) agree on the common part of these subalgebras of C(L).

THEOREM 2.3. Let H, be a real part of the given complex Hilbert space H
{assumed of infinite or finite even dimension). Let (C, E) denote the Clifford
algebra C over H, together with its trace E. Let K' denote the Hilbert space
obtained by completion of C with respect 1o the inner product (A,B) =
E(B*A). For arbitrary x € H,, let P'(x) and Q'(x) denote the operators on K'
given by the equations

P'(x)u = i(Qu)x; Q'(xX)u = xu

where Q is as earlier. Let v' denote the clement e of K'.

Then (K’ P, Q") is a dual Clifford system over H of unit variance, with
respect to H,, with cyclic vector v'; and (K',C',v'), where C' is the corre-
sponding complex system, is unitarily equivalent to the subsystem (K, C, v) of
the free fermion field via a unique unitary transformation.

This unitary transformation from K to K' may be characterized as that
which, for every finite orthonormal subset e,,....e, of H,, carries (n!)"
e,/\+-</Ne, into (—i2%) e,---e,and v into v'.

As in the proof for the boson case, an explicit unitary equivalence is set up
between a basis for the Hilbert space K of the particle rcpresentation trcated
carlicr and a basis of the wave representation Hilbert space K’'. This unitary
equivalence is in fact independent of the choice of basis.

The cssentially new point of the proof is the following remarkable property
of the Clifford algebra as a noncommutative probability space: a similar prop-
erty is well known to be valid for the conventional isonormal probability dis-
tribution and in fact characterizes it among commutative probability distribu-
tions (cf. Kac, 1939).

LemMa 2.3.1. Let H, be a real Hilbert space and let M, (j = 1,2,....n)
be mutually orthogonal linear subspaces (all of infinite or finite even dimen-
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sion). Let E denote the trace on the Clifford algebra C(H,). Then. if ue
CM,). E(u\uy*+-u,) = E(u)E(u;)--+Eu,).

PROOF OF LEMMA 2.3.1. Note first that it suffices to show that for arbitrary
orthonormal ¢, ...,e,in H,, E(e,**+¢,) = E(e,)---E(e,). For if u, is arbitrary
in C(M,), it may be expressed in the form

u = 2“, Uy,
where cach summand u,, is of the form ce,--¢,, for some constant ¢ and or-
thonormal e,, ... .e, in M,. Therefore

E(“l".“n) = E( . 2. ul-‘l."“"-‘n)
| RS}

= E Euy ) tnn,)s
KA

on assuming that E(e,*-¢,,) = E(e,)-*+E(e,,). it follows that E,,,u,,) =
E(uy 4,)* - E(u, ), hence

E(u,--+u,) = E( 2 uya,) - E( 2 U,,) = E(u)E(uy)-+-E(u,)
H ™

In order to verify that E(e,---¢,) = E(¢,)---E(e,,), it is appropriate to make
usc of an explicit representation for the Clifford algebra. One that is often used
is as follows: we take n = m with n even, and represent the basis vector ¢, on
the tensor product of n copies of the two-dimensional vector space C? by the
matrix

cll = 2—‘/.'(|'® 1'® - @I'RARI ®---® 1)

S i IS I P

and the jth factor is A. Then

where

cey t o, =0, (J.k=1,....n),

and mapping linear combinations of the ¢, into corresponding combinations of
the ¢;. a representation of the Clifford algebra over n-space into the complete
matrix algebra in a spacc of dimension 2" is obtained. The restriction of the
normalized trace on the latter algebra to the subalgebra representing the Clif-
ford algebra must agree with the functional on this subalgebra corresponding
to the trace on the Clifford algebra, by the unicity of the latter. Therefore, the
trace of any product of the ¢,. 1 = j < m, is the same as the normalized trace
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of the corresponding product of the e;. Observing that A has vanishing trace,
it follows that this trace vanishes in all cases (m = 1).

PROOF OF THEOREM. It is straightforward to verify that (K P} Q") is indeed
a dual Clifford system over H with respect to H, (cf. Example 2.2). To show
its unitary equivalence with the system described in the preceding theorem,
we define explicitly a unitary transformation D from K to K’ which imple-
ments this equivalence. Let {e,} be any well ordered orthonormal basis for H,,
let {x,,} be the corresponding orthonormal basis for K (with x,., = v if n(p)
= 0 for all p). and let y,,, denote the element of C given by the equation

— X 4 e
Yoo = (—12904 €p)0

where p(1) <-:+< p(k) and these are the indices p for which n(p) = 1 (with
Yo = v if n(p) = 0 for all p). Then the y,,., form an orthonormal basis for
K'. and there exists a unique unitary transformation D from K to K’ which
carrics X, into y,,.

Note next that if (K} C') is the complex Clifford system corresponding to
the dual system (K P’ Q"), then

DC(2)xy, = C'(2)yn 2.3

for all z € H and basis vectors x,,. Because of the complex-linearity of C(-)
and C'(-), it suffices to establish equation 2.3 in the case in which z is real.
Morcover, since [|C(2)|| = ¢ ||z}, it suffices to check equation 2.3 on a dense
subset, and ultimately for a basis of H,,. say the {e,}. We may evidently sup-
posc that the notation is such that the ¢, involved in x,,, are e, ... . ¢;, and that
z is cither an clement ¢, of the basis which is orthogonal to the ¢,.... ¢, or
that it is ooc of them. In the latter event, both sides vanish, noting that
C'(e)vn, = 0if | =j = n. In the former event, the left side is

D(k + l)l/z (k!)\/: A("(I®A("|®"'®ek)) = D’tu'(.) = .)'u’(.)
where n'(p) = n(j) + 3, and the right side is
—|'2"’-‘((Q)‘,.(,,)t'u + C¥Va) = Yot

thus the required agreement holds.

Since Dv = ', it follows that (K, C, v) is unitarily cquivalent to (K’ C’ v')
via the unitary transformation D. If D were not unique, say if D,(j = 1.2)
had the same property, then D' D, would be a unitary opertor on K which
commutes with all C(2) and lcaves v invariant. Since v is a cyclic vector for
the C(z), such a unitary operator must be the identity. It follows also that D
not only carries x,,, into y,,, for one particular orthonormal basis of H,, but
does so for all such bases; for any such D must implemeot the unitary equiv-
alence between (K. C.v) and (K’ C.v'), and this unitary equivalence is
uniquc. O



The Free Fermion Field 87

COROLUARY 2.3.1. There exists a unique representation I'' of UH) on K’
with the properties

r'uoc'@rwy-' = c'(Uz), r'wy =v

forallzeH.
Moreover, oI"'(A) = 0 for all nonnegative selfadjoint operators A on H.

Proor. Taking I''(U) = D-!'T'(U)D shows the existence of I'". The proof
of unicity is similar to that given for D. Recalling that aI''(A) is defined as the
selfadjoint generator of the one-parameter subgroup {I"'(e*4): 1 € R}, it is ev-
ident in the particle representation (with the use of spectral theory) that aI'(A)
= 0 for all A = 0, and hence the same is truc of aI''(A) = 0. O

COROLLARY 2.3.2. I"' is the unique continuous representation of U(H) on
K' enjoying the transformation properties | and 2 given in Example 2.3.

Proof. It suffices to show that the transformations considered in Example
2.3 generate a subgroup U’ that is strongly densc in U(H). Since those unitar-
ies on H that are the identity on a cofinite-dimensional subspace form a
strongly dense subset of U(H). it suffices to show that any such unitary is in
U’. Actually, it suffices to show that every unitary that is the identity on the
orthocomplement of a two-dimensional subspace of H is in U’, for such uni-
taries generate Utn) for every n, as follows from the diagonalizability of uni-
tary transformations. Thus, it suffices to show that U(2) is generaled by O(2)

together with the element
i 0
0 1

in U(2). On conjugating the generator

)

of the O(2) subgroup of U(2) by the cited element. forming commutators. and
taking the linear span. a four-dimensional space, and hence the totality of the
Lic algebra of U(2). is obtained. O

CoroLrary 2.3.3. If (K. P, Q.T. v) is the free fermion field over the com-
plex Hilhert space H (in terms of a dual Clifford system, with respect 1o the
real part H,). and if R, denotes the W#*-algebra generated by the Q(x). x €
H,. then
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1) v is a separating, cyclic, and trace vector for Ry,

2) the center of Ry, consists only of scalars; and

3) Ry is an approximately finite 11, factor in the terminology of Murray and
von Neumann.

ProoF. The Clifford algebra C over H, together with the inner product
given on it have the propertics

{ab, c) = (b, a*c) = {(a, cb*), {ab, ab) = c(b, b) (c. = const.)

The first property is immediate from the definition; to derive the second, note
that (ab, ab) = E(b*a*ab}—but E is a positive lincar functional, and a*a <
¢, for a suitable constant ¢, (in the usual ordering on hermitian operators), so
E(b*a*ab) < c,{b. b). Moreover, C has a unit e. This mcans that the system
(C, (,)) forms a **Hilbert algebra’’ (cf. SK). While a proof could be given
that is largely independent of the general theory of such algebras—the present
algebra is one of the simplest—in part it would reproduce an argument used
in the general theory, and we shall, instead, simply appeal to onc of the basic
results about Hilbert algebras: if K' is the Hilbert space formed by completion
of C with respect to the inner product (-,-); if for any a € C, L, and R, denote
the operations of left and right multiplication by a, acting on C: and if L and
R denote the W*-algebras generated by the bounded extensions L, and R, of
L, and R, to all of K'; then the commutor L' of L (i.c., the set of all bounded
operators T such that TL = LT forall L € L) is R, vice versa.

In the context of Corollary 2.3.3, L is R, and R is the W*-algebra generated
by the R,. a € H,. Consider now assertion 1. That v is cyclic for R, is imme-
diate since Ryv certainly contains C, which is dense. It is also cyclic for the
W*-algebra generated by the R, a € H,, by the same token; hence it is sepa-
rating for the commutor of this algebra, i.e., for R,. Now if A and B are any
operators in the algebra L. generated (purely algebraically) by the L. a € C,
then it is an entircly algebraic fact about the tracc that (ABv, v) = (BAv,v).
On the other hand, every operator M in Ry, is a strong limit of a uniformly
bounded net of operators in L., by virtue of the fact that if a *-algebra is
strongly dense in a W*-algebra, then its unit ball is strongly densc in the unit
ball of the W*-algebra (cf. Dixmicr. 1981). It follows by a simple approxi-
mation that (MNv, v) = (NMv. v) for all operators M and N in R,—i.e.. vis
a trace vector.

Now let A be an element of the center of Ry, i.c., AX = XA for all X € Ry,
For any linear subspace M of H,, of finite even dimension, lct RM denote the
W*-algebra generated by the Q(x) for x € M: as an algebra, RM is finite-di-
mensional, being isomorphic to the Clifford algebra over M. Denoting as E(T)
the extension (T'v, v) of the trace to all of Ry, the functional F(X) = E(AX)
defined for X € R, is lincar and central, i.e., F(XY) = F(YX) for arbitrary Y €
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R,. The restriction Fy, of F to RM has consequently the same property, and
must therefore conincide with a scalar multiple of the trace on RM. Thus, there
exists a scalar operator Ay, such that E(AX) = E(Ay X) for all X € RM.

It will follow that A is a scalar operator if it can be shown that Ay — A
strongly as M — H,. To this end, note first that Ayl =< [IA]l. Again, this could
be proved directly in the present case but we shall rather appeal to a simple
general result, to the effect that if S is a W*-subalgebra of the W*-algebra R,
if E is a trace (central state) defined on R, and if A is any clement of R, then
the opcrator A’ in S such that E(XA) = E(XA’) for all X € S (the conditional
expectation of A with respect to S) has the property that ||A]| < {lA||. Second,
if u € C, then Ayu— Auas M — H,, indeed Apu = Au for sufficiently large
M (depending on u), by a simple argument (or familiar property of conditional
expectation). It follows by approximation that Ayu — Au forall ue K'.

That R, is an approximately finite II, factor simply summarizes the facts
that it has a trace, is a *‘factor’’ (i.c., has trivial center), and is generated by
the finite-dimensional subalgebras RM. |

2.4. The complex wave representation

The development of an analog to the boson ficld complex wave representa-
tion for the fermion case depends naturally on the interplay between the real
and complex structures in the underlying Hilbert spaces. It is necessary to
make this more explicit.

In the following there will be no occasion to consider the Clifford algebra
over H as a complex space with a complex quadratic form. (There is in fact
no unitarily invariant such form, just as there is no unitarily invariant complex
conjugation.) All Clifford algebras considered here will be over real spaces
with real forms and complex cocfficients in the algebra itself. (They arc thus
somewhat analogous to the algebra of complex polynomials over a real linear
space.) In the case of a given complex space H, the following are unitarily-
invariant notions.

DEerFNITION. Let H be a given complex Hilbert space. The Clifford algebra
over H, denoted C(H), is defined as the Clifford algebra C(H?) over the real
Hilbert spacc H?. The canonical injection of H (or H?) into C(H) will be
denoted as n (note that 1 is real-linear but not complex-lincar.) An clement u
of C(H) (resp. its Hilbert space completion, denoted L,(C(H)) is called holo-
morphic/antiholomorphic if it is in the subalgebra generated by the clements
of C(H) of the form n(x) + m(ix) / n(x) — in(ix), x € H (resp. its Hilbent
space completion).
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The question may arise of whether a holomorphic/antiholomorphic element
of L,(C(H)) that lies in C(H) is also holomorphic/antiholomorphic as an ele-
ment of the latter. That this is the casc will be a consequence of Theorem 2.4.
This involves the following analog to differentiation.

DEFINITION. A pseudo-derivation on a Clifford algebra C over a space L is
defined as a linear map 8 such that d(uv) = (du)v + (SQ2u)ov for all u, ve C.

THEOREM 2.4. Let H be a given complex Hilbert space, and C(H) the Clif-
ford algebra over H. Let H denote the subspace n(H) + m(H) of C(H),
consisting of all elements u of C(H) of the form n(x) + in(x'), withx,x' € H.
Let w — U denote the operation of complex conjugation on C(H), i.e., the
unique antilinear automorphism of C(H) as a ring that extends the mapping
nx) + m(x') = nx) — mx'), with x and x' in H. Then

i) for every nonzero z € H of the form z = n(x) £ im(ix), x € H, there is a
unique pseudo-derivation @ on C(H) such that 8z = e and dy = 0 for
all y in H that are orthogonal to z; and

ii) @ admits a bounded linear extension 9, to all of L,(C(H)), and an ele-
ment u of this space is holomorphic if and only if &4 = 0 for all = ¢ H
of the form : = n(x) + in(ix), x € H (resp. antiholomorphic if d.u = 0
Jor all such z).

LEMMA 2.4.1. Let H' be a given real Hilbert space, and let H denote its
complexification H' + iH'. The mapping x + iy — 2(M(x) + M(y)) from
H into the Clifford algebra C(H') is an isometry.

PROOF. It is immediate that the mapping is linear and one-to-one, so what
is to be proved is that (x + iy, x' + iy’") = 2(nx) + in(y). n(x’) + M)
for arbitrary x, y, x5 ' in H'. In fact, the right side of this putative equality is

21t {(n(x) + i) Mx') = in(x' N}
= 21 (nGxmx’) + nyme") + movmx’) — imGxmoe)}
=(nx) + (v, v) + i(vox’) = i, ) = o+ dv '+ i), O

LeMMA 2.4.2. Let H' be real Hilbert space, and let M denote any complex-
linear subspace of \(H') + in(H'). Then the subalgebra of C(H') generated
by M and the identity is *-isomorphic (automatically in a trace-preserving
Jashion) to the abstract Clifford algebra C(M) over M (relative 1o the restric-
tion of the inner product E(A*B) on C(H') to an inner product on M).

PROO¥. Since M is cither even- or infinite-dimensional, the Clifford algebra
over M relative to the given inner product is simpie; the nonzero *-homomor-
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phism from C(M) to C(H') given above is thus an isomorphism. Since the
trace is unique, the isomorphism is necessarily trace-preserving. O

LEMMA 2.4.3. Let H' be a given reul Hilbert space, and H its complexifi-
cation, identified withn(H') + in(H') as in Lemma 2.4.1. If {e,} is an ortho-
normal basis for H', then the producis fw|J;u‘:i"']ﬁlJv(2)"'- where f, =
n(e,) + in(ie,), form an orthonormal basis for C(H).

PrOOF. The f, and f, form an orthonormal basis for H*, by Lemma 2.4.1
and a simple computation. Applying Lemma 2.4.2 and the standard form for
the basis of a Clifford algebra over a rcal Hilbert space, relative to a given
orthonormal basis in the latter, the lemma follows.

PRrOOF OF THEOREM. Note that for arbitrary nonzero x in H = n(H) +
m(H), and a and b in the subalgebra R(x*) generated by the orthocomplement
of x in H, the a and xb are orthogonal, as a consequence of Lemma 2.4.3.
Using Lemma 2.4.3 once again, it follows that every clement u € C(H) may
be expressed uniquely in this form: 4 = a + xb.

Now defining du = b, thenif u’ = a' + xb',

uu' = (aa' + xbxb') + (axb' + xba'),
the term aa’ + xbxb' is in R(x1), while axb’ = x(Qa)b'. Thus

Aduun') = ba' + (Qa)b',
Quu' + (Qu)iu' = bla' + xb') + Q(a + xb)b’;

so d is a pscudo-derivation. The remainder of assertion i) follows from the
obscrvation that the difference of two pscudo-derivations with the given prop-
erty is a pscudo-derivation which vanishes both on x and R(x*), and hence
vanishes identically.

To see that d is bounded in the L,(C(H)) norm, note that with 1 as carlicr,

hud* = llall® + llxbll* = Jlebll* = Jllilelf?

To show that if « is holomorphic. thend.u = O forall : = n(x) + m(ix), 1
€ H. it suffices to treat the casc in which u € H, since the general case follows
by induction. using the fact that 3: is a bounded pseudo-derivation. Now if u
¢ H. and u is holomorphic. then u = n(y) + ineiy) for some v € H. To show
that 3. = (), it suffices to show that (u, =), = 0, as follows:

2y + miy), nix) — inlix))
= 2((y). n(x)) — 2ly). m(ix)) + 2m(iv). nix)) = 2Am(iv), inlix))
= Re(y.x) + iRe(y.ix) + iRe{iy,x) — Re(ix.iv) = 0
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Suppose conversely that u € L,(C(H)) and that :u = 0 for all z = n(x) +
m(ix), x € H. Let M denote any finite-dimensional complex-lincar subspace
of H that contains x and ix. Then 3 commutes with the operation P of projec-
tion of L,(C(H)) onto C(M), as a subspace of C(H) (i.e., ‘‘conditional expec-
tation with respect to C(M)"’). For if u = a + 2b as earlicr, with z € M, then
Pu = Pa + 2Pb, by the property of conditional cxpectation with respect to a
subalgebra B that if ¢ € B and if r is arbitrary in L,(C(H)), then P(qr) = qP(r).
(This property follows from the characterization of Pr as the unique element &
in the closure of B such that E(rt) = E(st) forall 1€ B.)

To conclude the proof for the holomorphic case, it suffices now to assume
that H is finitc-dimensional. For, from the commutativity of P with g, it fol-
lows that if 3;u = O for all z as assumed, then 8;:(Pu) = O for all z. Assuming
the finite-dimensional case, it then follows that Pu is holomorphic as an cle-
ment of C(H), but Pu— uas M — H.

Consider now the finitc-dimensional case. Let {e,} be an orthonormal basis
for H, and set f, = n(e,) + in(ie,). Then, by Lemma 2.4.3, every clement
u € C(H) is a lincar combination of the f,,fi2) *** funfom =+ - If 97,
= (, then thosc members of the cited orthonormal basis of C(H) in which Sun
occurs have vanishing coefficient in the representation of u in terms of this
basis. It follows that if & u = O for all , then none of the basis vectors
involving onc or more of the f, occurs, which means that u is holomorphic
according to the earlier definition.

The antiholomorphic casc now follows by entirely paralle] arguments. [

We arc now in a position to show how the free fermion field over a given
complex Hilbert space H can be simply represented in terms of the antiholo-
morphic spinors, as the space K’ of antiholomorphic elements of L,(C(H))
may be termed, since the so-called spin representation of the Lic algebra of
the orthogonal group O(H*) takes place in a Hilbert space which may be nat-
urally represented as K'.

TurorReM 2.5. Let H be a given Hilbert space, let K' denote the space of
antiholomorphic spinors over H, and for x € H, let d(x) denote the operator
on L(C(H)) given by &(x) = 2-"(L, + iR, Q). For any unitary U on H. let
T (U) denote the unitary operator on L.(C(H)) that extends the automorphism
of C(H) that in turn extends the operator U on H. Let v’ denate the identity ¢,
in L(C(H)).

Then K’ is invariant under the &(x) and To(U), and if ¢'(x) and T'(U)
denote the restrictions of these operators to K', the quadruple (K, &' T, v')
is unitarily equivalent to the free fermion field over H.

ProoOE. It is casy to check that &(x) is selfadjoint, and that the Clifford
rclations
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d()d() + d(y)b(x) = Relx,y)  (x.yeH)

are satisfied. Now if z € H has the form z = n(x) ~ i(ix), x € H, then
denoting as ¢ the extension of ¢(*) to a homomorphism from C(H) into the
bounded linear operators on L,(C(H)), it is readily checked that the following
relations hold:

(@) =27%(L, - RQ), & () = 2" + R,Q).
Supposing that 1 € K', then the following relations hold:
&) u = 2%L,u, & (Du = 2%d.u.

To check these relations, it suffices to consider the case in which « is a finite
product of elements of the form n(e,) — im(ie,), where the {e,} form an or-
thonormal basis for H, and in which x is itself 4 member of this basis. The
relations then follow straightforwardly. Hence K' is invariant under the ¢<(z)
and ¢(2), which implies in turn that it is invariant under the ¢(x).

Since I'' (V) carries the product

("l(e.un) - iﬂ(ic.un)) (n("um) - m(icuu)))“'
into the product

(MWUey)) — MiUeyy,)) M(Ueya) — m(ilUe,,,))-+.
it leaves K’ invariant. It is immediate that I''(U) satisfies the relations
"' @' -t = ¢'(Ux); '(U)v = vforall U.

To complete the proof, it suffices now to show that I’ (U(1)) has a nonnegative
generator for some strictly positive energy onc-parameter unitary group on H,
and that v’ is cyclic in K’ for the &(x). The latter is immediate from the relation
d(z)u = 2“L.u. To verify the former, let U(r) = ¢*; then (n(U(fx) —
m@iU(nx) = e*(n(x) — in(ix)), as is easily verified, from which it follows that
K' is spanned by cigenvectors of I''(U(1)) on which the generator has nonneg-
ative cigenvalues and so is itself nonnegative. ]

COROLLARY 2.5.1. The (unique) unitary equivalence T between the complex
wave and particle representations of the free fermion field over a given Hilbert
space H carries ffs+++ . where f,, = n(e,) — m(ie,). {e,} being any ortho-
normal basis of H, into (n!)”: A(e,®¢,®+--® ¢,), A being the antisymmetri-
zation projection.

Proor. Using the stochastic independence of the ¢, and ie, in the Clifford
algebra. it follows that the £, f:+f, form an orthonormal basis in K', as the ¢,
vary over the given basis of H. It has alrcady been determined that the putative
corresponding vectors in the particle representation space. say K. form an
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orthonormal basis there. Conscquently there exists a unique unitary operator
carrying the onc basis in K’ into that in K. Denoting this operator as T, it is
immediate from its definition that it makes the respective vacuum state repre-
sentatives correspond. Since (V) is uniquely determined, for any unitary U
on H, by the property that [(U)v = v and that T(U)C(z)I()-' = C(Uz)
for all z in some spanning subsct of H, it suffices, in order to conclude the
proof, to show that

T-'Cifafi = CUIT- i for i

for all y that arc one of thc e,. If | =< j < k, then both sides vanish, so it may
be supposed that y is another basis vector, say e,. Then

Clefifo++fi = 2-"(dley) — idlieNfiforfi = 27 @)f, oo

where z = (n(ey) — m(ie,)). Now applying an equation obtained in the proof
of Theorem 2.5, it results that

Clefferfu = i for+ oo
which is carried by T-'into ((n + 1))* A(¢,®e,®-++®¢,). On the other hand,

CleodT~'fifo i = Chlen)n))4A(e,®e,®:+-®e,)
= (” + l)"'(n!)"’A(e(,®e|®"'®c’.).

since C,(e,) consists of antisymmetrized tensor multiplication by e, followed
by multiplication by (n + 1)%. The observation that the opcraton of antisym-
metrized tensor multiplication commutes with antisymmetrization with re-
spect to a subsct of the variables involved completes the proof. a

The usc of the unicity theorem in the proof of Theorem 2.5 is avoidable,
being rcadily replaced by considerations in the proof of Coroliary 2.5.1, which
indepcndently cstablish the equivalence of the structure given in the theorem
with the particle representation of the free fermion ficld.

The explicit form of the intertwining operator between the complex and real
wave representations for the free fermion field is obtained straightforwardly
by combining the equivalences of the wave representations with the particle
representation which have been obtained. Specifically, with the same notation
as carlier, the (—i2-"2)"¢,e,++¢, in the rcal wave represcntation corresponds
to f,f:--f, in the complex wave representation. relative to an arbitrary ortho-
normal basis in H.

Problems

1. Let {e,} bc an orthonormal basis for the Hilbert spacc H, and let C(2)
denote the creation operator for the vector = € H in the free fermion ficld. Let
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a, = C(e,)*, i.e., the annihilation operator for the nth ‘‘modc.’* Show that
the number operator N = aI'(/) equals X, a,a,*, where the sum is convergent
in the strong topology.

2. Let (K, ¢, T, v) denotc the frce fermion field over the Hilbert space H.
Show that the representation I', of the unitary group on H given by U —
(U)K, is irreducible. (Cf. Segal, 1956a.)

3. With the notation of Problem 2, let ® be a conjugation on H, and let
U.(H) be the subgroup of U(H) consisting of transformations that commute
with % (i.e., the orthogonal group on H,). Show that the restriction of I', to
U.(H) is irreducible if and only if H is infinite-dimensional. (As in the boson
case, this result is duc independently to K. Okamoto et al. and J. Pedersen.)

4. Let S be the space of all tensors in the algebraic direct sum T = &, H"
that are annihilated by antisymmetrization. Show that S is an ideal in the ten-
sor algebra T.

Bibliographical Notes on Chapter 2

The particle representation for the universal fermion field (in its invariant
Hilbert space form) is due to Cook (1953). See Segal (1956b) for the real wave
representation and its unitary equivalence to the particle representation. The
complex wave representation was developed by Shale and Stinespring (1964).
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Properties of the Free Fields

3.1. Introduction

The free ficlds appear as a natural mathematical extension of classical lines
of investigation. Notable among these are those of Schur, Weyl, and Brauer
on the decomposition of tensor representations of the classical groups; Wic-
ner’s work on functional integration and its further developments by Cameron
and Martin, Kac, and others; and a variety of developments in number thcory
concerned with the symplectic group and theta-functions, along lines treated,
e.g., by Cartier, lgusa, and Weil. Ideas connected with frec field algebra arc
involved in works of Bernstein, Leray, Quillen, and Vergne, among others.

In this chapter we give mathematical characterizations of the free fields on
the basis of simple physical properties. It will be seen that, in essence, the
fundamental desideratum of positive energy, together with the assumption of
*‘canonical'’ commutation or anticommutation relations is sufficient to pick
out the free fields from an cnormous class of other ficlds. Before getting to
this point, however, it would scem interesting to display some of the simpler
gencral properties of the free fields. In part, thesc arc analogous to familiar
finite-dimensional results. For cxample, the infinite unitary group U(H) con-
tinues to act irreducibly on the space of symmetric tensors over H of a given
rank, ctc. But there are some surprising differences, in part in the nature of
simplifications in the infinite-dimensional cases; c.g., the orthogonal group
O(H’) on a real Hilbert space acts ergodically on L,(H', n) when H' is infinite-
dimensional, quite unlike the finitc-dimensional case.

Familiarity with such properties of the free fields will convey some feeling
for the relations between the finite and infinitc-dimensional situations, further
prepare the ground for the consideration of general statistics, and help to con-
solidate the analogy between the boson and fermion cascs.



3.2. The exponential laws

How are the free ficlds over the direct sum H,@H, of two Hilbert spaces
related to the free fields over each of H, and H,? At first glance this might
appear as a dry formal qucstion, but the answer is surprisingly simple and
useful.

THEOREM 3.1. The free boson field over a direct sum of Hilbert spaces is
the tensor product of the corresponding free boson fields, in the following
sense:

IfH,(j = 1, 2) are given complex Hilbert spaces, and if (K, W, T, v) is the
free boson field over their direct sum H = H,@H,, then K is unitarily equiv-
alent to K,®K, in such a way that

W(z,Bz,) = W,(z))®W,(2,), I(U,®U,) =T (U,)B,(U,),
and v = v,Qv,

where (K,, W), I, v)) denotes the free boson field over H,, z, is arbitrary in H,,
and U, is arbitrary in UH,).

Symbolically, we may write BLHOH') = B(H)®B(H'), where B(H) de-
notes the free boson ficld over H. This result, suitably formulated (in terms of
von Neumann’s concept of infinite products of Hilbert spaces with distin-
guished unit vectors), is cqually applicable to infinite direct sums of Hilbert
spaces, as a corollary to the casc of a direct sum of two spaces and the von
Neumann theory. .

ProoF oF THEOREM. Note first that in any frce boson field, the vacuum
vector v is a cyclic vector for the Weyl operators W(z). To set up a unitary
equivalence between K and K,®K,, we make W(z,®z,)v correspond to
(W, (z)BW,(z))(v,®v3), z, being arbitrary in H,. Since these vectors span K
and K,®K; respectively, there exists a unique unitary transformation T fram
K onto K,®K, such that TW(z,Bz,)v = (W,(z))®W,(z,))(v,®v,) provided
that the respective inner products are equal; i.c.,

(W(z,Dz,)v, W(ziDz3)v)
= ((Wy(z))@Wy(z))(v,@v,), (W, (z)@W,(z3))(v,BV,))

Using the fact that for any free boson field
(W(z)v, v) = exp(~ Y |l2),

it is easily seen that the abovc equation holds.
It is a direct consequence of this construction for T that TW(z,D:.)T ¢
W,(z,)®W,(z,) and Tv = v®v,. To show that TT(U,DU,)T-!
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I(U,)®T,(U,), it suffices to note that the latter operator Icaves v,&v, fixed
and that it transforms W,(z,)®W,(z,) by conjugation in a fashion correspond-
ing to the transformation of W(z,z,) by ['(U,BU,). O

In the fermion case, the exponential law represented by Theorem 3.1 cannot
hold without some modification, because the Clifford operators ¢(z) and ¢(z')
for orthogonal z and z' anticommute, rather than commute; thus it is impossi-
ble that d(z + z') = &(z)@d(z’) in a simple formal sense. But with the inser-
tion of a suitable twist, the boson results generalize appropriately. The twist
in question is provided by the automorphism Q which played a considerable
role in the preceding chapter,

THEOREM 3.2. The free fermion field over the direct sum of Hilbert spaces
is the skew product of the corresponding free fermion fields in the following
sense:

IfH(j = 1,2) are given complex Hilbert spaces, and if (K, &, T, v) is the
free fermion field over their direct sum H = H,®H,, then K is unitarily equiv-
alent to K,®K, in such a way that

&(2,Dz2,) = ¢,(2)1; + Q,@by(2,),
I'U,BU,) =T, (U,)Ty(U,),

v=v,Qv,;

where 1, = Ix,. Q, = T'(=ly,), (K, &,.T;, v,) denotes the free fermion field
over H,, z; is arbitrary in H,, and U, is arbitrary in UH,).

Symbolically, we may writc FH®H') = F(H)®F(H'), where F(H) de-
notes the free fermion ficld over H, and ® is called the skew product. As in the
casc of boson fields. this result also can be extended to infinite direct sums.

PROOF OF THEOREM. We definc a unitary transformation 7 from K,®K,
onto K by choosing orthonormal bascs {e,} and {f,} in H, and H,, and mapping
Xy ®X,,, INO X,y o w (in the notation of Section 2.2). In order to show that
T(C,(2)®I, + QBC,(w)T-! = C(zDw), it suffices by continuity to prove
this for the cases when z and w are finite linear combinations of the ¢, and f,.
and by linearity is suffices in turn to prove this when = and w arc among the e,
and f,. It then suffices to establish the equality of the operators in question in

their respective actions on the basis vectors x,, ,&x,., OF X, . ., FESpectively.
1t may then be assumed that cither z is among the e, with m(jt) = 0, and w =
0. orz = 0 and w is among the £, with n(v) = 0; forif m(p) = Torn(v) = 1,

then both sides vanish. In the case when z # 0 while w = (. the equality to
be checked is
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T(Cl(eo)®12)7." Ixm(.)on(.) = C(eo) Konto) + nte)

In the real wave representation, relabeling indices as in Chapter 2 and assum-
ing x,., = €, e,andx,., = f, + f,, the left-hand side takes the form T(e,e,
vr 6n®f1 o f2) = g ema Where m'(B) = m(p) + O, 4. By the definition of
T this agrees with the right-hand side, with the convention that all p precede
all v. In the case z = 0 and w = f;,, the left-hand side takes the form

T(Q,®C:(fNT-" (e, enf, =+ f2)
- T(Q|®C:(ﬁ'))(x""®x"‘") = (- l)"Xm.nn'l.).

where m = Z, m(p) and n'(v) = n(v) + d,,. The right-hand side is f(¢, -
e i f) = (=D (egoo- e, )(fofy -+ f,). and so agrees with the left.

By construction, T carries v,®v, into v. To show that ['(U,BU,) is as
stated. it suffices, noting that it lcaves v invariant, to show that it transforms
the C(zBw) in the same way as does T(I',(U,)®C(U,))T-*. By the defini-
tion, C(z®w) is transformed into C(U,28BU,w). On the other hand, under
transformation by I'(U))®I(U.), C,(2)®1 + Q,®Ci(w) is carried into
C(U,2)®1 + Q,8C,(U,w), since Q, commutes with all I'(U,). and the re-
quired cquality follows. |

3.3. Irreducibility

The irreducibility of the free boson and fermion fields over a given Hilbert
space has already been seen. In this section a different proof is given that uses
positivity in a way that is often effective. We recall that a sclfadjoint set R of
opcrators is one such that if A € R, then A* e R.

THEOREM 3.3. Let H be a nonnegative selfadjoint operator in a Hilbert
space K such that a unique vector v (within proportionality) is annihilated by
H. Let R denote a selfadjoint xet of bounded linear operators on K for which
viy cvelic, and suppose that e""Re-"" C R for all 1 € R. Then R is irreducible
on K.

ProoF. It is no essential loss of generality to assume that R is an algebra.
since it may otherwise be replaced by the algebra it gencratcs. Assuming this.
Ry is densc in K. Letting P denote the projection of K onto an R-invariant
subspace, then PR = RP for all R € R, hence (PRv.v) = (RPv,v). Sctting
Ity = e then I'(riv = vand T(ORT(N-'e R for all r e R and R € R. from
which it follows that (PT'(Rv.v) = (RT'(1)~'Pv,v). Since the right sidc of
the cquation can be extended to a bounded analytic function in the lower half-
planc. and the left side can be ¢xtended to a bounded analvtic function in the
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upper half-planc, (PL'(f)Rv, v) is indcpendent of . This implies that Pv = cv
by virtue of the unicity of v and cyclicity of v for R, where ¢ is a scalar. Now
returning to the equality PR = RP and letting u be arbitrary in K, it results
that (PRv, u) = (RPv, u). But since Pv = cv, this gives the equation (Rv, Pu)
= ¢(Rv, u). The cyclicity of v for R then implies that (x, Pu) = c{x, u) for all
x € K, whence Pu = ¢u, which implics in turn that P = O or /. O

COROLLARY 3.3.1. The free boson and fermion fields over a given complex
Hilbert space H are irreducible under the respective Weyl or Clifford opera-
tors, W(2) or &(2).

Proor. In either case, set # to be al'(/), v to be the vacuum vector, and R
to be the totality of the W(2) or ¢(z), z € H. The hypotheses of Theorem 3.3
are then satisfied. O

Lexicon. The operator N = aI(l) is called the ‘‘number of particles'’ or
‘‘number operator.’’ The subspacc K, represented in the particle representa-
tion of the free fields by the n-fold symmetrized (resp. antisymmetrized) tensor
power of H, and definable as the eigenspace of N with cigenvalue n, is called
the *‘n-particle subspace.”

3.4. Representation of the orthogonal group
by measure-preserving transformations

Let L be a real Hilbert space, and let O(L) be the group of all orthogonal
transformations on L. Since the observation (of Koopman) that a group of
measure-prescrving transformations induces canonically a unitary represcnta-
tion of the group, and the subscquent application of this idea to classical me-
chanics (notably by von Ncumann), there has been considerable development
of the theory of such *‘flows.’" We shall not require a highly structured defi-
nition, but simply define a flow as a system (G, T, M., m), where G is a group,
M is a space, T is an action of G on M as a transformation group, and m is a
mcasure on M that is left invariant by the group action (or. on occasion, is
such that any two translates under G are mutually absolutely continuous). A
kind of converse of Koopman's observation was cmphasized by Wiener, who
gave a way to represent suitablc orthogonal transformations as measurc-pre-
serving transformations on *‘Wicner space,’” a spacc of continuous functions
interpretable physically as Brownian motion paths. in algebraic essence, how-
ever, Wicner's construction (later extended by others) is tantamount to the
application of the representation I” associated with the free boson field.
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In this section the canonical *‘lifting’" or transfer of an orthogonal group to
a group of measure-preserving transformations is developed, and it is shown
how an extensive class of ergodic flows may be derived from this construction.
We recall that a flow is ergodic if there exist no invariant measurable scts,
modulo null sets, other than the entire space M and thc empty set; this is equiv-
alent, as is easily seen, to the nonexistence of invariant measurables, other
than constants. Ergodic flows have much the same rolc in the general theory
of flows as irreducible representations have in the theory of group representa-
tions: every flow is obtainable as a type of direct sum or integral of ergodic
flows.

Koopman's observation applies to the group of transformations O(L) acting
on the gencralized measure space (L, g), where g is the isonormal distribution
on L, by virtue of the invariance of g under orthogonal transformations on L.
We recall that the idea consists in associating with a given measure-preserving
transformation T on a measurc space (M, m) the unitary transformation U(T)
on L,(M, m) defined by

U): fpy— f(T-'p).

It should be noted that any such transformation T detcrmines a corresponding
transformation T on the measure ring M of (M, m), consisting of the Boolean
ring of all measurablc sets in M modulo null sets; Tisa measung-prcscrvmg
Boolean automorphism of M; if E is a measurable subset of M, T carries the
corresponding residuc-class £ modulo the ideal of null sets into the residue
class of T(E), and the measure /(E) of E is defined as that of E.

It is cvident that U(T) has the property that if it carrics f into f’ and g into
g', and if fg € L.(M, m), then it carries fg into f'g’. It is not difficult to see that
this property is characteristic of the unitary transformations on L,(M, m) that
arisc from measure-preserving automorphisms of the measure ring. It is more
complicated to show that any such automorphism may be defined by a mea-
surc-prescrving point transformation, if not on the space M then on some mod-
ification with an isomorphic mcasure ring to (M, m); but we shall havc no
occasion to use this result. The essential point is that the notion of a measure-
preserving transformation is conceptually equivalent to that of a multiplicative
unitary transformation on L,.

DernNiTiON. If T is any lincar transformation on the real space L, the cor-
responding operator x + iy +* Tx + iTy on the complexification H of L will
be denoted as T and called the complexification of T.

THEOREM 3.4. Let L be a real Hilbert space and let G be a subgroup of
O(L) that leaves no finite-dimensional subspace of L invariant. Then T(G*)
acts ergodically on L(L, g).
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LEMMA 3.4.1. Let U and V be unitary representations of a group G on
coniplex Hilbert spaces H, and H, whose tensor product has a nonzero in-
variant vector. Then both U and V leave invariant a nontrivial finite-dimen-
sional subspace.

PROOF. Let % denote an arbitrary conjugation on Hy, and let V denote the
representation %V of G. Then V has a nontrivial finite-dimensional subspace
if and only if V does. Thus it suffices to show that if the tensor product U ® V
has a nonzero invariant vector, then both U and V have nontrivial finite-di-
mensional invariant subspaces.

To this end, let w be a nonzero invariant vector for U ® V. Then for cach
fixed vector x in Hy,, the function of y, {(x ® xy, w), is an antilincar function
of y, and so has the form {u, y) for some vector u in H,. Setting u = Tx, itis
casy to verify that T is bounded and linear, and that TU(a) = V(a)T for all a
in G. It follows that U(a) commutes with 7*T, which is a Hilbert-Schmidt
operator, since for any finite orthonormal set e, e......e, in H,,, Z)Tej? =
(wll?. As the spectral manifolds of T*T reduce U(a), it follows that U must
have an invariant subspace of positive finitc dimension. By symmetry, the
same is true of V. O

ProoF OF THEOREM. Let (K, W, T, v) denote the free boson ficld over the
complexification H of L. Ergodicity then means that the only invariant vectors
in K for all I'(g%), g € G, are those of the form Av, A € C. To show this, let u
be any invariant vector, and.let u,, denote its component in the n-particle sub-
space; then u, is likewise invariant under all I'(g?), g € G. On the other hand,
the n-particle subspace K, is a subspace of the n-fold unrestricted tensor prod-
uct H®---®H, and the action of I'(g7) on K, is the restriction of the n-fold
tensor product g°®--®ge from the unrestricted n-fold product to the symme-
trized subspace. Thus if K, admits a nontrivial invariant vector under the
I'(g). so also does H®---®H under the g ®---®g' with g € G. but this is
impossible by Lemma 3.4.1 together with the hypotheses that G leaves no
nontrivial finite-dimensional subspace of L invariant (this condition implying
that G- leaves no finite-dimensional subspace of H invariant). O

CoRrOLLARY 3.4.1. Let G be a group of unitary operators on the complex
Hilbert space H leaving invariant no nontrivial finite-dimensional subspace.
Then if (K, W, T, v) denotes the free boson field over H, the only invariant
vectors for 1'(G) are the scalar multiples of v.

Proor. This is simply a reformulation of what was established in the pre-
ceding proof. O
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The theorem is applicable to the fermion case with a natural extension of
the notion of ergodicity.

DEFINITION. A group of automorphisms of a W*-algebra is called ergodic
if the only invariant projections are 0 and 1.

ExaMPLE 3.1. In the case of the free boson field over the complexification
H of L, the I'(O) for arbitrary O € O(L) induce automorphisms y(0): X —
T[(O)XT'(0)-! of the W*-algecbra Q gencrated by the ¢(x) with x € L. (The
&(x) are unbounded; one defines the W*-algebra they generate by their
bounded functions in the standard sense.) In this way O(L) is represented as
an automorphism group of Q, and its action is ergodic. For if P is any invariant
projection in Q, then Pv is an invariant vector in K. By the crgodicity in the
earlier sensc cstablished by the thcorem, Pv = av for some scalar «. But v is
a cyclic and separating vector for the maximal abelian aigebra Q, so P = al.

Conversely, the absence of any nontrivial invariant projection in Q implies
ergodicity in the original sense. This may be seen most naturally by the unitary
equivalence of K with L,(Q, v). where the latter notation refers to the space of
all closed densely defined operators on K with domain containing v that are
affiliated with Q. in the scnsc that they commute with all unitaries in the com-
mutor Q' (or, equivalently, have polar decomposition with partially isometric
constituent and bounded functions of their selfadjoint constituent in Q). In the
present instance, in which Q is abelian, all such opcrators arc normal. Endow-
ing L,(Q, v) with the inner product (S, T) = (Sv, Tv), the map Q: T +— Tv is
unitary from L.(Q, v) onto K, and has the property that QS'Q-' = § for
arbitrary S € Q, where S’ denotes left multiplication by S acting on LA(Q, v).

An invariant element of K will consequently have the form Sv for some S €
L,(Q, v) that is invariant under the unitary cxtension of y(O¢) Irom Q to all of
L,(Q, v). But the spectral projections of S are then also invariant, for an auto-
morphism of a W*-algebra that leaves invariant a normal element will also
lcave invariant its spectral projections in Q. This implics the lack of nontrivial
invariant elements in L,(Q, v), and hence the ergodicity in this original sense.
(The foregoing argument may scem slightly pedantic, but is designed to sub-
stantially subsume the fermion case.)

CoroLLARY 3.4.2. Let L be a real Hilbert space. Then O(L) acty ergodi-
cally on the W*-algebra Q generated by the Q(x), x € L, via the automor-
phisms induced by the T(Tv) for T € O(L) (with the previously used notation
regarding the free fermion field).

Proot:. This follows directly by the argument for Corollary 3.4.1 in the
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light of Example 3.1 which applies without essential change to the fermion
case. O

Theorem 3.4 may be used to characterize the functionals that are based on
a given closed linear subspace. If M is a closed linear subspace of the complex
Hilbert space H, an element of the free boson (resp. fermion) field—by which
we mean an element of the associated Hilbert space K—is said to be based on
M in casc it is in the cyclic subspace generated by v under the action of the
W(z) (resp. &(2)) with z € M. It is rcadily shown from Theorem 3.1 that a
vector u € K is bascd on M if and only if it is invariant under all I'(U) with U
an arbitrary unitary on H that is the identity on M. But the following stronger
result holds.

COROLLARY 3.4.3. Let G be a group of unitary operators on the complex
Hilbert space H that leavey invariant the closed linear subspace M, but leaves
no finite-dimensional subspace of M invariant, and whose restrictions to the
orthocomplement of M are the identity operator. Let (K, W, T, v) denote the
free boson (resp. fermion) field over H. An element u € K is based on Mt if
and only if it is invariant under all T(U) with U € G.

ProOF. The proof is left as an exercise. O

A further strengthened result, applicable to arbitrary measurable functionals
that are not necessarily squarc-intcgrable, is applicable in terms of the real
wave representation. In this connection a measurable functional fon (L, n), L
being a given real Hilbert space, is said to be based on the closed linear sub-
space M of L in casc any of the following equivalent conditions is satisfied:
(i) f is a limit in measure of tame functionals based on subspaces of M; (ii)
cvery bounded Borel function fis a limit in L,(L, n) of tame functionals based
on subspaces of M; or (iii) f is measurable with respect to the o-ring generated
by the coordinate functionals on M (within the Boolean ring of all idempotent
measurable functionals).

COROLLARY 3.4.4. Let G be a group of orthogonal transformations on the
real Hilbert space L which leaves invariant the closed linear subspace M, bui
leaves invariant no subspace of positive finite dimension, and whose restric-
tions to the orthocomplement of M are the identity operator. A measurable
functional on (L, n) is based on M if and only if it is invariant under G.

Proor. The proof is again left as an exercise. d0
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3.5. Bosonic quantization of symplectic dynamics

In the foregoing it has largely been assumed that there is given a priori a
complex Hilbert space inhabited by single-particle wave functions, or classical
fields. In actuality, it frequently happens that a complex Hilbert space struc-
ture is not given to start with, but rather a lesser structure—symplectic or
orthogonal, depending on whether bosons or fermions are involved—together
with a temporal evolution group (often contained in a larger symmetry group)
leaving the structure invariant. The complex Hilbert space structure must be
sought on the basis of the desiderata that it should extend the given limited
structure and be invariant under temporal evolution; and, in expression of the
physical constraint of stability, this evolution should be represented by a one-
parameter unitary group whose selfadjoint generator is positive. In terms of
this new structure, the original symplectic dynamics becomes unitary, and the
quantized boson field associated with this symplectic dynamics is shown to
exist and to be equivalent to the free boson ficld over the derived Hilbert space.

Such a complex structurc plays a gencrally fundamental role in quantum
mechanics (in the treatment of fermions as well as bosons, cf. below, e.g.,
regarding the Dirac *‘hole’" theory). This role is often obscure in the familiar
literature, which uses complex structures derived from successful precedent,
or somewhat opportunistically on occasion, rather than determined from gen-
eral principle. The importance of the complex structure in a symplectic (or, in
the case of fermions, an orthogonal) context is clear from the dependence of
the energy concept on the complex structure. Without a complex structure, in
a real space, the cigenvalues of the generator of time evolution will be conju-
gate complex numbers—purce imaginary ones in the simplest cases. But cor-
relation with the experimental use of the notion of energy represents it as a
rcal number. At the same time, observational convention fixes positivity rather
than negativity of the energy as the basic constraint in the description of stable
systems, increased stability being observed as the experimentally defined en-
ergy decreases. Although in some contexts a complex structure is given or
arises very simply (e.g.., by Fourier transformation and restriction to the pos-
itive-frequency component), it may be inappropriate in its original form (e.g.,
in hole theory). In any case, i is effectively not simply an absolute entity such
as 7 or 2", but a conveniently chosen matrix J such that J2 = —/.

Consider for example the differential equation

O+ m)p + V=0 3.1)

where V is a given bounded continuous, nonnegative function on cuclidean
space and (] = & — A on M, (Minkowski space, represented as R x R").
Let L denote the class of all real solutions to equation 3.1 that are in C;(R™)
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at cach time, and let S(s) be the linear operator on L that maps the solution
¢(t, ) into ¢(r ~ s, ), where the solution is regarded as a function of time
with values that are functions on space. The general theory of evolutionary
differential equations shows that there is a unique element of L having given
Cauchy data @(1,, *) and dp(#,, *) that are in C5(R"), and that S(s) acts contin-
uously on L (in the direct sum topology on the Cauchy data at arbitrary times).
There is a simple, natural symplectic structure in L that is invariant under S,
defined by the antisymmetric form A on L:

A1, @2) = (@), 9,9:() — (@(1), 3,,(1))
= [(@id9: — @09 dx;

i.c., the inner product in the first equation is in L,(R"), and the time ¢ is arbi-
trary, the result being independent of ¢ as a consequence of equation 3.1.

If this form A is substituted for the imaginary part of the inner product in
the treatment of the free boson field given earlier, a natural definition of the
‘*quantization’’ of equation 3.1 emerges. Specifically, one wants a system
(K, W, T, v) as earlier, with, however, I" limited to be one-parameter unitary
group rather than a representation of the full unitary group on a Hilbert space.
This may or may not exist; but when it does, it is unique and connected with
the introduction of a complex pre-Hilbert space structure in L. Whether it
exists or not, there is always a C*-algebraic quantization, in which temporal
cvolution is represented by a one-parameter group of automorphisms of the
algebra (sce Chap. 5). But in general there is no mathematical reason for such
a group to admit a vacuum state; it is only physical stability that is indicative
of its existence. It will be seen that a vacuum exists if and only if an appropri-
ate complex Hilbert space structure can be introduced, which is the case if and
only if the symplectic action is *‘stably unitarizable’*—in which case this uni-
tarization (defined below) is unique.

DEFINITION. Let S(-) be a continuous one-parameter group of symplectic
transformations on the symplectic vector space (L. A). The system (L, A, S) is
unitarizable if there is a complex pre-Hilbert space structure on L such that
the imaginary part of the inner product equals A, and such that S extends to a
continuous one-parameter unitary group U on the Hilbert space completion H
of L. In this case (H, U) is said to be a unitarization of (L, A, 5). A unitary
group U is stable (resp. strictly stable) if the selfadjoint generator of U(-) is
nonnegative (resp. positive). A quantization of the system (L. A, S) is a sys-
tem (K, W. T, v) consisting of a complex Hilbert space K, a Weyl system over
(L, A) with representation space K, a continuous one-parameter unitary group
I" on K such that T())W()I'(n-' = W(S()z). and a unit vector v in K such
that I'()v = v for all r. Such a quantization is said to be stable in case the
unitary group I'() is stable.
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Before treating the quantization of symplectic systems, we note some quite
general properties of complex structures in temporally evolving linear sys-
tems. These clarify the mathematical role of positivity of the energy and will
be used later.

ScHOLtUM 3.1. Let U(°) be a strictly stable unitary group on the complex
Hilbert space H, and let T be a continuous real-linear transformation on H
that commutes with U(t) for all t € R. Then T is complex linear. In particular,
any real-linear closed invariant subspace is complex-linear.

ProOF. Let T* denote the unique real-linear operator on H such that
Re((Tx, y)) = Re({x, T*y)) for all x, y € H. Let A denote the selfadjoint gen-
erator of U(-), and set f(z) = (e-*“x, T*y), g(z) = (e~*Tx, y), for z in the
half-plane Re(z) = 0. Then f and g are bounded and continuous in the half-
plane and analytic in its interior, and Re f(r) = Re g(¢) for r e R. Thus the real
part of the bounded analytic function h(z) = f(z) — g(z) in the upper half-
plane vanishes on the real axis. By the Schwarz reflection principle it can be
continued analytically into the entire plane and remains bounded there. By
Liouville’s theorem, h is identically constant. Since A is strictly positive, h =
0.

It follows that f = g, and in particular (Tx,y) = (x,T*y) forall x, ve H,
whence (Tix.y) = (ix,T*y) = i(x, T*y) = iTx,y), which implies that Tix
= {Tx. Thus T is complex linear. If in particular, M is a real-linear closed
subspace invariant under the U(r), the rcal-linear projection P on H® having
range M commutes with the U(r), implying that P is complex-linear, whence
so also is M. O

The following corollary to the proof of the scholium will be useful in the
later treatment of fermions.

ScHoLiuM 3.2. Let U(-) be a one-parameter orthogonal group on the real
Hilbert space H with inner product S(-,'). Then there exists at most one cam-
plex structure J on H with the following properties:

i) H acquires the structure of a complex Hilbert space if for arbitrary x,
y € H the inner product (x, y) is defined as S(x.y) — iS(Jx, y), and for
arbitrary real a, b, (a + ib)x is defined as ax + bJx;

ii) J commutes with the U(t) for all t € R: and
iii) The selfadjoint generator of the one-parameter unitary group on H rep-
resented by U(-) [by virtue of ii)[ is positive.

PROOF. The real part of (U(1)x, y) is S(U(1)x, y). By an argument given in
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the proof of Scholium 3.1, (U(r)x, y) is determined by S(U(-)x, y). The com-
plex structure is thereby determined. a

The direct analog of Scholium 3.2 for bosons, which will be used later in
this section, involves the introduction of a complex structure into a given lin-
ear symplectic space (L, A). A complex structure J on L is called symplectic
if A(Jx, Jy) = A(x, y) for all x, y € L, and called positive in case A(Jx, x) = 0
for all x € L. It is invariant relative to a given symplectic group if it commutes
with all the symplectics in the group. Given a symplectic and positive complex
structure in (L, A), L can be given the structure of complex pre-Hilbert space
by the definition {x, y) = A(Jx, y) + iA(x, y). If J is invariant under a given
symplectic transformation 7 on L, T will be unitary relative to this complex
pre-Hilbert structure.

ScHoLtuM 3.3, Let U(?) be a one-parameter group of symplectic transfor-
mations on the linear symplectic space (L, A). Then there exists at most one
complex structure J on L that is invariant, positive, symplectic, and such that
the selfadjoint generator of the one-parameter unitary group U(*) in the com-
pletion of L as a complex Hilbert space is positive.

ProoF. This is the same as for the preceding Scholium with the replacement
of the real by the imaginary part. O

THEOREM 3.5. With the foregoing notation, suppose that there exists a sta-
ble quantization of (L. A, S). Then there exists a complex Hilbert space H and
a symplectic isomorphism T from the linear subset L, of L spanned algebrai-
cally by the vectors of the form S(t)x — x, x € L, into a dense subset of H,
such that the closure U(t) of TS()T ! is a unitary and strictly stable continu-
ous one-parameter group on H.

ProoF. We remark to begin with that although in practice L, will be dense
in L, this will obviously not be the case without some restriction to the effect
that § acts nontrivially. In case, for example, S(r) is the identity for all ¢, the
stability constraint on the quantization is vacuous, and no nontrivial conclu-
sion can be drawn. It will be seen that the restriction to the subset L, is a
natural one.

LEMMA 3.5.1. Let f be a bounded continuous complex-valued function on R
such that f(0) = 1 and

fis + 0f(s — 0 = f()]f (O (3.2)
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forse|—1,1]. Then f(s) = explias — b*s?) for suitable real constants a and
b.

ProOF. Let g(r) = log |f(1)|; then g is well defined and continuous in some
neighborhood of ¢+ = 0, and g(0) = 0,

gs+ 1+ gls — 1= 2[gs) + g}

for s and 1 sufficiently ncar 0. Setting s = 0, it follows that g is even, and by
a simple induction on the positive integer n, that g(nt) = ng(1) for nr e [ —¢.
€], for some fixed positive number €. Setting (1) = g(/)¢~2, then A is contin-
uous for |r| € (0, &) and has the property that h(nr) = h(1) for nli| € (0, ¢€); or,
cquivalently, h(r) = h(t/n) for || € (0, €). It follows that lim, _. . h(t/n) exists
and is the same, say k, for all r with |f] < €, showing that A(r) = & for such r.

Thus |f(f)] = exp(kr?) for sufficiently small ¢ > 0. Taking absolute values
in equation 3.2, and replacing 1 by s, the interval on which | £(1)} has the stated
form doubles, and by induction it follows that |f(n| = exp(ks) for all ¢, im-
plying that k = — b*for some real b. Now dividing equation 3.2 by the equa-
tion resulting from it by taking absolute values, the following functianal equa-
tion for f(0)/|f(1)| = p(1) results:

p(s + np(s — 1) = p(s).

In particular, taking t = s, it follows that p(2s) = p(s)*; and setting x = § +
Ly=s5-1

pxp(y) = p(Yalx + y) = p(x + y),
showing that p is a continuous character on R, and hence of the form p(r) =
e, O

LEMMA 3.5.2. Let M denote the subspace of all vectors in K that are left
invariant by the T'(t), and suppose v e M for j = 1,2, 3, 4. Denoting S(1)x as
X,. then for all x and v in L,

(W(x,)v), W(—=yv2) (W(x,)v,, W(y)v,)
and
Wy, W(—a,v) (W(=¥)v,, W(—x)v)

are independent of 1, und equal.
Proor. By the Weyl relations.
(W(x)v,, W(—yW;) = e (W(viv,, W(—x)v.)
(W(xvy, W()vs) = e s (W= vvs, W= X))
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Multiplying the cquations together, it results that
(Wix)v), W(= y)v) (Wix, vy, W(¥)va)
= (W(yvi, W(=x)vy) (W(=y)va, W(—x)vo).

On the other hand, using the invariance of the v, under the '(¢), for any v €
M, W(x,)v = [(1)W(x)v, and substituting in the last equation, it follows that
each factor on the left side of the equation can, as a function of ¢, be extended
to a bounded holomorphic function in the upper half-planc. By the same to-
ken, cach factor on the right side of thc equation can be extended to a bounded
holomorphic function in the lower half-plane. It follows as carlier that both
sides arc constant as functions of ¢. O

LEMMA 3.5.3. Suppose z € L has the property that (W(sz)v, u) = 0 for all
s€|—1, 1] and all u that are invariant under T'(t) and orthogonal to v. Then

there exist real constants a and b such that (W(sz)v, v) = cxp(ias — b*?), s e
R.

Proor. Apply Lemma 3.5.2 withv, = v; = v, = v, = v,x = sz, and y
= rz; then

(W(sz)v. W(—rz)v) (W(sz,)v, W(rz)v)
= (W(rz)v, W(—sz,)v) (W(—rz)v, W(—sz,)v),

both sides being independent of 1. Sctting f(s) = (W(sz)v, v), the right side of
this equation takes the form f(s — r)f(s + r), taking ¢t = 0. On thc other
hand, W(sz,)v on the left side may be cxpressed as ['(0)W(sz)v = eW(sz)v,
where H denotes the selfadjoint gencerator of the one-parameter group I'. The
holomorphic continuation of (W(sz,)v, W(—rz)) to the upper half-planc then
takes the form, as a function of the complex variable ¢ + iu, u > 0,
(e - HW(sz)v, W(—rz)), which for t = 0 and u — « tends to (PW(sz)v,
W( - rz)v), where P is the projection of K onto M.

Using now the hypothesis on W(sz), PW(sz)v = P, W(sz)v, where P, is the
projection onto the onc-dimensional subspace spanned by v, so that PW(sz)v
= (W(sz)v, v)v. It follows that the left side of the equation under consideration
may be expressed as f(5)*|f(r)|. and Lemma 3.5.3 follows now directly from
Lemma 3.5.1. 0

LEMMA 3.5.4. For arbitrary x € L, there exists € > 0 surh that for all \ €
[—e.€landte R,z = Mx, — x) has the property described in Lemma 3.5.3.

Proor. Applying Lemma 3.5.2 withv, = v, = v; = v, vy, = u, where u €
M and («. v) = 0. and y = x, it results that the sccond expression given there
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vanishes identically duc to the orthogonality of u and v, so that the first ¢x-
pression likewise docs so:

(W(xv, W(—x)v) (W(x,)v, W(x)u) = 0.

Since each of the two factors in the last equation is holomorphically extend-
able, at least one of them vanishes identically. In particular, (W(x,)v, W(x)u)
= 0 for all r unless (W(2x)v, v) = 0.

Setting y = Ax, then for sufficiently small A, (W(2sy)v,v) # O for s €
[ 1, 1], by continuity, implying that (W(s(y, — y)v, ) = 0 for all r and all u
€ M that arc orthogonal to v, as stated by Lemma 3.5.4. O

LEMMA 3.5.5. Let ¢(x) for x € L denote the selfadjoint generator of the one-
parameter unitary group {W(1x): t € R}. Then a) v is in the domain of &(x) for
x € Ly, b) if T denotes the map

T: x> 2% [d(x)v — (d(x)v, v)v]

from Lq into K, then T is symplectic from L, to a complex linear subset of K;
and c) TS(x = T(Tx for all x e Lyand t € R.

PROOF. Suppose z is as in Lemma 3.5.4 for some x € L. Then, by Lemma
3.5.3, (W(sz)v, v) = exp(ias — b*s?) for all s and suitable constants a and b
(depending on z). Then v is in the domain of ¢(z), since

(s~ " (W(s2) — I, s~ " (W(sz) — 1)
=5 3(2 = 2Re(W(sz)v.v)) = 257 2[1 — exp(—bs*)cos(as)],

which remains bounded as s — 0.

It follows readily from the Weyl relations (Chapter 1) that if v € D(db(x))
and v € D(d(y)), then v € D(d(x + y)), and d(x + yv = dlx)v + d(y)v.
This fact together with the result just obtained establishes (a).

As earlier seen (by differentiation from the Weyl relations), [$(x), d(y)] C
- iA(x, y)I. It follows from this that for any vector v which is in the domain
of d(x)d(y) (and hence in that of d(y)d(x)),

Im(d(x)v. dyV) = Y2A(x, y). (3.3)

On the other hand, equation 3.3 is meaningful if v is only in the domains of
d(x) and &(y); and it remains true, in fact, in this more general situation, as a
consequence of the fact that the restriction of &(x) (or ¢(v)) to the domain of
d(x)d(y) is essentially selfadjoint. This follows from considerations similar to
those in the proof of Theorem 1.1, and the details are omitted.

Using the last paragraph, it follows that
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Im(Tx, Ty) = 2 Im{d(x)v = (Gx)v, Vv, SO — (b, v)v)
=2 lm(cb(x)v, ¢(.V)V) = A(x, ),

showing that T is symplectic. Note that the range of T is contained in the
orthogonal complement of M, since it is immediate that (T, v) = 0 from the
definition of T, while if ¥ € M and (u, v) = 0, and if z is of the form y, — y
for y € L, then (W(sz)v, u) = 0 for sufficiently small s; differentiation with
respect to s then implies that ($(z)v, u) = 0, hence (Tz, u) = 0 forall z € L,.
Note also that the range of T is invariant under the I'(¢), since it is immediate
that TS(x = I'()Tx for all x € L,, and that the restriction of I'(-) to the
closure R of the range of T leaves no nonzero vector fixed. Applying Scholium
3.1, it follows that the closure R of the range of T is a complex-linear subspace
of K; it is only necessary to apply this result to the projection whose range is
R. This completes the proof of b) and c). O

LEMMA 3.5.6. For all z € L, and all u € M that are orthogonal to v,
(W(z)v, u) = 0.

ProoF. Let L, denote the set of all elements z € L, such that the conclusion
of the lemma holds. From Lemma 3.4.4, we already know that for any z € L,
there exists € > 0 such that Az € L, if A € [ — €, €]. Therefore it suffices to show
that L, is closed under addition. Suppose that z and z' are in L,. Define {x, x')
= (Tx, Tx') for arbitrary x and x' in L,. Then by the Weyl relations,

e (W(zy)v, W(—2)u) = "= (W(z)v, W(—z;)u)

for arbitrary real s. As earlier, the left side of the foregoing equation extends
to a bounded holomorphic function in the upper half-plane, while the right
side does so in the lower half-plane, implying that each side is constant. It
follows that

e (W(zy)v, W(—2)u) = (W(z'W, v) {v, W(—2)u) = 0,
and substituting s = 0, it follows that (W(z + z')v, u) = 0. O

LEMMA 3.5.7. (W(x)v, v) = k(x) exp(— Y4 x|, x € L, where k is a char-
acter on L.

PROOF. An argument similar to that for the proof of Lemma 3.5.6 shows
that for arbitrary x and y in L,
(W(x + y)v, v) = e~ "Retx? (W(x)v, v) (W(y)v, v).
Taking y = —ux, it results that
KWexv, v)| = exp(—va [ixiP),
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and on utilizing this it follows from the preceding equation that if k(x) is de-
fined as (W(x)v, v) exp(¥4 |lx}i?), then k is a character. O

LEMMA 3.5.8. For arbitrary x € L and real t, (W(x, — x)v, v) is real.

Proor. It follows from the Weyl relations that
F@©) = (W(x, — x)v, v) (W(x, + x)v, v) = (W(x)v, Wx)v) (W(x,)v, W(—x)v).

Lemma 3.5.2 implies that f(¢) is independent of ¢. Hence f(¢) = f(0) =
(W(2x)v, v). Similarly we have

g(® = (Wx — x)v, v) (W(x, + x)v, v) = (W(2x)v, v).
Noting that (W(2x)v, v} # 0 for sufficiently small x it follbws that
1 = f(0)/g(t) = (Wlx, — x)v, AW — x)v, ),

which implies that (W(x, — x)v, v} is real since (W(x, — x)v, v) is the complex
conjugate of (W(x —x,)v, v). Using Lemma 3.5.7, it follows that (W(x)v, v) #
0 for all x. O

Theorem 3.5 now follows by combining results given in Lemma 3.5.5, tak-
ing H as the closure of the range of T, with Lemmas 3.5.6, 3.5.7, and 3.5.8.
O

3.6. Fermionic quantization of orthogonal dynamics

In the last section it was shown that a given linear symplectic dynamics was
stably quantizable as a boson field if and only if the given dynamics was stably
unitarizable, and that the resulting quantization was essentially unique and
equivalent to the boson field over the complex Hilbert space resulting from the
unitarization. Although at first glance the fermionic case may look essentially
different, nevertheless the parallel theorem holds here—notwithstanding the
negative frequencies that occur in physical fermion models, so-called ‘‘hole
theory,” etc. This is one more of innumerable instances of parallels between
the boson and fermion cases, and is important for the physical interpretation
of fermionic systems exhibiting symmetry between fermions and antifermions
(which, in the case of charged particles, have opposite charges).

In the fermionic case there is given a linear orthogonal one-parameter
group, rather than a symplectic group. Fermion fields have no direct classical
analog, so this group lacks superficial formal resemblance to a classical dy-
namics. Let L be a given real topological vector space, S a continuous non-
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degenerate symmetric form on L, and V' a continuous one-parameter orthog-
onal group on (L, S). The question is that of the existence and uniqueness of
a stable fermionic quantization of the system (L, S, V), defined analogously to
that in the boson case. The basic case is that in which S is positive definite,
and the topology in L is derived from the corresponding metric, in which case
it is no essential loss of generality to assume that L is complete.

THEOREM 3.6. Let L be a real Hilbert space with corresponding positive
definite symmetric form S. Let V' be a continuous one-parameter orthogonal
group on L, leaving no nonzero vector in L fixed. Suppose that there exists a
system (K, ¢, I', v) such that

i) K is a complex Hilbert space;
ii) & is a (real) linear map from L into selfadjoint operators on K such
that for all x, y € L, $(x)d(y) + $(0)d(x) = S(x, y);
iit) T'C) is a continuous one-parameter group on K such that for all t e R
andx e L, T(t0)v = vand &(V(t)x) = T({)dx)(0)-!;
iv) () is stable; and
v) vis cyclic for the totality of the d(x), x € L.

Then there exists a unique complex Hilbert space structure on (L, S) such
that S(x,y) = Re{x, y) for all x,y € L, and such that V(-) is unitary and strictly
stable on this Hilbert space, H. Moreover, (K, &, ', v) is unitarily equivalent
to the free fermion field over H, apart from the restriction of T to V().

Conversely, if the latter conditions are fulfilled for some complex Hilbert
space structure H on (L, S), then there exists a quantization of the indicated
type, which is unique within unitary equivalence.

PROOF. Let ¢ be extended to the real Clifford algebra C over (L, S) as an
algebraic homomorphism, likewise denoted by ¢, and let E(u) denote
{d(u)v, v). To begin with it will be shown that the **n-point function’’ E(x,x,
-++x,) is uniquely determined by L, S, and V under the hypotheses of the the-
orem. Consider first E(x), x € L. This is a continuous real linear functional of
x by virtue of the Clifford relations, which imply that [[b(x)v]| = 2%|jxj. Hence
there exist unique vectors y and y’ in L such that E(x) = S(x,y) + iS(x, y').
On the other hand, E(V(t)x) = E(x), which by the uniqueness of y and y’
implies that V(—~t)y = y and V(—1)y’' = y' for all ¢. But by hypothesis, V
leaves no nonzero vector fixed, so thaty = y' = 0, showing that E(x) = 0
forall x e L.

Now let x and y be arbitrary in L, let x, = V(r)x, and apply E to both sides
of the relation x,y + yx, = S(x,, y), obtaining

Re(E(x,y)) = Re(E(yx)) = Y4S(x,, y).
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Now E(x,y) is as a function of ¢ the boundary value function on the real axis
of a bounded analytic function in the upper half-plane. Observe next the

LEmMA 3.6.1. For arbitrary x e L and u € K, (T(t)d(x)v, u) is the boundary
value for t on the real axis of a bounded analytic functionf(z),z = t + is, in
the upper half-plane, and f(is) — 0 as s — o,

ProoF. The nonnegativity of the selfadjoint generator A of I'(s) implies the
existence of the indicated bounded analytic extension by the spectral theorem.
If P is the projection of K onto the null space of H, then

lim f(is) = lim (e~#$(x)v, u) = (Pb(x)v, u)

This is a continuous linear functional of x—which is moreover invariant under
V(-), by the hypothesized intertwining relations—and must vanish by the same
argument as in the proof that E(x) = 0. O

PROOF OF THEOREM, CONTINUED. Lemma 3.6.1 implies that the analytic
function in the upper half-plane extending E(x, y) tends to 0 as s — cc; since its
real part on the real line is uniquely determined in terms of (L, S, V), it follows
that the two-point function is uniquely determined in terms of (L, S, V).

The n-point functions for n > 2 may be determined by induction as in the
proof of Theorem 2.1. Thus the linear functional E on C is determined by
(L, S, V), and it follows by the canonical association of representations with
positive linear functionals that K, ¢, and I' are similarly determined. Now
consider the real-linear map from L into K, T: x — 2"2¢(x)v, which is orthog-
onal by virtue of the anticommutation relations. The range R of T is accord-
ingly a closed real-linear subspace of K. Moreover R is orthogonal in K to the
null space N of the generator H of I'(-), as a consequence of Lemma 3.6.1.
Now the restriction I, (1) of I'(t) to the orthocomplement N+ of N has a
positive selfadjoint generator. But it follows from Scholium 3.1 that an in-
variant real subspace of such a one-parameter unitary group is necessarily
complex-linear, and the intertwining relation I'()Tx = TV(f)x shows that R
is indeed invariant under I (-). Transferring the consequent complex struc-
ture in R to L by the isometry T, the result is a complex Hilbert space structure
on L such that Re({x, y)) = S(x,y). As T interwines the action of V and of
I',, V(-) becomes a unitary one-parameter group with positive generator. The
unicity of this complex structure is then a consequence of general theory as
earlier.

The converse follows similarly from Theorem 2.1. O
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Problems

I. Let L denote the space of real C* solutions having compact support in
space at every time to the equation ¢ + (¢ + V)¢ = Oon R X R", where
c is a constant and V is a given bounded continuous function. Let S(f) denote
the one-parameter symplectic group in L defined by the equation. Let A denote
the symplectic form defined in Section 3.5.

a) Show that if ¢ = 0 and V is nonnegative there exists a unique stable
unitarization for S(-). Compute the requisite complex structure.

b) Show that if ¢ < 0and V = 0 there exists no stable unitarization for S(-).

2. Develop the analog to Problem 1 in the context of the abstract equation
¢"(r) + Ag(r) = 0, where A is a given selfadjoint operator in a real Hilbert
space H', using Cauchy data in subspaces contained in the ranges of the spec-
tral projections for A corresponding to bounded intervals.

3. Derive the ergodicity of the flow corresponding to Brownian motion,
which may be defined as follows: let x(r) be the stochastic process on R deter-
mined by the conditions that for any finite set of times 1, < 1, <::+< 1,,, the
x(t,), x(83), ... ,x(t,) have a joint Gaussian distribution such that x(f,) — x(t,) has
mean 0 and variance 1, — ¢, and is stochastically independent of x(r,) — x(t,).
Let M denote the corresponding probability measure space, and let K denote
the closure in Ly(M) of the set of all polynomials in the differences x(f) —
x(t'), as t and t' vary. The flow is given by the unique unitary transformation
U(s) on K that is multiplicative and carries x(f) — x(t') into x(+ + s) — x('
+ s). (Hint: consider the isonormal process on L, (R), f — [f(1)dx(t), and
observe that no finite-dimensional subspace of L.(R) is invariant under tem-
poral translation.)

3. Let U(-) bc a continuous one-parameter unitary group on the Hilbert
space H that leaves no nonzero vector fixed. Show that there exists a uniguc
complex structurc J on H that stably unitarizes U(-) as an orthogonal group in
the following sense: let S(x, y) = Re({x, y)) and consider the orthogonal space
(H*, S). Then J is requircd to be orthogonal; to commute with the U(¢); and
the generator of U(r) relative to the new inner product

(x,y)" = S(x,y) — iSUx,y)
in the Hilbert space H' in which the action of i is changed to J, is required to

be positive. Compute J explicitly.
Bibliographical Notes on Chapter 3
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Absolute Continuity and Unitary
Implementability

4.1. Introduction

A certain class of divergences in quantum field theory originates in the fail-
urc of the Stonc—von Neumann uniqueness thcorem. In gencral, there is no
unitary equivalence between different irreducible canonical systems over the
same space; or, put in terms of theoretical physical practice, the putative uni-
tary equivalence in question is *‘divergent.”

A simple example may be provided by the canonical transformation p, = p,
+ g, 9, = q;(j = 1,...,n), and just what happens to it when n becomes
infinite. (We arc working here modulo rigorous details, which follow from the
Weyl relations; it is simpler conceptually to use the Heiscnberg relations.) It
is evident that the p, and ¢, are again a canonical system, i.c., satisfy the
Heisenberg relations. The unitary cquivalence is easily written down explic-
itly, as in all cases of lincar canonical transformations:

(piq') = U~ '(p. @)U, where U = expli(¢i + ¢} +--*)/2);

the operator U is of coursc unique within a constant factor.

Now consider the casc of an infinite number of dimensions, in which the
p's and ¢'s are thosc for a free boson field, relative to an orthonormal basis in
the underlying single-particlec Hilbert space. The primed operators still exist
and satisfy the Wey! relations (modulo rigorous details of formation of clo-
sures, etc., readily supplied by Weyl-relation techniques similar to oncs pre-
viously employed). Howcver, the operator U makes no sense, the infinite sum
Z, ¢? having no meaning, and the slight freedom in the definition of U. namely
the ambiguous constant factor, is of no help in the matter. In a word, the
*‘operator’’ U is divergent; this does not prevent theoretical physicists from
trying to use it as if it existed, but clarifies the emergence of *‘infinitics’’ (such
as the matrix elements of the nonexistent operator U) and presents a mathe-
matical problem.
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Docs there exist, in the infinite-dimensional case, any unitary operator U/ on
the boson field Hilbert space K such that

p,=U"'pU, q, = U'qU?

We shall develop techniques for dealing with such questions, and sce that the
answer to this specific question is negative (as it usually is in the infinite-
dimensional case, except in a few simple—though interesting—instances).

Having come up against a crucial apparent difficulty, it will be seen in
Chapter 5 that a partial remedy, which at lcast restores uniqueness analogous
to that of the Stone~von Neumann theorem, is the consideration of an appro-
priate C*-algebra, on which the canonical transformation can be cffected as
an automorphism.

It turns out that the critcria for unitary implementability are closely related
to those for absolute continuity of probability measures (or noncommutative
analogs thereof) on infinite-dimensional linear spaces. At first glance this
might seem odd, but on reficction one sees that, if two measures are mutually
absolutely continuous, the operation of multiplication by the square root of the
Radon-Nikodym derivative of onc with respect to the other is a unitary map
of one of the L, spaces into the other, which transforms the multiplication
algebra of one into the other. It is also true that any algebraic isomorphism of
one multiplication algebra onto the other is unitarily implementable in this
fashion; i.e., the respective measures are mutually absolutely continuous, the
unitary operator just described exists, and so on. In the case of a boson field
the canonical g's gencrate the multiplication algebra of a relevant mecasure
space (cf. the real wave representation), and these considerations thereby ap-
ply. With the usual ex post facto reinterpretation, the samc comments apply
to fermion fields.

The results obtained will permit suitable extensions of the harmonic and
spin representations to the infinite-dimensional case. It turns out that general
symplectic (resp. orthogonal) transformations on the single-particle space can
be represented by automorphisms of C*-algebras, but (in gencral) have no
unitary implementation in the frec field representation. There is only an in-
variant subgroup of elements that, roughly speaking, commute with ; within a
Hilbert-Schmidt operator, that can be so represented in extension of the finite-
dimensional case.

4.2. Equivalence of distributions

We begin by recalling and cextending some earlier functional integration
considerations. One type of equivalence of distributions that has alrcady been
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considered is that defined by mutual absolute continuity. If L is a given real
topological vector space, then two distributions m and n are equivalent in this
sense if and only if there is a *-isomorphism between the respective algebras
of measurables that carries m(f) into n(f), for all fin L*. Alternatively, m
and n are cquivalent in this sense if there exists a unitary transformation U
from L,(L, m) onto Ly(L, n) such that the operator M,,.,, of multiplication by
m(f) is carried by U into that of multiplication by n(f) on the latter Hilbert
space: UM, ,U~! = M., for all fin L*. When L is finite-dimensional, m
and n are equivalent in this sense if and only if the corresponding countably
additive probability measures in L have the same null sets.

The notion just described was called algebraic equivalence, to distinguish it
from the following stronger notion. Two distributions m and n arc metrically
equivalent, denoted m = n, in case there exists an isomorphism between their
respective algebras of measurables that not only carries m(f) into n(f) for all
£, but is integral- or cxpectation-preserving. The distinction is similar to that
between a measurable transformation and a measure-preserving transforma-
tion.

One criterion for metric equivalence involves the concept of a multiplicative
unitary transformation from one L, spuce to another. This is a unitary transfor-
mation U with the property that if f, g, and fg are all in L,, then U(fg) =
U(Nu(e).

THEOREM 4.1. Let m and n be distributions on the real topological vector
space L. Then m = n if and only if there exists a multiplicative unitary mapping
u from L,(L, m) onto L,(L, n) such that UM, ,U~' = M, for all f ¢ L*.

Proor. We simplify the notation here by setting M, for M,.,, and N, for
M.,,. Regarding the *‘if " part, observe that for arbitrary f,, ..., f, € L* and for
any Borel set B in R* the probability that (m(f,), ..., m(f,)) € B may be repre-
sented as (cs(M,,....,M,)1, 1), where cg is the characteristic function of B,
and 1 is the functional identically | on L. A multiplicative unitary mapping U
from one L, space over a probability measure space to another commutes with
the formation of Borel functions, and maps | into 1, by standard commutative
spectral theory. It follows that {(cs(M,,,.... M1, 1) = (ca(Ny,... .NL, 1),
showing that m = n.

If, on the other hand, it is given that m = n, then a unitary transformation U
may be defined from L,(L, m) onto L,(L, n) by first defining U, on the dense
domain of bounded Borel functions b(m(f,), ...,m(f,)) of finitely many of the
m(f) as the map carrying this functional into b(n(f,), ....n(f;)). Then it is not
difficult to verify that U, is isometric and multiplicative on this domain and
has dense range, and so extends uniquely to a unitary transformation U from
all of L,(L. m) onto L,(L, n) which is readily scen to remain multiplicative. (]
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COROLLARY 4.1.1. Let m be a given distribution on a real topological vector
space L, and let G be the group of all nonsingular continuous linear transfor-
mations T on L such that m = m,. Then there exists a unique unitary represen-
tation U(*) of G on L,(L, m) such that

UT)""MpyU(T) = My, f€L®, T€G.

Proor. This is an immediate deduction from Theorem 4.1 for the special
case in which L,(L, m) and L,(L, n) are identical. O

EXAMPLE 4.1. Let g be the isonormal distribution on the real Hilbert space
H'. Then for any orthogonal transformation T on H', g, = g. Consequently
there exists a unitary representation U(-) of O(H') on L,(H', n) which carries g
into gr, in the sense that multiplication by g(x) is carried into multiplication
by (T *x). for all x € H'. This unitary operator U(T) is the same as the operator
I'(T.), where T. denotes the complex-linear extension of T to the complexifi-
cation H of H', acting on the Hilbert space K of the free boson field over H
in the real wave representation.

More generally, let n be the normal distribution on the real Hilbert space H’
of mean 0 and covariance operator A, where A is nonsingular. If T is any
orthogonal transformation on H' that commutes with A, it is easily seen that
ny = n, the normal distribution being determined by its mean and covariance
operator, which are not affected by the transformation T. Consequently, therc
exists a unitary representation I” of the centralizer of A in O(H') on L.(H', n)
with the property that I'(T)-'M,,,, [ (T) = M,~,, with the same notation as
carlier.

4.3. Quasi-invariant distributions and Weyl systems

The construction in Chapter 1 of a Weyl system from a quasi-invariant dis-
tribution can be regarded as an appropriate parallel to the construction of the
Schrodinger representation. Conversely, a quasi-invariant distribution may be
derived from a Weyl system. This is described in the next theorem, the general
idea of which is briefly as follows: let (K, W) be a cyclic Weyl system over
L@L*, where L is a given real linear topological space. Setting W|L* = V,
and denoting as dV(x) the selfadjoint generator of the one-parameter group
{V(tx): 1 € R}, then the mapping a: x —* aV(x) is essentially linear from L* into
acommutative set of selfadjoint operators in K. Here essentially linear means
linear with respect to strong operations in the (partial) algebra of unbounded
operators, in which the usual operations are followed by the operation of form-
ing the closure. These closures exist because of the commutativity of the range



122 Chapter 4

of aV. More specifically, it is known that the totality of normal (possibly un-
bounded) operators whose spectral projections are contained in a commutative
W*-algebra form a linear associative algebra over the complex number field,
with respect to strong operations. By spectral theory, any such W*-algebra is
=-algebraically isomorphic to the bounded measurables on a measure space,
and the indicated normal operators (which are affiliated with the given W*-
algebra) then correspond to possibly unbounded measurables. Thus, d fails to
specify a predistribution essentially only in that a specific measure, and not
merely an absolute continuity class, needs to be specified, and that this mea-
sure should be normalized to a total of unity on the whole space. The latter
normalization is always possible in a separable Hilbert space, and once a dis-
tribution is obtaincd this way, the Weyl relations show that is it quasi-invari-
ant.

However, given a quasi-invariant distribution, the full specification of a cor-
responding Weyl system involves in addition a multiplier (or cocycle). If S is
any continuous representation of a group G on a Hilbert space K, a multiplier
for § is defined as a function T from G to the bounded linear operators on K
such that $(-)T(-) is again a continuous representation of G on K. Such a mul-
tiplier is said to be relative to a given ring A of operators on K in case its
values lie in the commutor A’. Two multiplicrs are said to be equivalent rel-
ative 10 A if they arc unitarily equivalent via a unitary operator in A’.

THEOREM 4.2. Let m be a quasi-invariant distribution on a real linear space
L (topologized algebraically). For arbitrary x € L, let m, denote the distribu-
tion m(X) = m(A) + A(x), A € L*. For arbitrary x € L and \ € L*, let U(x)
and V(M) be the operators on K = L,(L, m) defined as follows:

U)8(F) = (dmJdm)*: o(F,)
V(VB(F) = e=™ g(F).

Here 8(F) is the element of L,(L, m) corresponding to the tame function F, and
F.(y) = F(x + y). Then (U, V) form a Weyl pair over (L, L*), with the alge-
braic topology on L*.

Conversely, if (U, V) is any Weyl pair over (L, L*) such that {V(\): A € L*}
has a cyclic vector, then there exists a quasi-invariant disiribution m on
L and a multiplier S for the component V,, of the Weyl pair (U,. V,), obtained
from m as in the preceding paragraph, such that (U, V) is unitarily equivalent
1o (U, SV,).

ProOF. The first part of the thcorem is just a restatement of Theorem [.5.
Conversely, suppose (U, V) is a Weyl pair over (L, L*), with representation
space K and a cyclic unit vector v for V in K. Lct A denote the (abelian) W*-
algebra generated by the V(). By spectral theory, the system (K., A. v) is un-
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itarily cquivalent to (L,(M), M, 1) for some probability mcasure space M with
multiplication algebra M. In particular, if @(A) denotes the sclfadjoint gencr-
ator of the one-parameter unitary group V(1}), r € R, Q(A) may be represented
as a random variable on M, and Q(-) then defines a distribution over L. The
Weyl relations show that

UMUK - = Q(x) — A(x),

implying that Q(¢) is quasi-invariant, and moreover that U(x) induces the au-
tomorphism of M corresponding to the translation through x. This means that
U(x) must coincide with the opcrator similarly designated in the first part of
the theorem, apart from an x-dependent factor that commutes with every cle-
ment of M, and is consequently a multiplier. ]

This result is readily extended to the case of a given Weyl pair for which V
is not necessarily cyclic, through the use of spectral multiplicity theory, ap-
plied to the ring generated by the V(M). The general system is then seen as a
direct integral of parts of uniform multiplicity, each part being a tensor product
of a system such as that just treated, with a Hilbert space of the appropriate
multiplicity, on which the Weyl opcrators act trivially.

In the case when L is finite-dimensional, the Stone~von Neumann thcorem
shows that the multiplier may be climinated, i.e., is inessential. This can be
interpreted as related to the vanishing one-dimensional cohomology of a finite-
dimensional L, thc cohomology class being defined as the quotient of the
closed modulo the exact 1-forms, where however, a generalized notion of
form must be employed.

To this end, an exact I-form on L is defined as an equivalence class of
measurable functionals on L, relative to the given distribution m, where the
equivalence f ~ g means that f — g is constant. A closed I-form is defincd as
an assignment to each finite-dimensional subspace F of L of an equivalence
class of measurable functionals on L, where the cquivalence f ~ . g means that
f — g is based on {A € L*: A(x) = O for all x € F}—this assignment being
required to have the consistency feature that if F C F’, F’ also being finite-
dimensional, then restriction to F of the equivalence class assigned to F' yiclds
that assigned to F.

These notions are formally identifiable with corresponding ones for differ-
ential 1-forms on finitc-dimensional spaces whose coefficients are appropri-
ately gencralized functions. A representative cxample of a form which is
closed but not exact on an infinite-dimensional real Hilbert space H is (sym-
bolically) 2, ;<. Xudx,. where the x, are coordinates relative to an orthonormal
basis. This form assigns to each finite-dimensional subspace ¥ of H the mea-
surable functional V2 I, ..,..,, y:°. where the y, are coordinates relative to any
orthonormal basis of F. Thus in each finite number of dimensions this form



124 Chapter 4

restricts to an exact form, but there is no actual measurable functional corre-
sponding to0 =4« X2 on H, so the form is inexact although closed on all of
H (cf. Segal 1959a).

4.4, Ergodicity and irreducibility of Wey! pairs

in casc L is finitc-dimensional, the Weyl pair (U, V) associated with any
given quasi-invariant distribution on L, as in the first part of the preceding
theorem, is irreducible. This is not the case for arbitrary quasi-invariant distri-
butions, or, to put it another way, a quasi-invariant distribution need not be
ergodic with respect to the group of translations on L. One uscful case in
which irreducibility may be concluded is described in Theorem 4.3. In this
connection, a distribution on a real Hilbert space H' is said to be the direct
sum of distributions m, on submanifolds H, of which H' is the direct sum in
case m|H, = m; and the m, are stochastically independent for different j.

TuEOREM 4.3. The Weyl pair determined by an L,-continuous quasi-invari-
ant distribution on a real Hilbert space is irreducible provided it is a direct
sum of (stochastically independent) distributions on finite-dimensional sub-
manifolds.

ProoF. It will be convenient here to consider the distribution as selfadjoint-
operator-valued, rather than random-variable-valued. This can be attained by
replacing each random variable by the operation of multiplication by it, acting
on L,; expectation of random variables is then replaced by expcctation of op-
erators, in the state defined by the state vector 1.

Note now that the U(x) generate the same W*-algebra R as that determined
by the m(x) (i.e., generated by the spectral projections of the multiplications
by the m(x)). This is maximal abelian, being the multiplication algebra of
the underlying probability space. Hence any bounded linear operator T on
L,(H’ m) that commutes with both the U(x) and V(y) is an element of R that
commutes with all of the V(y).

To conclude the proof of irreducibility, it therefore suffices to show that the
only operators T in R such that a (T) = T for all y, where «, is the automor-
phism R, S — V(y)~'SV(y) (S € R), arc scalar multiples of the identity. To
this end, let Py, denote the operator of projecting L,(H', m) onto the subspace
L,(M, m) of operators based on M (i.e., affiliated with the W*-algebra deter-
mined by the m(x) with x € M). Then Py, — I strongly as M ranges over the
directed system of finite direct sums of the given stochastically independent
subspaces, since these subspaces span and m is continuous.
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Noting the validity of the corollary when dim(H) < <, it follows that to
conclude the proof, it suffices to show that Py, commutes with the action of at,,
forveM, i.c., Pya,(S) = a,(PyS) for arbitrary S € R. To this end, note first
that both sides of this putative equality, to be denoted (£), arc in the subalge-
bra Ry determined by m|M. For the left side this follows from the observation
that PyS is identical to E[S|R,,) for arbitrary S € R. For the right side of (E),
this follows from the defining characteristic of V(y), showing that fory € M,
V() - 'SV(y) e Ry if S € Ry,.

Thus to establish (E) it suffices to show that both sides have the same con-
ditional cxpectation with respect to Ry, which by the definition of conditional
expectation reduces to showing that for arbitrary selfadjoint X € Ry,

E[Pua,(S)X] = E[a(Pu($))X].

The left side of this proposed equation is identical to Ela (S)X], which in turn
equals E[Sa; '(X)D,], where D, = dm,/dm. On the other hand, since a; '(X)
is in Ry,

Ela,(Pu($)X] = EIPw(S)a; '(X)D,] = EIE{Pu(S)D,|Ryla; '(X)].

Using the multiplicative property of conditional expectation when one factor
is affiliated with the subalgebra, the last cxpression reduces to
E|Pu(S)a; '(X)E{D,|Ru}], which by the definition of conditional expectation
equals E[Sa; '(X)E{D,|Rm}]. Hence the stated equality holds if (and only if)
E{D,|Ry} = D,, which follows directly from the circumstances that M and its
orthocomplement are stochastically indepcndent and that y e M. W]

EXaMpLE 4.2. The isonormal distribution on a real Hilbert space H' is the
direct sum of the isonormal distributions on the one-dimensional subspaces
spanned by any orthonormal basis. These arc stochastically independent, and
Theorem 4.3 yields an alternative proof of the irreducibility of the Weyl sys-
tem of a free boson field.

4.5. Infinite products of Hilbert spaces

Many of the structures of quantum field theory have useful realizations in
terms of a type of infinitc product introduced by von Neumann (1938). Al-
though there appears to be no appropriate definition of an infinite product of
measure spaces, except in the case when all but a finite number are probability
measure spaces, von Ncumann gave an effective and invariant definition of an
infinite product of Hilbert spaces. But of greater practical utility than this prod-
uct, which he described as ‘‘complete,’” are those he described as “‘incom-
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plete,”” which rescmble somewhat infinite products of probability spaces. The
incomplete product is a product not simply of Hilbert spaces, but of Hilbert
spaces with a distinguished unit vector, which plays the role of the unit random
variable in the case of a probability space, or physically of a vacuum or ground
state vector.

DEerINtTION. For each index A in the index set A, let z, be a unit vector in
the complex Hilbert space K,. A system (K, z, T,) consisting of a complex
Hilbert space K; a unit vector z in K; and, for each finite set A of indices, an
isometric map T, of the finite tensor product &,,,K, into K, is called a direct
product of the (K,, 2,) (A € A) in casc the following conditions are satisficd:

1) if Z is any finite sct of indices, if A C =, and if x, = z, fork ¢ A, then
T=®).sx = Ta®,.ax, (thus, tensoring with the z, does not materially
affect the result, much as tensoring with the function 1 on probability
measure spaces does not affect the result);

2) To®),a2, = 2. forall A; and

3) the union of the ranges of the t, is dense in K.

A pair (H, 2) consisting of a complex Hilbert space H and a unit vector z €
H may be called a grounded Hilbert space, since z plays the role of a ground
state vector.

ScHoLIUM 4.1. The direct product of grounded Hilbert spaces exists and is
unique within unitary equivalence.

ProoF. A proof can be given that is formally analogous to proofs of the
existence of infinite products of probability spaces, made more algebraic. Al-
ternatively, a direct limit type of argument may be used. The details arc
omitted. O

THEOREM 4.4, Let (K. z. T,) be the direct product of the (K, , ), and let A,
be an automorphism of the ring of all bounded lincar operators on K, . Then
there cxists an automorphism of the ring of all bounded linear aperators on K
that coincides on thr range of T, with TyA,T, ', where A, is the tensor prod-
uct of the Ay, h € A, if and onlv if the product T, AJ(A\(P, )z, 2,)| is conver-
gent. Herc P, denotes the projection of K, onto the one-dimensional subspace
spanned by z,.

Thce last condition asscrts essentially that A, docs not alter P, very much,
or. equivalently, that the unitary operator that induces A, changes = anly
slightly, apart from phase. The tensor product of aulomorphlsms need not be
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introduced as an additional concept, but may be treated adequately for present
purposes in terms of the tensor products of implementing unitary operators.

LEMMA 4.4.1. If V, is a given unitary operator on K,, then there exists a
unitary operator V on K such that V®,x, = ®,V,x, for all convergent {x,}
with x, € K, (in the sense that 1,®,,,x, is convergent in K as A — A, in
which case ®,x, is defined as the limit) and ||x,}| = 1, if and only if the numer-
ical product T1,{V,z,, 2,) is convergent.

PROOF OF LEMMA. Note first that a necessary and sufficient condition that
Ta®1.ax, converge in K is that the product IT,(x,, z,) be convergent. For if A
C Z, where A and Z arc finite subsets of A, then

|IA ® X — 1= ® xklz =2-2Re n (X;.. Z)‘)
el ME ME-A

Hence Re I,.=_ 4 {x,,2,) must tend to unity as A, = — A, but as |1,z _4
{xy, 7,)| = 1. this implies that Im IT,,=_ 5 {(x,.2,) = 0, so that [T,z _ 4 (x,, 2,)
— 1, i.c., the product is convergent.

Note next that if T, is a continuous lincar operator on K, with 7, = I, for
all but a finite number of A, then there exists a unique continuous linear oper-
ator T on K such that

TtA ® Xy = Ta ® TAX).
ArA AzA

for every finite subset A of A and arbitrary x, € K,. Now observe that if V, is
a given unitary operator on K,, there exists a unitary operator V on K such
that V ®, %, = ®,,aVix, for all ®,,.x, with x, = z, for all but a finite set of
A, if and only if the numerical product I1,{V,z,, z,) is convergent. The neces-
sity is clear from the preceding paragraph. To show the sufficiency. note that
®,.aVix,, is convergent in case [1,(V,x,, 2,) is convergent, and this product is
identical to the product IT,(V,z,, z,) except for a finite number of factors. O

Proor oF THEOREM. With the notation of the lemma, ®,V, is the strong
limit of the net ®,,.,V;, where ®,,,V, denotes ®,V; withV, = V, forh e A,
and V, = I, for A ¢ A. Note also that it is rcadily proved that if ®,5, and
®,T, arc convergent products of unitary operators, then ®,(S,7;) and ®,5,*
are convergent, and (@,5,)(®,T;) = ®,5,7; and (®,5,)* = ®,5,*.

Now assume the indicated automorphism A exists, and let U be a unitary
operator on K that induces A. Then. for any convergent product ®, V; of uni-
tary operators, U*(®,V,)U = ®,A,(V,). Setting ; = P, + bl — P,) where
[b| = 1, then V, is unitary and Wz, = z,, so that ®,V, is convergent. implying
that ®, A,(V,) is also convergent, which in tum implies the convergence of the
numerical product IT,{4,(W)z,. z,). The Ath factor in the latter product is | +
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(b — I)N1 = (A\(P)z,2)), and assuming b # 1, a product of the form
I, (1 + (b = 1)c,) with 0 s ¢, < 1 is easily scen to be convergent if and only
if Z, ¢, < oo, implying that Z,(1 - (A\(P))z,, 2,)) is convergent. This implics
the convergence of the infinite product given in the conclusion of the theorem.
Conversely, let U, be a unitary operator on K, that induces the given auto-
morphism A, and is such that (Uz,, z,) = 0. Then the given product is term-
wise the square of the product IT, (Uz,, z,). It follows that ®,U, exists, and
this operator evidently induces an automorphism A with the stated property.

The methods of this chapter apply in principle to the question of the unitary
implementabitity of nonlinear canonical transformations, as well as to lincar
ones, but naturally it is much more difficult to carry through cffective appli-
cations in the former case. As an example of how these may proceed, how-
cver, consider the casc of nonlincar transformations of the form

Qi Fi(@Q))

where Q,, Q,,...and P,, P,, ... arc an indexed set of boson field operators, the
F, being smooth one-to-one transformations of R. In the finitc-dimensional
casc, there always exists a unitary implementation for a canonical transfor-
mation cxtending the given transformation: namely, the implementing unitary
operator U carries f(x,,...,x,) into f(F,(x,),... . F (x,)m(x,, ... .x,) where m
is the usual multiplier, the square root of thec Radon-Nikodym derivative of the
transformation (x,,...,x,) = (Fi(x))....,F(x,)). In the infinitc-dimensional
case, it is to bc expected that there is unitary implementability if and only if
the F, are asymptotically close to the identity transformation x +> x, but pre-
cisely how close? In the case when the (P, Q,) arisc from stochastically inde-
pendent quasi-invariant distributions, the answer is as follows:

COROLLARY 4.4.1. Let P, P,.... and Q,,Q,,... be the Heisenberg system
over a real vector space H, relative 10 a basis of vectors e, e,, ... that are
stochastically independent with respect to the quasi-invariant distribution m
on H that determines the given Heisenberg system. Let F\, F,,... be a se-
quence of continuously differentiable real-valued functions on R with Fi(x) >
0 for all x and k.

Then in order that there exist a unitary transformation U such that U-'Q,U
= FyQ,) for all k, it is necessary and sufficient that the following product be
convergent:

I J (PAOPFFLD) dr,

where p, is the probability density of the distribution of the operator m(e,). In
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the event that such a unitary operator exists, it may be chosen so that U-'P,U
is affiliated with the ring of operators determined by P.and Q, (k = 1,2,...).

ProoOF. If there exists a unitary operator U such that U-'Q,U = F(Q,) for
all k, let m' be the distribution on H such that M,,.,, = U~'M,,,,U. Then by
Scholium 1.5 m' is absolutely continuous with respect to m, so by Corollary
1.6.2 the product

[1 E,.(dm;/dm,)*:
k

must be convergent. (Note that the basis vectors e, in H, with which the P, and
Q, are associated, are stochastically independent with respect to m’ as well as
m.) A simple computation shows that this is termwise equal to the given prod-
uct.

Now suppose the given product is convergent. Let K, = L,(H,, m,), wherce
H, is the one-dimensional subspace spanned by e,, and m, denotes the restric-
tion of m to H,. Then K, is unitarily equivalent to the space L,(R, p,) of all
square-integrable complex-valued functions on R, relative to the probability
density p, giving the distribution of m(e,), in such a way that Q, corresponds
to multiplication by the function x. (Note that the distribution of m(e,) is mu-
tually absolutely continuous with Lebesgue measure because of its quasi-in-
variance.) Let U;denote the unitary operator on Ly(R, p,),

8 >8R OOpFE \(ODFUFE ()pu()]

g being arbitrary in L,(R, p,), and let U, be the corresponding unitary operator
on K,, via the unitary equivalence described (which is not unique, but let a
fixed one be chosen for each k and adhered to thereafter). This induces an
automorphism

A X— U-'XU,

on the ring of all bounded linear operators on K,. Now consider the absolute
continuity condition with reference to the formulation of the grounded Hilbert
space (L,(H, m), 1) as the product of the (K,, 1,). It is easy to sec that the kth
factor is (U,z,, ). Using the given form for U, and noting that the unitary
equivalence taking U, into U, carries | into the function identically 1 on R, the
kth factor is readily evaluated as identical with the kth factor in the given prod-
uct.

Thus there exists an automorphism A extending all the A, in the fashion
covered by our earlier theorem. This automorphism has the form X — U-'XU
for some unitary operator U, whose restriction to L,(H,. m,) cxtends the trans-
formation induced by W;. 1t is clear that this takes Q, into Q,, and takes P, into
some sclfadjoint operator on L.(H,, m,); any such operator is affiliated with
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the ring determined by P, and Q, because the system determined by a quasi-
invariant distribution in one dimension is irreducible. O

In Corollary 4.4.1, the Q, were specified, but the P, were not completely
specified. The method employed can be adapted to deal with the case when
the P, are specified as well, as in

COROLLARY 4.4.2. Let P,, P,,... and Q,, Q,, ... be as in the preceding cor-
ollary and let P\, P,,... and Q}, Q3. ... be a second Heisenberg system over
H, relative to the same basis and on the same representation space, and such
that for each k, P, and Q, are affiliated with the ring R, determined by the P,
and Qk'

Necessary and sufficient for the existence of a unitary transformation si-
multaneously transforming the P, and Q, into P} and Q (respectively, for k =
1,2...) is that the following conditions be satisfied:

1) for each k, there exist a unitary transformation U, transforming the P,
and Q, simultaneously into P, and Q; (respectively), which unitary
transformation is affiliated with R,; and

2) the product Tl, | f __ P u) di| be convergent, where p, is as in the

preceding corollary, and u, is the transform of the function identically 1
on R under the transform by a unitary equivalence of L,(H, m,) with
L,(R, p,) that takes Q, into multiplication by x and P, into the selfadjoint
generator of translation.

Proor. Since A, and Q, jointly act irreducibly on L,(H,, m,), any automor-
phism of all bounded operators on this space is determined by its extended
action on P, and Q,. Similarly P,, P,,... and Q,, Q,. ... form an irreducible set
on L,(H, m), and so any automorphism of all bounded operators on this space
is determined by its action on the P’s and Q’s. Thus there exists a unitary
transformation making the indicated transformation between the two canonical
systems if and only if there exists an automorphism A as in the theorem earlier,
i.e., if and only if the product given there is convergent. 0

4.6. Affine transforms of the isonormal distribution

The question of the absolute continuity of affine transforms of the isonormal
distribution arises in a variety of guises, some of which will be indicated later.
In its conceptually simplest form the basic result is
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THEOREM 4.5. Let T be an invertible bounded linear operator on the real
Hilbert space H'. The transform g” of the isonormal distribution g on H' by
T: g7(x) = g(T~'x), is mutually absolutely continuous with g if and only if
TT* has the forml + B, where B is Hilbert-Schmidt.

If, moreover, B is trace class, then the derivative dg'ldg is (detA)~"
exp(— Y2{(A—! — Dx, x)) as a functional on H', where A = TT*.

PROOF. Note first that in the foregoing expression for the derivative when B
is trace class, for succinctness the interpretation of the given function on H'
as a measurable with respect to the isonormal distribution has not been de-
tailed. To amplify, if C is any selfadjoint trace class operator on H', det(/ +
C) is definable as the (evidently convergent) infinite product IT,(1 + A),
where ,, A,, ... are the eigenvalues of C. The expression ef=# is definable as
a measurable with respect to n by its representation in terms of the x; = (x,
e,), where the ¢; are the eigenvectors of C, as the infinite product II; e,
which is convergent in L,(g), each partial product being interpretable as a tame
function.

Now for the *‘if’” part, choose a basis in which TT* is diagonal, with ei-
genvalue A, for the eigenvector e,. Then g7 is absolutely continuous with re-
spect to g if and only if the following infinite product is convergent:

r_] fm [(Zﬂ)k-’c]—llz[e—lenl“_"zl"]'/ldx.
i -

The jth factor in this product is readily evaluated as [4A,/(1 + A)?]~*%. There
is no difficulty in verifying that the product is convergent when A, = 1 + g
with 2, €7 < co.

To treat the “‘only if”’ part, let H, be the closed linear subspace of H'
spanned by the eigenvectors of B, and let H, be the orthocomplement of H, in
H'. Then B leaves both H, and H, invariant, and if g7 << g, then g7|H, <<
gH, (j = 0, 1). It will first be shown that H, consists only of the 0 vector.

For g|{H, is the isonormal distribution on H,, and g7{H, is simply the normal
distribution of mean 0 and covariance operator A = TT*, restricted to H,.
Thus it suffices to show that if A is any selfadjoint nonnegative invertible lin-
ear operator in a real Hilbert space H, then the normal distribution N(0, A%)
(the notation N(x, C), with x € H, and C a bounded selfadjoint operator on H,,
signifying the normal distribution of mean 0 and covariance operator C?) is
not absolutely continuous with respect to N(0, 1), provided the point spectrum
of C is empty. Now N(0, C) is invariant under the group G of all orthogonal
transformations of the form f(C), where f is any Borel function such that | f(x)|
= | for all x € R. This group leaves no finite-dimensional subspace of H,
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invariant, since otherwise C itself would leave such a subspace invariant, con-
tradicting the assumption that C was free of point spectrum. On the other
hand, if N(0, A%) << N(0, ]), then the derivative dN(0, A%)/dN(0, 1) would
be invariant under the subgroup of O(H') leaving both of these distributions
invariant, since each distribution is itself invariant. This subgroup would then
include the group G, but this acts ergodically on L,(H; g) by Theorem 3.4.
Accordingly the derivative must then be a constant, and hence 1, showing that
A = I, and so contradicting the assumption that A had no point spectrum.

Thus H, is all of H', so it may be assumed that A has eigenvalues A, with
eigenvectors e, spanning H'. The convergence of the infinite product given in
the preceding paragraph is then necessary for absolute continuity. It is imme-
diate that this convergence implies that A, — 1. Setting A, = | + &, it is easily
seen that the ith factor has the form | — Yae2 + ({e3), from which it follows
that the product converges only if =, €2 < .

The given form of the derivative follows as earlier, as a limit in L,(H', g) of
the corresponding derivatives of restrictions to finite-dimensional subspaces.

a

In addition to the applications of the absolute continuity criterion for trans-
formations on Hilbert space to Wiener space, and in the theory of normal
stationary time series, it applies directly to quantum fields.

CoRrOLLARY 4.5.1. Let S be a (linear) symplectic transformation on the
complex Hilbert space H. Then there exists a unitary transformation V on K
such that W(Sz) = VW(2)V“! if and only if §S® — I is Hilbert-Schmidt, where
® denotes the adjoint of S as a real linear transformation on the real Hilbert
space H”.

Proor. Consider first the special case in which there exists a rcal part H, of
H such that S has the form S(x + iy) = Tx + iT~'y, for arbitrary x and y in
H,, where T is a nonnegative sclfadjoint operator on H,. The condition that
W(Sz) = VW(z)V ! is equivalent to the condition that 9W(Sz) = VaW(z)V-!',
which in turn is equivalent, by linearity, to the condition that P(7x) =
VP(x)V-'and (T~'y) = VO()V-".

Now the mapping y — QO(y) defines a distribution on H, relative to the
expectation functional given by the vacuum vector v, and as seen earlier there
exists a unitary operator V such that (T- 'y) = VQ(y)V-!if and only if the
transformation T is absolutely continuous on H,. By the preceding theorem,
this is the case if and only if 77* — | is Hilbert-Schmidt. Thus this condition
is necessary in the present case. If, on the other hand, it is satisfied, then let V
denote the unitarized operation of transformation induced from 7, acting on
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L,(H,, g). Here g is the isonormal distribution in H,, and L,(H,, g) is identi-
fied with K, via the real wave representation. It is straightforward to verify
that V transforms P(x) into P(Tx) as well as Q(x) into Q(T - 'x).

The general case may be reduced to the case just treated by the

LEMMA 4.5.1. For any symplectic transformation R on a complex Hilbert
space, there exists a unitary operator U on H, and H, and T as in the preced-
ing proof, such that R = US, where S(x + iy) = Tx + il 'y forx,ye H,.

ProOF. Note that an invertible continuous linear transformation R on H? is
symplectic if and only if R*JR = J, where J is multiplication by i regarded as
areal linear transformation on H’.

Let R = US denote the polar decomposition of R as a bounded linear oper-
ator on H?, U being orthogonal and S being nonnegative and selfadjoint.
Then, as is easily seen, R is also symplectic, so that R*R is symplectic, i.e.,
§° is symplectic. Hence $*/§? = J, whence JS*/-' = §-2, It follows that J
carries the spectral subspace S, on which $2 > 1 into the spectral subspace S _
on which §2 < 1, and leaves invariant the subspace S,, on which §*acts as the
identity. Thus S, is a complex-lincar subspace of H. Sctting S;, for an arbitrary
real part of Sy, and H, = S ,@8,, it follows that H, is a real part of H. More-
over, for xand yin H,, $*x + Jy) = Mx + JM 'y, where M is a nonncgative
invertible linear operator on H,. Setting T = M“, then S(x + Jy) = Tx +
JT-'y, and S is symplectic. It follows that U is symplectic, but, being also
orthogonal, it is unitary. O

An alternative criterion for unitary implementability whose analogue for
fermion fields is also valid is given by

COROLLARY 4.5.2. With the notation and hypothesis of Corollary 4.5.1, the
canonical transformation W(z) — W(Sz) is unitarily implementable if and
only if the commutator of S with i is Hilbert-Schmidt on H as a real Hilbert
space.

Proor. It suffices to consider the case in which S has the form given in

Lemma 4.5.1. In real terms, S then has the form (g T(f ,) and the action of

i on H is represented by the matrix (0 ) The commutator {i,S] has the

I 0
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corresponding form
0 T-T!
T-T-! 0 ’

Now suppose §§* — [ is Hilbert-Schmidt. This is equivalent to TT* — /
being Hilbert-Schmidt. But S and hence T are nonnegative and selfadjoint, on
H and H, respectively, so TT* ~ [ = T? — [. Multiplication by a bounded
operator preserves the Hilbert-Schmidt property, so T — T-!, which equals
T-YT? — 1), is Hilbert-Schmidt. It follows that [1, S| is also Hilbert-Schmidt.

Conversely, suppose that [i, S] is Hilbert-Schmidt, i.c., T — T~ !is Hilben-
Schmidt. By the argument just made, this implics that 72 — [ is Hilbent-
Schmidt, and hence that SS* — [ is Hilbert-Schmidt as well. O

Problems

I. Let H' be a real Hilbert spacc, let T be a bounded invertible linear op-
erator on H', and let a be arbitrary in H'. Show that the affine transformation
x> Tx + ais absolutely continuous with respect to the isonormal distribution
if and only if the same is true of the homogeneous constituent, x — Tx.

2. Decvelop an explicit expression for the derivative dn,/dn in the case in
which T is a Hilbert-Schmidt sclfadjoint operator in the real Hilbert space H'
given in diagonal form. (Use the infinite direct sum formulation.) .

3. Let g be the isonormal distribution of unit variance on the real L,[0, I]
Let W denote Wiener space, i.c., the space of rcal continuous functions on
[0, 1] that vanish at 0. Let T be the continuous linear map from L,[0, 1] to W

given by (Tf)(x) = J: S(s)ds. Define the distribution m on W by m(\) =

n(T*L), where A € W* and T* is the adjoint of 7. Show that m is strict. i.¢., m
defines a countably addditive measure (known as Wiener measure) on W. (Cf.
Doob, 1965.)

4. Show that if k is any absoutely continuous clement of W, then the trans-
formation x(-) —> x(-) + k(-) on this space is absolutcly continuous with re-
spect to Wicener measure. (Hint: use Problem 3 to deduce this from the quasi-
invariance of the isonormal distribution.)

5. Let K(1. 5) be a given real Borel function on [0, 1] X [0, 1] such that
1) K(1, 5) is absolutely continuous as a function of  for almost all fixed s: and

1 [}
2) ﬁ J: [(8/anK (1. 5)]? ds dt < . Show that the transformation

1
x(0) — x(n) + J; K(t. s)x(s) ds
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maps Wiener space absolutely continuously into itself. (Hint: use Problem 3
and consider the transformation in L,[0, 1]

1
S —fu + L (3/3s)K(r, 5)f(s) ds.

Show that the integral kernel here is Hilbert-Schmidt and apply Theorem 4.5
noting that

1 1 1 1
L A + LK,(r.m(s)dsl dx(1) = Lﬂr)ﬂ,lx(r) + J’"K(l. 8)dx(s)} di

for sufficiently smooth f(-) and x().)

4.7. Implementability of orthogonal transformations
on the fermion field

In this section we extend the basic results of Section 4.6 to the fermionic
case. We define the orthogonal group O(H) on a complex Hilbert space H
to consist of all invertible real-linear transformations on H that lcave in-
variant the real symmetric form Re(-,-). This is the analog in the fermionic
case to the symplectic group in the bosonic case. A given transformation S e
O(H) will be said to be unitarily implementable (more precisely, the auto-
morphism of the Clifford algebra that it induces is unitarily implementable in
the free representation) in casc the following is true: letting (K, ¢, I, v) de-
note the free fermion ficld over H, there exists a unitary operator U on K such
that

$(Sz) = U-'o)U (z € H).

The basic result is

THEOREM 4.6. An orthogonal transformation S on a complex Hilbert space
H is unitarily implementable if and only if (i, S| is Hilbert-Schmidt on H as a
real Hilber: space.

Proor. As in the bosonic case, the primary casc is that in which the given
transformation S has a special form relative to a conjugation on H and has pure
point spectrum. Reduction to this case involves in particular

LEMMA 4.6.1. Let S, be given orthogonal transformations on the romplex
Hilbert space H, (j = 1.,2), and let (K,, &,.T,, v) denote the corresponding
free fermion fields. Let S = §,8S,. H = H,®BH,. and let (K. . T, v) denote
the free field over H. Then S is unitarily implementable on K if and only if
each S, is unitarily implementable on K,.
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ProOF. According to Theorem 3.2, K is unitarily equivalent to K,®K, in
such a way that ¢(z,0z,) = $(2))®I; + Q,@d,(z,), where Q, = ['(—1y));
and in addition, v = v,®v,. From this representation, the *‘if'’ part of the
lemma is immediate. To treat the ‘‘only if'* part, we extend the ¢, and ¢ from
lincar maps of the underlying spaces H, and H into the respective algebras B,
and B of all bounded operators on the spaces K, and K, to isomorphisms of
the corresponding C*-Clifford algebras C(H,) and C(H) into the B, and B; the
extensions will also be denoted as ¢, and ¢. Now suppose that S is unitarily
implementable by the unitary operator U on K.

We denote as E, the state of C, = C(H,) given by the equation E,(A) =
(d(Aw,, v,) A € C,. If ¢, denotes the identity in C, = C(H)), then $(A®e,) =
¢,(A)®1, (where 1, denotes the identity on K)). Accordingly. E, may also be
expressed as E,(A) = E(A®e;,), where E denotes the state of C = C(H) given
by the equation E(B) = ($(B)v, v).

Let a denote the automorphism of C induced from the orthogonal transfor-
mation S on H; i.e., a is the unique automorphism that carries z into Sz, z €
H. Let E' denote the state of C into which E is transformed by a., i.e., E'(B) =
E(a(B)). By virtue of the unitary implementability of S via U, E' may be
expressed in the form E°(B) = ($(B)v. v'), where v/ = U-!v. Since K =
K,®K;,, v’ can be decomposed as v' = Z,x®e,, where the e, form an ortho-
normal basis for K, and the x, are in K,, but not necessarily orthogonal; how-
ever, (V[ = Z,|lx|[. It follows that E'(A) = Z, (¢,(A)x,, x)).

On the other hand, E, is a pure state of C,, since C, acts irreducibly on K,
via the isomorphism ¢,. The transform of E, by any automorphism of C, must
likewise be a pure state. Now a extends to C the automorphsim a, of C, that
is induced by S,, since for z € H,, Sz = §,z. Thus the restriction E'|C, coin-
cides with the transform of E, by a,. Accordingly, E'|C, must also be a pure
state of C,. It follows from the irreducibility of C, and the definition of a pure
state that the x, are proportional to a fixed unit vector x, implying that E’(A)
= (¢,(A)x, x). It follows that the mapping &,(A)v, — d(a~'(A))x (A € C)) is
isometric, and that it has a unique extension to a unitary opcrator on all of K,
that implements S,. By symmetry, the same applies to S.. |

Resuming the proof of the theorem, we focus on the special case parallel to
the basic onc in the case of boson field. Specifically, we assume the given
operator S is such that relative to some conjugation %z on H, S(x+ iv) = Rx
+ iy for arbitrary real &, y in H, where R is orthogonal on H, to itsclf. By
virtue of the lemma, it may also bc assumed that the spectrum of R is either
totally devoid of point spectrum or consists entirely of point spectrum. Taking
first the case in which the point spectrum is vacuous, then by spectral theory
the group G of all orthogonal transformations on H, that commute with R
leaves no finite-dimensional subspace of H, invariant. The same is true of its
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complex cxtension G’ consisting of all transformations 7" on H of the form
T'(x + iy) = Tx + Ty, for arbitrary x, y € H,. By Theorem 3.4, the ['(T")
leave no nonscalar operator in the W*-algcbra R, generated by the fermion
canonical Q's invariant under the automorphisms of R, obtained by conjuga-
tion with the ['(T"). On the other hand, I'(R")Q(x)[(R')-' = Q(Rx) =
UQ(x)U-", if U is a unitary opcrator on K that induces the canonical transfor-
mation &(z) = &(Sz).

In the real wave representation, the Q(x) are represented as left multiplica-
tions on an algebra on which the P(x) are corresponding right multiplications,
apart from the factor I'(— /). Since S commutes with —/, U and I'(—I) must
commute within a scalar factor a: U~' I'(=NU = a I'(—-1I). Squaring this
relation, it follows that @ = *1. If @ = I, conjugation by U lcaves the
['(— DP(x) pointwisc invariant. But as right multiplications, thesc operators
commute with the left multiplications represented by the Q(x). Together, the
algebras of left and right multiplications are irreducible on K and are com-
mutors of cach other. Accordingly. the commutativity of U with all right mul-
tiplications implies that it is in the algebra generated by the left multiplica-
tions. But this means that U is in R,,. It follows that U is a scalar, implying in
turn that R = I, a contradiction.

If, on the other hand, @ = -1, then conjugation by U carries the
I'(—1)P(x) into their negatives, from which it follows that U? lecaves them
invariant. Then, by the argument just made, U = I, whence R* = I, which
contradicts the assumption that R is devoid of point spectrum.

Thus R has pure point spectrum. By virtue of Lemma4.6.1, it is no essential
loss of generality to assume that 1 is absent from the spectrum of R, and that
if —1 is in the spectrum, the corresponding invariant submanifold is infinite-
dimensional. Thus H, is the direct sum of two-dimensional R-invariant sub-
spaces, in each of which the action of R may be represented by a matrix of the

f (cose sin 0

—sin® cos B ) The various subspaces are stochastically indepen-

dent as regards vacuum expectation values of operators in R,,. The entire space
K may be represented as in the boson case as the tensor product of the fermion
fields over the two-dimensional complexifications of these rcal R-invariant
subspaces. Relative to the jth of thesc finite-dimensional fields. R is unitarily
implemented by the operator U,, and according to the theory earlicr developed
in this chapter, R will be unitarily implemented on all of K if and only if the
following infinite product is convergent: IT (Up,. v,), where v, represents the
vacuum in the jth factor-field.

To evaluate the terms of this infinite product. we may represent the factor-
field in the real wave representation as follows. Let C denote the Clifford
algebra over the two-dimensinal real vector space S with orthogonal basis vec-
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tors e, , satisfying the relations ez = 1,e.e_ + e_e, = 0, let ¢, denote the
identity in C. C forms a complex Hilbert space K with the inner product (A,
B) = tr(B*A). The canonical Q's are represented by left multiplications L(x)
by vectors x in S, and we set Q. = 2-%L(e.). The vacuum vector is repre-
sented by 2~ “e,. The orthogonal transformation indicated is implemented by
the unitary operator Uj given by the cquation Uw = u;~'wu, (w € C), where
= cos('26,) + e.e_ sin(26)). 1t follows that the infinite product is convergent
if and only if 267 is convergent, which is equivalent to R — [ being Hilbert-
Schmidt. On the other hand

wa=[( )G ]2 0 0 )

so this is equivalent to the criterion given in the thcorem.

Having established the conclusion of the theorem for the case in which the
given orthogonal tranformation § is of the form S(x + iy) = Rx + iy for some
R on a real part of H, it now suffices for the proof of the theorem to show that
every orthogonal transformation 7 on H has the property that the orthogonal
transformation 7T on HOH is of the form US’, where U is unitary and §'
has the special form indicated. This is the substance of

LEMMA 4.6.2. For any orthogonal transformation V on the complex Hilbert
space H, there exists a conjugation » on HOH and a unitary operator U on
H®H such that VOV = US, where S is of the form S(x + iy) = Rx + iy ifx
and y are real relative to %, R being orthogonal on the real subspace (H®H),.

Proor. Let G denote the complex Hilbert space whose underlying real lin-
ear structurc is H*@®H*, whosc complex structure J takes the form J(x®y) =
—y®x (x,y € H), and whose complex inner product, denoted by ((,")), is
given in terms of the usual direct sum inner product, which will be denoted as
(*,)2, by the equation ((z, z')) = (z,2'), — i(Jz, z'})..

Note that G and H®H have the same orthogonal structure, but different
complex structures. We denote the usual complex structure iDi as j, and note
that both j and V@YV are unitary on G. Setting T = V@V and W = j~'T- T,
thenj~-'Wj = W-1.

Applying the spectral theorem to the unitary opcrator W, G is the direct sum
of spectral manifolds G(1)BG( - 1)DG(Mo)BG(N,). where M, = expli(0, m)]
and N, = expl(m, 2m)], corresponding to the indicated possible subsets of the
spectral range of a unitary opcrator. From the relation j—'Wj = W~ it follows
that j leaves G(1) and G(— 1) invariant, and exchanges G(M,,) and G(N,,). Tak-
ing these subspaces in sequence, G(1) consists of all vectors of the form = =
x@y, where x and y are in the subspace of all vectors « ¢ H such that iVu =
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Viu. This means that G(1) is cither of even or infinite dimension. A similar
argument shows that the same is true of G(— 1). It follows that there exist j-
conjugations %x(x1) on G(*1) (i.e., conjugations relative to the complex
structure j, regarding G( = 1) as real spaces) with corresponding real invariant
manifolds of eigenvalues * |, which we denote as M, and N, (such that G(1)
= M,®N,), and M_,, N_, (such that G(— 1) = M_,®N_,). Now set M,,
= G(M,) and N, = G(N,), and set j, and W, for the restrictions to M;®N,,
which we denote as L, of j and W. It follows from the unitarity of j on HOH
and the fact that j, = — [ that relative to this decomposition of Ly, j, has the

form
,_(o &.)
Jo = k10 ’

where k, is an orthogonal map from N, onto M,. Similarly, the relations j - 'Wj
= W-'and JW = WJ imply that W, has a matrix of the form

(& wnenl
0 ki'Ry'ke/

where R, is an orthogonal map from M, onto M,. Setting k = k,Dk,Dk_,.
where k. , is orthogonal from M. , onto M. ,, then j = j,®j®Dj_, wherc

el 3
Jar = k;} 0 .

Setting R = R,@®RDR_, where R, = */y_,, the following representation

results:
) ( 0 k)
J —k-' 0 '

where k is orthogonal from N = N;®ON,SN_, 1o M = M;®M,DPM _,, and
_ (R 0 .
W= (0 k_,R_lk).Hcrcklsonhogonal from M onto M.

R 0
0o 1/

sition of HOH as MON. Then

o o -kY(rR o\. (R 0
"U'JU‘<k-- o)(o I)T"T<o 1)‘

NowsetU =T ( ) where the matrix is relative to the decompo-
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which on replacing T~ YT by jW and using the matrix representations for j and
W in the preceding paragraph, is seen to be the identity on HOH. Thus U is
complex linear with respect to j and orthogonal on HOH. On the other hand,

(V)

conclusion of Lemma 4.6.2 is established, and the proof of the theorem is
complete. a

T=U (R 0). so that with % represented by the matrix <(I) B l)' the

Problems

1. Let H be a finite-dimensional Hilbert space, and let (K, W, T, v) denotc
the free boson field over H. The harmonic representation of Sp(H) is defined
as follows: for arbitrary S in Sp(H) there exists a unitary operator U on K such
that UW(z)U-! = W(Sz) for all z € H; show that U is unique within a phase,
or constant of absolute value 1. The mapping S — U, to be denoted as I in
extension of earlier notation, is a projective representation Sp(H), i.c.,
FSI(S') = (S, S )(SS’), where c(S, S') is a constant of absolute value 1.

a) Derive the condition on the function ¢(S, ') that is implied by the pro-
jective representation character of I". (A function ¢(S, S') satisfying this con-
dition is called a multipler or cocycle, in extension of thc terminology given
in Scction 4.3.)

b) Determine how (S, S’) is transformed if I'(S) is changed by multipli-
. cation with a scalar of absolute valuc 1, I'(S) = b(S)I'(S).

c) Show that there is no choice for b that will reducc the factor c(S,S')
identically to unity, i.e., make [ into a strict representation. (The cocycle is
then said to be essential, cf. Shale, 1962.)

2. Let H be a Hilbert space of arbitrary dimension, and let Sp,(H) denote
the subgroup of Sp(H) consisting of operators whose commutator with i is
Hilbert-Schmidt. Let the harmonic representation I" be defined as in Problem
1. Show that the cocycle is inessential on the subgroup of all symplectics that
comniute with a given conjugation.

3. Let H be a Hilbert space. The spin reprcsentation of the subgroup of
O(H) having Hilbert-Schmidt commutator with i, dcnoted O,(H), is defined
as in Problems | and 2 with the substitution of the fermion for the boson ficld.
Develop the analogs of Problcms | and 2, and show that the cocycle is esscn-
tial on the full group O,(H) (cf. Araki, 1988).

4. Let H be a Hilbert space and let S be a symplectic transformation on H.
S is said to be unitarily quantizable in case there exists (K, W. T, v) where K
is a complex Hilbert space; W is a Weyl system over H on K; T is a unitary
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transformation on K such that TW(2)T-' = W(Sz) forall ze H;and v is a
cyclic vector for the W(z) and T such that Tv = v. Show that § is unitarily
quantizable if and only if it is conjugate to a unitary transformation in Sp(H).
(Cf. Scgal, 1981.)

Bibliographical Notes on Chapter 4

The theory of infinite direct products of Hilbert spaces is due to von Neu-
mann (1938). Application of the theory to the absolutc continuity question for
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for complex transformations was reduced to the real case for boson ficlds by
Shale (1962) and for fermion fields by Shale and Stinespring (1965).
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C*-Algebraic Quantization

5.1. Introduction

In Chapters 1 and 2, free fields have been established in a form dependent
on an underlying complex Hilbert space. There may or may not be a given
such structure in the underlying so-called single particle or *‘classical field'’
space L. Moreover, as seen in the preceding chapter, there are many unitarily
inequivalent quantizations over a given space L, when L is infinite-dimen-
sional. This creates a plethora of technical problems that are not clearly ger-
manc to the underlying physical ideas, but to which the precise mathematical
situation is sensitive.

Such problems do not intervene when L is finite-dimensional, as a conse-
quence of the Stone—von Neumann theorem in the case of a symplectic struc-
ture, and of the structure of Clifford algebras in the case of an orthogonal
structure, given in L. Fortunately it is possible in the infinitc-dimensional case
to cut down significantly on the technical problems and to bring the physical
idcas to the fore by the use of representation-independent formalisms.

Taking for specificity the usc of an infinite-dimensional symplectic vector
space (L, A), it might be argued heuristically that the ficld observables F that
depend only on a finite number of modes z—say, functions of W(z,), W(z,),...,
W(z,)—should be independent of the representation (or particular Weyl sys-
tem), cssentially as in the finite-dimensional case. Moreover, a uniform limit
of such observables has a straightforward physical interpretation as a derived
observable that can be directly approximated arhitrarily closely by the F, so
these appear as natural observables also. But approximation in weaker
senses—weak or strong operator topologies, ctc.—arc less clearly interpreta-
ble physically. and have a technical cast. On the mathematical side, it turns
out that the class of uniform limits of the observables F is essentially indepen-
dent of the particular Weyl system, but the class of weaker types of limits arc
quitc materially dependent on the particular Weyl system.
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More specifically, in the case of the free boson field over a given complex
Hilbert space H, if one interprets **function’’ of a given set of bounded lincar
operators to mean ‘‘clement of the W*-algebra generated by the given opera-
tors,” which is natural from a mathematical position, then this is representa-
tion-independent when only a finite number of W(z) are involved, by virtue of
the Stonc—von Neumann theorem. But the W*-algebra generated by all the
W(z) is the algebra B(K) of all bounded linear operators on K, all of whose ..
automorphisms are unitarily induced, so there is no prospect of representing
canonical transformations in general by such automorphisms. If, however, one
takes the uniform closure of the totality of these finite-generated algebras, this
concrete C*-algebra A on K is not equal to B(K), and there is consequently
the possibility, which turns out to be realized, that linear canonical transfor-
mations can be appropriately represented by automorphisms of A.

Among other physical applications, this leads to a general quantization pro-
cedure that is applicable to tachyons, which are represented by unstable fields
lacking a vacuum. More broadly, an arbitrary linear canonical transformation
gives rise to a corresponding well-defined transformation on the states of the
physical system, though rarely on the state vectors in a given Hilbert space.
To put it another way, linear canonical transformations are in general diver-
gent in the Schrodinger picture, as Chapter 4 makes clear, but are convergently
representable in the C*-algebraic Heisenberg picture.

5.2. Weyl algebras over a linear symplectic space

Let (L, A) denote a given symplectic vector space. For any finite-dimen-
sional linear subspace M of L such that A|M is nondegenerate, let A(M, W)
denote the W*-algebra generated by the W(z) with z € M, for the Weyl system
(K, W) over (L, A). Let Ai(W) denote the union of the A(M, W) as M varies,
and let A(W) denote the uniform closure of Ay(W).

THEOREM 5.1. A(W) is *-algebraically independent of W in the sense that
if (K'W') is any other Weyl system over (L. A), then there is a unique *-
algebraic isomorphism from A(W) onto A(W’) that carries W(z) into W'(z).

Proor. Let F denote the totality of finite-dimensional subspaces M of L
such that A[M is nondegenerate. If (K, W) and (K’ W’) are any two Weyl
systems over (L, A), then for any M e F there is a unique algebraic *-isomor-
phism of A(M, W) onto A(M, W’) that carries W(z) into W'(z). for all - ¢ M.
For WM and W’|M differ from the irreducible Weyl system over (M, A|M)
only in multiplicity, by the Stone-von Neumann theorem, within unitary
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cquivalence. The W*-algebras gencrated by WM and W'|M are hence =-al-
gebraically equivalent to the algebra B(K(M)) of all bounded linear operators
on the state vector space K(M) for any copy of the irreducible Weyl system
over (M, A|M). Accordingly therc exists a »-algebraic isomorphism a(M)
from A(M, W) onto A(M, W') that carries W(z) into W’(z), and by the triviality
of the center of B(K(M)), this isomorphism is unique.

On the other hand, if M is contained in the subspace N € F, then the restric-
tion of a(N) to A(M) will have the properties defining a(M), and so coincide
with it. It follows that there exists a unique isomorphism a of Ay(W) onto
Ag(W'’) that extends all of the a(M), M € F. On each A(M, W), a preserves
the operator norm, being a C*-isomorphism, and so extends uniquely to an
isomorphism @ from A(W) onto A(W’). This shows the existence of the iso-
morphism claimed in the theorem, and its uniquencss follows as above from
the triviality of the centers of the B(K(M)). O

DerINITION. The equivalence class of all the A(W). under +-algebraic iso-
morphisms exchanging Weyl operators corresponding to the same vector in L,
is called the mode-finite Weyl algebra over (L, A), and denoted W(L, A). Note
that by its construction W(L, A) has a unique norm giving it the structure of a
C*-algebra.

CoRroLLARY 5.1.1. If T € Sp(L, A) [the group of all continuous invertible
linear symplectic transformations on (L, A)), there exists a unique automor-
phism y(T) of W(L, A) that carries W(z) into W(T - *z) (in any concrete rep-
resentation); and y(ST) = y(Syy(T) for S, T € Sp(L. A).

PrOOF. Essentially immediate, and omitted. 0

Given any net of proper subspaces N of L, on each of which the restriction
of A is nondegenerate and whose totality spans L, a similar construction of a
C*-algebra is possible. For example, if L is the totality of C* solutions of the
wave equation on Minkowski space, having compact support in space at every
fixed time, with the natural Poincaré-invariant symplectic structure, one may
take as M the subspace of solutions whose Cauchy data at a fixed time ¢, arc
supported by the compact set K C R". The net of all such K relative to inclu-
sion then defines an analogous C*-algebra, the space-finite Weyl algebra. This
and similar algebras have been used in some connections, but are fundamen-
tally different from the mode-finte Weyl algebra in not being representation-
independent.

On the other hand, the mode-finite Weyl algebra is by no means the only
algebra of its general type that does enjoy representation-independence. For
example, let W, denote the algebra of all finitc linear combinations of the
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W(z); we leave it as an excrcise to show that W, is =-algebraically represen-
tation-independent in the same sense as the mode-finite Weyl algebra, and that
the same is true of the C*-closure of W,,.

Which of these algebras is ‘‘correct’’ from a physical standpoint, or most
correct, if any? The answer to this derives from the understanding that the
basic goal of physical theory is to determine the evolution of the states of a
physical system, rather than of the *‘observables,’” which are, in major part,
of a conceptual rather than truly measurable character. In part, however, the
observables serve to *‘label’’ the states, by their expectation values in the
states, according to a standard practice in quantum physics. All of the repre-
sentation-independent algebras indicated above, cnveloping in some sense the
W(z), may be used to describe the cvolution of the regular states, which are
trcated in the next section and represent all states for which there seems to be
any ‘‘practical’’ possibility of their being empirically meaningful.

For example, in elementary quantum mechanics on the line, with the canon-
ical Heisenberg variables p and ¢, cosp + (1 + ¢?)~! corresponds to a bounded
lincar hermitian operator, for which no known **Gedanken experiment’” will
actually directly determine the spectrum, and so represents an observable in a
purely conceptual sense. Similarly, not all mathematical states, in the sense of
positive linear functionals on the algebra of all bounded linear operators, gen-
crated by the spectral projections of p and ¢, are truly observable. For exam-
ple. there are mathematical states that vanish on all f(p) and f(g) for all contin-
uous functions f of compact support, implying that with probability 1, p and ¢
will have infinite values in such states, which are consequently not empirically
accessible.

ExampLE 5.1. The representation-independence of the (mode-finite) Weyl
algebra implies that in the case of the free boson field over an infinite-dimen-
sional Hilbert space H, the concrete representative for the Weyl algebra—i.e.,
the algebra of operators on the free ficld Hilbert space K to which it corre-
sponds in this representation—must be a proper subalgebra of the algebra of
all bounded linear operators B(K). For if it were equal to B(K), all of its -
automorphisms would be unitarily implementable, and it has been seen that
this is not the case. This raises the question of what sorts of operators arc in
B(K) but not in the image on K of the Wey| algebra.

A simple example indicating an answer to this question is provided by the
bounded functions of the total number of particles. (From a physical stand-
point, the total number is observed only for particles whose energy is bounded
below by a positive constant; in the general case, as of photons in conventional
theory, the total number is not a true observable, and states with many photons
of extremely low energy may present an ‘‘infrared divergence.'’) To show
this, let b denote an arbitrary bounded Borel function for which 5(0) # b(1),
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and let N denote the total number of particles operator in the free boson field,
it will be shown that b(N) is not in the image of the Wey] algebra in B(K). Let
R be in the W*-algebra generated by the W(z), with z in the finite-dimensional
subspace M of the complex Hilbert space H, and e), e,,°*+ be an orthonormal
sequence in H including a basis for M. Consider the sequence (Re,, e,), where
e, is the vector in the one-particle subspace of K that is canonically unitarily
equivalent to H, corresponding to the vector e, in H. Since H = M®M*,
where M1 denotes the orthocomplement of M, K(H) is canonically
KM)®K(M1), from which it follows that (Re., e.) — (Rv, v) for R = W(z)
with z € M, and thence for all R, by approximation. Since M is arbitrary
among finite-dimensional complex-linear subspaces of H, and since every
real-lincar finite-dimensional subspace is contained in a complex-linear finite-
dimensional subspace, it follows by an approximation argument that (Re,, e,)
— (Rv,v)forallRe W,

To show that b(N) is not in W, it therefore suffices to show that (b(N)e,,
e,) does not converge to (b(N)v, v). Now b(N)v = b(0)v, so that (b(N)v, v) =
b(0). On the other hand, b(N)e, = b(l)e,, so that (b(N)e,. e,) = b(1). It
follows that if b(0) # b(1), then b(N) cannot be in W. More generally, if b(k)
# b(k + 1), then a similar argument with v replaced by the symmetric tensor
product of e, e,,...,e, shows that b(N) is not in W, and it follows that the
only bounded function of N that is in W is constant.

ExampLE 5.2. C*-algebraic quantization of a tachyonic structure can be
illustrated by consideration of the equation (l¢ — m*p = 0, where m > 0, in
Minkowski space M,. Let L denote the space of all C* solutions of this equa-
tion having compact support in space at each time, and let the form A on L be
defined as

A@), @2) = (041(10, ), @2(t0,*)) = (@4(to, *), Bp(t01 *)),

where 1, is arbitrary and (,*) denotes the usual inner product in L,(R*). Let P
denote the restricted Poincaré group, consisting of all transformations on M,
that are products of translations x; > x; + a; (j = 0, 1, 2, 3) with Lorentz
transformations L (connected to the identity), where the lincar transformation
L leaves invariant the quadratic form X-X = xj — x§ — x3 — x}. PactsonL
in accordance with the representation V, where for arbitrary g € P, V(g) sends
¢(X) into ¢(g~'X). Moreover, this action leaves invariant the form A. Thus
V() is a representation of P as a group of automorphisms on the linear sym-
plectic space (L, A), and continuity is enjoyed relative to the earlier defined
topology.

There is, however, no stable quantization, even for the temporal evolution
subgroup. To show this it suffices to show that the action of temporal evolution
on (L, A) is not stably unitarizable. which is Problem 2 of Section 6.6.
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Problems

1. Show that for any symplectic vector space (L,A) thc Weyl algebra
W(L, A) has trivial center.

2. Show that for any symplectic vector space (L, A) the algebra Wy(L, A)
generated by finite linear combinations of the W(z) as above is nonseparable.
(Hint: show that if f is a nonzero element of L the spectrum of W(f) is the unit
circle. This implies that {|W(¢f) — W('N)l| = IW((t = ¢)f) — 1|l = 2 forall t %
)

5.3. Regular states of the general boson field

The concept of the general boson ficld over a given symplectic vector space
complements that of the free boson field over a given complex Hilbert space.
Specifically, if (L, A) is a given symplectic vector space, the general boson
field over (L, A) is defined as the pair (W, y), where W is the mapping from L
to the Wey! algebra W(L, A), and y is the representation of Sp(L, A) by auto-
morphisms of W(L, A) given by Corollary 5.1.1. There is no distinguished
quantized field Hilbert space K, and no distinguished state identifiable with
the free vacuum. The Weyl system mapping W takes a more abstract form,
and the unitary representation I" of the full unitary group on the single-particle
space is replaced by the automorphic represcntation y of the symplectic group.

DEFINITION. The generating function of a state E of thc Weyl algebra
W(L, A) over a linear symplectic space (L, A) is the function u on L given by
the cquation u(z) = E(W(2)), z € L. A regular siate of W(L, A) is a state E
whose restriction to each Weyl subalgebra over a finitc-dimensional subspace
M of L on which the restriction of A is nondegenerate (for short, nondegener-
ale subspace) has a trace-class density operator: i.e., there exists a trace-class
element Dy, relative to A(M, W) such that for X e A(M, W), E(X) = ir(XD,,).
Here A(M, W) is the unique *-algebra equivalence class defined by all Weyl
systems over (L, A), and so is devoid of any concretc representation Hilbert
space; and *‘trace class'’ is defined correspondingly algebraically. In particu-
lar, Dy, will be represented by an operator of finite trace in the conventional
sensc if A(M, W) is represented irreducibly, but may have infinite conven-
tional trace if A(M, W) is represented as acting with infinitc multiplicity. The
following theorem treats the basic casc in which L is topologized algebrai-
cally.

THEOREM 5.2. A regular state is uniquely determined by its generating
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JSunction n, which is characterized by the properties that i) p(0) = 1, ii) p is
continuous on L; and iii)

Z a0, Wz = z,) €4 = 0

1.k
for arbitrary a.,, ...,qa,in Cand z,,...,z, in L. If T € Sp(L, A), the automor-
phism y(T) of W carries (by its dual action) a state of generating function u(z)
into one of generating fuction W(T'-'2).

PROOF. Suppose that p is the generating function of a regular state; condi-
tion i) is evident. The trace has the property that for an arbitrary trace-class
operator A, tr(AX) is strongly continuous in the operator X restricted to the unit
ball in the algebra of all bounded operators. Thus for any finite-dimensional
nondegenerate subspace M of L, tr(W(z)D,,) is a continuous function of z
relative to M. Condition iii) follows from the fact that for arbitrary a,, ..., a,
€ Cand z,...,2,€ L, (Z0,W(z))*(Z,0,W(z))) is a nonnegative operator, to-
gether with the Weyl relations. Thus conditions i)-iii) are necessary.

To establish the converse, suppose that p is given function satisfying i)-iii),
and set K, for the set of all complex-valued functions on L that vanish except
at a finite set of points. For fand g in K,, let {f, g) = Z. ... f(2)g(z")u(z —
2')e="2; then (-,) is a nonnegative hermitian form on K,. Let K, be the
quotient of K, modulo the subspace N of vectors of zero norm, where ||f]]? =
{f, ), and let K be the completion of K, with respect to the inner product
deriving from that in K,. A Weyl system may be defined on K as follows: let
Uy(z) denote the operator on K, carrying f(u) to e-“4w.s2 f(y — 2). It is
straightforward to check that Uy(z) is an isometry on K, and that the relations

Uy(2)Uy(2') = er="2 [J(z + 2')

are satisfied for arbitrary z and z' in L. It follows that the induced operators
U,(2) on K,: U;(2)(f + N) = Uy(z)f + N, are iosmetric on K, and satisfy the
Weyl relations. Accordingly, U,(z) extends uniquely to a unitary operator W(z)
on K, and (K, W) satisfies the Weyl relations over (L, A). To show that it
forms a Weyl system, it is only necessary to establish continuity of W(-). By
virtue of the unitarity of the W(z) and the density of K, in K, it suffices to
show that (W(2)f,, g,) is continuous as a function of z relative to any finite-
dimensional subspace of L, where f, and g, are the residue classes modulo N
corresponding to f and g in K. Explicit computation of (W(z)f,, g,) in terms
of p shows that this follows directly from the continuity of p relative to finite-
dimensional subspaces of L. If h denotes the function on L with #(0) = 1 and
hu) = 0if u # 0, then for h, = h + N, (W(2)h,, h;) = p(2). It follows that
the state E defined by the equation E(A) = (Ah,, h,), for arbitrary A in the
Weyl algebra as represented on K via U, is regular and has generating function

.
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To show that p determines the state E uniquely, let M be an arbitrary finite-
dimensional nondegenerate subspace of L. If R, is a C*-algebra of bounded
linear operators in Hilbert space that is strongly dense in the W*-algebra R,
then the unit ball in R, is strongly dense in the unit ball of R (Dixmier, 1981).
Taking as R, the algebra of all finite linear combinations of the W(z2), it follows
from the continuity property of the trace mentioned above that if D and D' are
finite-trace density matrices of states on the algebra R = A(M), then 11(DX)
= tr(D'X) for all X in the unit ball of R, provided i(DW(z)) = tr(D'W(z)) for
all ze M, ie., if u¢ = p'. By virtue of the Stone~von Neumann theorem,
every regular state on A(M) has a trace-class density operator in the sense
indicated above, which is purely algebraic relative to A(M). This effectively
suppresses the multiplicity of the Weyl system when not irreducible, complet-
ing the proof. O

5.4. The Clifford C*-algebra

In the fermionic case the situation is parallel to that in the bosonic case just
treated. Let (L, S) denote a given real orthogonal space with positive definite
symmetric form S, such that L is either infinite-dimensional or even-dimen-
sional. Let (K, ¢) be a Clifford system over (L, S). For any finite-dimensional
subspace M of L, let C(M, ¢) denote the W*-algebra (finite-dimensional in
fact) generated by the ¢(z) with z € M. Let Cy(d) denote the union of the
CM, ¢) as M varies, and let C(¢) denote the uniform closure of Cy(¢).

THEOREM 5.3. C(d) is *-algebraically independent of (K, ) in the sense
that if (K’ &') is any other Clifford system over (L, S) then there is a unique
*-algebraic isomorphism from C(¢) to C(&') that carries ¢(z) into ¢'(z), for
allzeL.

Proor. This is similar to the proof of Theorem 5.1 except that in place of
the Stone—von Neumann theorem, the *-algebraic unicity of the Clifford al-
gebra over an even-dimensional vector space relative to a given positive sym-
metric form is used. O

CoroLLARY 5.3.1. If T € O(L, S) [the group of all orthogonal transforma-
tions on (L, S)], there exists a unique automorphism ¥(T) of C(L, S) that car-
ries §(z) into &(T~'z) (in any concrete representation); and y(ST) = y(Syy(T)
forS,TeO(,S).

Proor. Again omitted. O
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DEFINITION. The mode-finite Clifford algebra over (L, S) is the *-algebraic
equivalence class of the isomorphic C*-algebras C(¢).

5.5. Lexicon: The distribution of occupation numbers

From the standpoint of an experimentalist, the occupation numbers aI'(P),
where P is the projection on a subspace of the complex Hilbert space H, are
probably the most crucial observables. Interactions as observed are typically
interpreted as transformations from states described by the occupation num-
bers for free incoming particles to the same for outgoing particles. On the
other hand, in a theory in which the single-particle or classical field space L
has no given complex Hilbert space structure, but only a symplectic or orthog-
onal one, the requisite projection P is not defined, or at best not uniquely
defined. In order for the concept of particle to make sense, it appears necessary
for an appropriate complex structure to be defined or obtained in L. Typically
this structure is derived from temporal invariance and stability constraints, as
developed earlier.

The occupation numbers dI'(P) in the free field over a complex Hilbert
space, on which P is an orthogonal projection, automatically have nonnega-
tive integral proper values, as required for the physical interpretation. More-
over, they are coherent with the statistical interpretation of the occupation
numbers in relation to the expected observables in a given state; that is, the
sum of the products of the occupation numbers with the corresponding values
of the physical observables, etc. Formally this means, as noted earlier, that if
A is a selfadjoint operator in H with the spectral resolution A ~ AdE,, then
al(A) ~ [ A oI(E,) = [ MdN(X), where N(}) is the number of particles for
which A has a value < A.

An occupation number oI'(P) is affiliated with the Weyl algebra if P is the
projection onto a finite-dimensional subspace, in the sense that the bounded
functions of oI'(P) are in W; in particular, e = I'(e"*) is in W for arbi-
trary real ¢. This implies that the joint distribution of such occupation numbers
is well defined in any regular state—even if this state is *‘nonnormalizable’
in the sense that there is no associated trace-class density matrix on K, the
free field state vector space. More specifically, if e,, e,,-+- is an orthogonal
basis for H, the joint distribution of the n; = aI'(P;), where P, is the projec-
tion on the one-dimensional space spanned by ¢, (j = 1.2,...,k), has
Elem+an+ . +um] = f(1,, t,,..., t,), where E is the state in question. This
assures that there exists a joint distribution of all the n;, in any regular state,
by Theorem 1.4, or by Kolmogorov’s theorem, providing a particle interpre-
tation for an arbitrary such state. In particular, Z,_;.. n; is well defined as a
random variable, which may however be infinite on a set of positive measure,
or indeed on the entire underlying probability space.
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A general symplectic T on H will induce an automorphism y(T) of W, as
seen earlier, whose dual action on states will carry any given regular state into
another such state. In general, the vacuum of the free field will be carried into
a state that cannot be represented by vector in K, although it necessarily re-
mains pure.

EXAMPLE 5.3. In particular, any unitary operator U on H induces a trans-
formation on the regular states of the free boson or fermion field over H. The
free vacuum is invariant under the induced actions of all of U(H). It is the
unique such state that is normalizable in the free field representation.

Examples of states of the Weyl algebra that are invariant under (the induced
actions of) arbitrary unitaries on H are those with generating function p,(z) =
exp( — Yakl|iz||*), where k = 1. The average of such with respect to a probabil-
ity distribution for k on [1, ®) is also automatically the generating function of
a U(H)-invariant state, and it is the most general such regular state. A corre-
sponding result is valid for the Clifford algebra. The joint distribution of the
occupation numbers in the state of generating function i, can be computed
explicitly, and it developes that the expected number of particles is infinite
unless k = 1. In principle there may be other states invariant under a nontrivial
unitary representation of the Poincaré group, or another group having a non-
compact simple factor, but none have been rigorously constructed. This prob-
lem connects with constructive quantum field theory, in which the invariance
properties of the putative physical vacuum are in question.

Problems

1. Let H be a complex Hilbert space and let W denote the Wey! algebra
over H. A state E of W is said to be unitarily invariant in case E(A) =
E(Y(U)A) for all A € W and U € U(H).

a) Show that F(z) = e~ %=1 is the generating function of a regular state of
W if and only if k = 1, and that this state is unitarily invariant.

b) Show that the most general unitarily invariant regular state can be ex-
pressed in terms of an integral of the F(z) with respect to a probability measure
in k-space (cf. Segal, 1962).

2. Determine the distribution of occupation numbers in the unitarily invari-
ant states described in Problem la, and show that the total number of particles
is a finite random variable only when k = 1.

3. Show that every regular state of the C*-algebra W having finite particle
number with probability one has a trace class density matrix in the free field
representation (cf. Chaiken, 1967).



152 Chapter 5
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Quantization of Linear
Differential Equations

6.1. Introduction

Quantum field theory originated in extremely intuitive and heuristic work,
which in part appears to some physicists and mathematicians as almost fortu-
itously successful. Briefly, Dirac was inspired by the success of Heisenberg's
postulate pg — gp = —if for treating systems of a finite number of degrees
of freedom, and sought to extend it to the electromagnetic field, which has an
infinite number of degrees of freedom. At a fixed time, the field values and
their first time derivatives resemble analytically the p and ¢ that describe the
kinematics of a nonrelativistic particle on the line, apart from the infinite-
dimensionality, which requires an infinite set of p's and ¢'s, such as have been
treated earlier. The commutation relations are determined in a natural way and
are formally the same as those of Heisenberg, despite the considerable differ-
ence between the essentially geometrical variables in the original Heisenberg
relation (position and momentum) and the function-space variables in quan-
tum field theory (such as the components of the electromagnetic field).

Dirac’s proposed theory was initially highly successful; its first-order im-
plications correlated very well with empirical and earlier theoretical work (of
Einstein, notably) on processes in which particles are emitted or absorbed. In
particular, it explained why such processes occur, whereas the Heisenberg-
Schrédinger theory described some of the key processes without explaining
their origin. The theory of ‘‘quantized fields’’ was polished, extended, and
rounded out by Dirac himself, Heisenberg and Pauli, Bohr and Rosenfeld, and
many others in the several years following Dirac’s original work in the middle
1920s. From an intuitive and formal mathematical standpoint it was extremely
attractive and interesting, embodying as it did a rather complete, far-reaching,
and plausible theory of the relations between particles and fields in a few com-
pact and empirically motivated assumptions. There was, however, a certain
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fundamental vaguencss in the formulation, which involved nonlincar func-
tions of a quantized field. In modern terms these fields are recognized as op-
erator-valued distributions, of which nonlinear functions arc not in gencral
well defined. This vagueness remains unresolved to this day, and represents
probably the central foundational issue of quantum field theory. In any event,
quantum ficld theory fell into some disrepute because of the persistent con-
comitant infinities in its higher-order implications.

The thcory was basically too nebulous to survive mathematical attcmpts to
isolate, clarify, or remove all such infinities. For many years physicists ar-
gued, as some continue to do, that the infinities were symptomatic of physical
rather than mathematical deficiencies; that an essentially different theory, to be
suggested perhaps by further accelerator experiments, was required. But no
rcally concrete proposals for an effective alternative have come from the cx-
tensive experiments conducted over many decades. Purely mathematical work
during this period has, however, indicated that reformulations and develop-
ments in linc with contemporary mathematical ideas may well be the answer.
And thereby hangs our tale.

6.2. The Schrodinger equation

From an abstract position, there is no problem in quantizing a lincar differ-
ential equation that can be put in the form du/ar = iAu, where u is a function
from R to a complex Hilbert space H, in which A is a given selfadjoint oper-
ator. Taking for specificity the case of boson quantization, the frec boson field
(K, W, T, v) carlicr treated specializes by applying I to the *‘single-particle
dynamics’' ¢ to define the dynamics I'(¢™4) of the corresponding quantized
field. The number of particles in various states at later times, given the initial
state, may then be computed according to conventional quantum phenome-
nology. But concretely, the interpretation of fields as existing in an ambient
geometric space appears as a virtual conceptual necessity, even though the
quantized ficld themselves are not directly observed. More significantly from
a practical standpoint, the spatial dependence of fields is needed in order to
form local intcractions, which indirectly assures consistency with the basic
physical constraint of causality.

The simplest case is that of the Schrodinger equation ay/dr = iAd, and its
quantization serves to illustrate the basic ideas. In the classical (i.c., not quan-
tized, or sometimes, not second-quantized, the **first”’ quantization describing
a single particle) cquation. yi(t, x) is a complex-valued function on spacc-time
such that i(r,) e LR*) = H, and A is an essentially given selfadjoint operator
in H. Heuristically, the process of quantization is the replacement of ¥ by an
operator-valued function W that satisfies the “‘same’’ differential cquation
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(formally) but whose values do not mutually commute. Without some speci-
fication of the commutators, quantization is obviously indeterminate, but the
simplest nontrivial assumption is that at any fixed time the commutators are
scalars. Invariance and/or classical dynamical considcrations (originating in
Lie’s theory of contact transformations) indicates the specific heuristic com-
mutation relations

W*x), U, )] = d8(x — y), (@, x), Y(t,y)] = 0.

The intervention of the Dirac delta distribution here indicates that Js(r. x)
must be a distribution or other generalized function, and an analysis from the
standpoint of physical measurement (originated by Kramers and developed
by Bohr and Rosenfeld) confirms the idea that only the averaged fields
JW(1, x)f(x)dx, where f is a reasonably regular (c.g., Cg) function on space,
have physical meaning as observables accessible by a conceptual measuring
process. This idea is readily implemented mathematically. Indced, general-
ized operators may be defined that represcnt the values of the fields Ys(t, x) at
individual points, but we begin with the simpler casc that can be described in
terms of densely defined operators in Hilbert space. Thus we deal with an
operator-valued function W(t, f) that is intcrpreted physically as the average
of the quantized field {(z, x) at time ¢ with respect to the given test function f.
Symbolically, W (s, f) = (1, x)f(x)dx.

Naturally, regularity questions are involved in the trcatment of differential
equations. It is convenient to work, in part at least, with a domain that is
invariant under the differential operators involved and rclated operators. In a
given space-time, C* regularity is normally sufficient. On the other hand, gen-
erality and succinctness are facilitated by an abstract treatment involving un-
bounded operators in Hilbert space. If A is a given partially defined linear
operator in a topological lincar spacc L, thc domain D.,(A) consisting of the
intersection of the domains of A” (n = 0, 1, 2, ...) often intcrvenes in such a
treatment.

Similar considerations apply to group rcpresentations rather than to individ-
ual operators. It will suffice here to consider the casc of a given continuous
one-parameter group V in a Banach space B. D, (V) is then definable as D_(A),
where A is the generator of V. When multi-parameter groups such as the Poin-
caré group in relativistic theory are involved, the relevant regularity consid-
erations are largely reducible to the consideration of the time evolution sub-
group, by virtue of a partially majorizing role of the energy. For this reason,
little essential is lost by limiting consideration here to the case of a single
operator or one-parameter group.

The next theorem gives a rigorous formulation of the quantization of the
Schrodinger equation, in a slightly abstract form that enhances generality. For
rigorous purposes it is convenient to begin with the consideration of hermitian
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fields ®(1, f) rather than the nonnormal fields (¢, x) discussed heuristically
above.

In order to state properly the Schrodinger equation for the quantized field,
which exists only as a generalized function, we first observe in formal terms
how the classical equation is naturally reformulated to deal with generalized
solutions. The equation d\p = (A, where ¢ = (¢, x) and A is an operator on
functions of x, takes the following form on multiplication by an arbitrary Cg
function followed by integration with respect to x:

b, 0fxdx = iAW 0fxdx = ifl(e A ))dx

Accordingly, if ¥(¢t, f) denotes [i(t, x)f(x)dx, then the integrated counterpart
to the Schrédinger equation takes the form

AW, f) = i W(1, A%) (6.1)

for appropriately regular f. Equation 6.1 will be used to formulate the Schro-
dinger equation for the quantized field, first in terms of the hermitian compo-
nents of the ficld.

THEOREM 6.1. Let A be a given strictly positive selfadjoint operator in the
complex Hilbert space H. Let (K, W, T, v) denote the free boson field over H,
let &(U) denote the selfadjoint generator of the unitary group W(tu), and set
@1, u) = T'(e)d(u)(e~**). Then ®(1, u) satisfies the (quantized) Schro-
dinger equations in the following sense:

i) the closure of €'[®(t + &, u) — D1, u)] has the limit D(1, iAu) as &
— () in the space of selfadjoint operators in K, with its strong topology.
if u e D(A); and

ii) for arbitrary u € D.(A) and w € D(H), where H = aI'(A),

a.@(1, ww = (1, iAu)w.

Proor. Conclusion i) follows from Chapter 1, on noting that ®(r + €, 1)
= @(1, ¢"u) and that the closure of e ![®( + €, u) — P, )] is D1,
€~ '(e'* — I)u). For ¢(x,,) = &(x) in the strong operator topology as x,, — x.
Indeed this is equivalent to thc convergence of the onc-parameter unitary
groups W(ix,) to the group W(tx). This follows in turn from the strong conti-
nuity of W(z) as a function of z.

Regarding conclusion ii), notc first

LEMMA 6.1.1. Given arbitrary x € H and u € D(H"), then u € D(¢(x)) and
ibCoull = c [ix|| IKH + 1)l

Sor some constant ¢ independent of x and u.
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PROOF. Write d(x)u in the form 2-*(C(x) + C(x)*)u, applicable to u in the
common domain of C(x) and C(x)*. Then
(b, bxu) = 3 {Cu, Cxu) + (C(x)*u, Cx)*u)
+ (C)*u, Cu) + (Cx)u, Cx)*u)).
Applying the Schwarz incquality, it follows that
libul = ICul? + [ICCx)*uff2.

Let P denote the projection on the one-dimensional subspace spanned by x.
It is casily seen that it is no essential loss of generality to assume that A is
bounded below by /, so that P =< I =< A, implying that aI'(P) = N < H, where
N = al(l). It follows, noting that dI'(P) and N commute strongly, that D(NV)
C D(3aI'(P)). But it is readily verified, taking ||x]| = | (without loss of gener-
ality) that C(x)C(x)* = oI'(P) and that C(x)*C(x) = aI'(P) + I. It follows in
turn that |IC(x)*u|]? = (Nu, u) and |JC(x)ulf* = (N + I)u, u), whence

bl =< (2N + Du,u) < (2N + 1)"ulp.

By a simple approximation argument, this incquality remains valid for arbi-
trary u € D(N":). BuU2N + I < 2H + I, 50 (2N + I) < (2H + )", whence
the incquality holds a fortiori when N is replaced by H. O

PROOF OF THEOREM, CONTINUED. The conclusion of the lemma may be cx-
pressed as ||G(x)H + 1)~ = cf|ul| x| for arbitrary u € K, i.c., d(x)H +
1)-" is a bounded operator. Now

e [P + €, u)w — D1, u)w] = GE e ™ — eMu)w
= [d(e~'ev ™ — eMu) (H + 1)-"] [(H + D"w].

Applying the indicated boundedness, it follows that ii) is valid for arbitrary w
€ D(H"), and in particular for w € D_(H). O

COROLLARY 6.1.1. Let W1, f) denote the closure of 2-"(®, f) — id(t,
if}). Then for arbitrary real s and 1. the closures of

(W(s, ), W@, 0, (WG, ), Y9l (W, N Wi, g

exist and are respectively (e ~™f, g), 0, and 0.

Proor. The case when s # ¢ is reducible to the case s = 1 by the observation
that

@1, f) = T(ev - )D(s, f)T(e - M) = B(s, ev~Mf).

The case s = 1 is similarly reducible to the case 1+ = 0. The corollary then
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follows from the relations between creation operators and the hermitian fields
developed in Chapter 1. O

6.3. Quantization of second-order equations

In general, quantization of second-order equations can be effected by re-
duction to the first-order case just treated. An important and typical case is that
of an equation of the form (¢ + V(x)¢ = 0. Here V(x) is a given function on
physical space, e.g., R", while ¢ is a real function on space-time, i.e., M, =
R x R", and 0 = 8 — A. Assuming that V is nonnegative, bounded, and
measurable, and introducing the selfadjoint operator B = (V — A)%, this
equation may be expressed in the abstract form 8?u + B2u = 0, where u =
u(t) is a function from R to a function on R". This in turn becomes the first-
order equation 8,y = Ay, where y = y(r) has values in the space of pairs (J,
8), each of f and g being a function over physical space, and A is represented

by the matrix
0 1
-B2 0)°

The main difference from the Schrodinger equation is the more explicit role
played by &, ¢, which is usually dealt with by a treatment in terms of *‘canon-
ically conjugate’’ fields, i.e., analogues to p and g. The basic result may be
stated as :

THEOREM 6.2. Let B be a given strictly positive selfadjoint operator in a
real Hilbert space H'. Let H denote the complex Hilbert space consisting of
all pairs (x, y) with x and y in H', with the following action of i:

i: (x,y)— (B~'y, —Bx),
and the inner product
((x,y), (X, y)) = (Cx, Cx') + (C='y, C-Yy') + i(x}y) — (x.y")
where C = B". Let A denote the selfadjoint generator in H of the one-param-

eter unitary group represented by the matrix

_ cos(tB) B~'sin(tB)
Uln = (—B sintBB)  cos(tB) )

Let (K, W, T, v) denote the free boson field over H, and let $(z) denote the
associated field operator. Then setting
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&(t, x) = TUO)B~'x, OL(U®)~",
(t, x) = TU@)$(0, Bx)L(U(1)~!

for arbitrary x € H', the following equations are satisfied:
3®(t, x)w = II(t, x)w; a2P(t, x)w + O, B2x)w = 0

for arbitrary x € D.(B) and w € D(8I'(A)).

Conversely, suppose that ®(t, x) and I1(t, x) are maps from R X H' to the
selfadjoint operators on the complex Hilbert space K, in which is given the
one-parameter unitary group I'() with nonnegative generator H, such that
Hv = 0 for a given vector v in K that is cyclic for the totality of all operators
of the form e'®to* or eMto (x,y € H'; 1, fixed), and that the Weyl relations at
time t = 0 are satisfied together with the quantized differential equation in its
integrated form: e*W(z)e—"* = W(U(1)z2) (t € R, z € H). Then this structure
(K, ®, I1, T, v) is unitarily equivalent to that just described.

ProoF. This is essentially a special case of Theorem 1.11, in which the
single-particle Hamiltonian is A. Details are straightforward and are omitted.

a

In terms of space-time averages, rather than space averages at fixed times,
Theorem 6.2 may be formulated as

COROLLARY 6.2.1. Suppose B takes the form (V — A)% in L,(R"), where V
is a strictly positive measurable function. Then there exists a unique map ®
from C5(M,) to selfadjoint operators in K such that

i) for any function ft, x) in Cg(My), ®(f) is the closure of [®(1, f(1,"))d1,
defined as a weak integral relative to vectors in D (H);
ii) ®(3 + V)f) = 0 for arbitrary f in C5(M,); and
iii) for arbitrary w and w' in D..(H), (®(f)w, w') is as a function of f, a
distribution on M,.

Moreover, if G is the subgroup of the Poincaré group that leaves V fixed.
with corresponding action U on H, then ® intertwines with T(U(G)): for ar-

bitrary g € G, T'(U(g)) ®(NI(U(g))~' = P(f,), where f(X) = ig-'(X)).

ProoF. This follows, e.g., by the representation of functions in Cg(M,) as
limits of linear combinations of products of functions on time and space sep-
arately; the details are left as an exercise. |

LExicon. In theoretical physical terms, the last theorem describes in essen-
tially relativistic terms the quantization of the Klein-Gordon equation, Ce +
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m* = 0, and similar equations including those involving a given external
potential V. The heuristic quantized field ¢(z, x) is to be thought of as the
symbolic kernel for @, i.e., ®(f) = [(X)f(X)dx. Later it will be seen that
an appropriate interpretation of ¢(X) is available as a generalized operator, but
such pseudo-operators cannot gencrally be multiplied, and for many purposes
it is more effective to work directly with true operators.

Practical (perturbative) quantum field computations in heuristic theory often
dispense with rigor and facilitate computations by working with the symbolic
kernels [@(x), ¢(y)] = iD(x — y) and (@(x)p(y)v, v) = G(x — y) of the fun-
damental antisymmetric and symmetric forms, Im(:,-) and Re(:,"), and related
kernels. These are definable as distributions satisfying the underlying classical
equation with appropriate initial conditions and inhomogeneous term. For con-
stant V they are readily expressible via Fourier analysis in momentum space,
or explicitly as Bessel functions in physical space. Thus, D(x) is the unique
distribution satisfying the equation (O+V)D = 0, with the Cauchy data:
D(0, x) = 0, 9,D(0, x) = 8(x), while G(x) is the unique distributional solution
of the same cquation with the Cauchy data: G(0, x) = (B~ '8)(x), 3,D(0, x) =
0. These and similar singular functions primarily involve aspects of classical
hyperbolic equations and space-timc geometry, and will not be elaborated
here.

6.4. Finite propagation velocity

An important aspect of causality, and one that distinguishes solution mani-
folds of wave equations from general section spaces, is the notion of finite
propagation velocity. Einstein cnunciated the principle that no obscrvable
physical effect can be propagated more rapidly than light. This has a variety
of analytic interpretations, onc of which is that the fundamental partial differ-
cntial equations of physical theory must be hyperbolic. Such equations have
well known domain of dependence properties, which roughly state that the
value of the solution of the Cauchy problem at a given point of space and time
t depends only on the Cauchy data in a region whose size grows with 7, rather
than on the Catchy data throughout all of space. The rate of increase of the
domain of dependence is substantially the propagation velocity, and Einstein's
law, as well as intuitive physical perceptions, is quite effectively modeled in
this way.

The finite propagation velocity property is a highly distinctive one, and
characteristic of hyperbolic equations. For example, if B is a positive sclfad-
joint operator in L,(R") that commutes with the action of the euclidean group
on this space (and so may be represented by multiplication by an arbitrary
positive rotation-invariant measurable function on the Fourier transform), the
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differential equation (87 + B?)¢ = 0 has the finite propagation velocity prop-
crty only if B2differs from — A by a constant (Berman, 1974). In this scction
we show that simple types of quantized equations also exhibit finite propaga-
tion velocity, if dependence is defined in the manner appropriate to noncom-
muting operators.

In order to treat succinctly fairly general cascs. we make the

DEFINITION. A graduation on a Hilbert space H is a function ¢ from H to
the interval [0, «] such that

i) {x € H; g(x) < =} is densc in H;
ii) glax + y) = max{g(x). q(y)} for any real a and x, y € H; and
iii) if x,— x in H, then g(x) = liminf g(x,).

A given one-parameter group S(-) on H is said to have speed c in case q(S(1)x)
s dil + qx).

EXAMPLE 6. 1. Let H denote the Hilbert space of real normalizable solutions
¢ of the wave equation on M, relative to the complex Hilbert structure given
in Scction 6.3. Let g(¢) denote the diameter of the support of the Cauchy data
for ¢ at time ¢ = 0, and let U(r) denote the onc-parameter unitary group of
time ¢volution. Then the foregoing conditions are satisfied. The same is true
if more generally a bounded nonnegative potential V(x) is incorporated into
the cquation. These results follow from the classical theory of hyperbolic sec-
ond-order differential cquations.

THEOREM 6.3. Let H be a graduated Hilbert space, and let U(*) be a con-
tinuous one-parameter group on H of speed ¢. Let (K, W, T,v) denote the
free boson field over H. Then W(U(1)2) is in the C*-algebra of operators gen-
crated by the W(z') with q(z') < q(z) + c|t|, for arbitraryz ¢ Hand 1 € R.

ProOF. U(1)z is itself such a z’, so the conclusion is immediate. ]

COROLLARY 6.3.1. For the Klein-Gordon field on M,, with external potcniial
V, where V is a given nonnegative, bounded measurable function on spuce R*,
and for any neighborhood N of a given point x ¢ R*, the W*-algehra R(1, N)
generated by the spectral projections of the ®(t. 1) and (1. u) with u in C*
and vanishing outside N is contained in R(0,N + B(1)), where B(1) denotes
the ball of radius 1] centered at the origin.

ProoF. This is the special case of the thcorem in which H is the solution
manifold of the Klein-Gordon equation described above. and U(r) is the tem-
poral evolution group defined by the equation. O
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Thus, the field (¢, x) is **virtually’” in the W*-algebra of operators gener-
ated by the (0, y) and the 9,9(0, y) with |y — x| = |i|.

COROLLARY 6.3.2. Theorem 6.3 remains valid in the case of a free fermion
field, provided W is replaced by the corresponding fermion field &.

ProoF. The same argument applies. O

6.5. Quantization of the Dirac equation

As far as the algebraic framework is concerned, the Klein-Gordon equation
could be quantized equally in fermionic terms, but this would violate the Ein-
stein principle, as interpreted in terms of the commutativity of the field oper-
ators in space at equal times. There is, however, no violation of Einstein cau-
sality in the fermionic quantization of the Dirac equation, in the standard
physical interpretation according to which the Dirac field itself is not directly
observable, but only certain bilinear expression in this field, called *‘cur-
rents,”” for which appropriatc commutation at diffcrent points of space at the
same time follow from the fermionic anticommutation (Clifford) relations.
The Dirac field is the simplest prototype for the modeling of fermionic parti-
cles and its quantization exemplifies the general casc.

The theory of classical spinor fields is basically a matter of space-time ge-
ometry, rather than of algebraic quantization, and so will be described only
briefly herc. We take the elementary position according to which a general
spinor ficld is a function on space-time M, with values in a finite-dimensional
**spin’" space. Under a transformation g in the Poincaré group P, such a func-
tion Y(x) transforms not only directly, displacing x into g ~'(x), but the vector
in spin space, y(x), is transformed according to a given representation R of the
universal (in fact, two-fold) cover P of P. In the particle models of standard
relativistic physics, R is trivial on space-time translations, which form an in-
variant subgroup of the Poincaré group, and so reduces effectively to a repre-
sentation of the universal (two-fold) cover L of thc homogeneous Lorentz
group L, which may be identified, in the case dim M,, = 4, to which we now
restrict consideration, with the group SL(2, C).

The basic and prototypical case is that of normal Dirac spinors, for which
the spin space is four-dimensional, and the action of L can be described sim-
ply, in infinitesimal form, as follows: let O(X. Y) denote the symmetric form
on My, XY = Xxoy0 — X,¥, — X;¥; — X33, and let y denote the Clifford map
over M,, i.e., the essentially unique linear map from M, (as a vector spacc)
to 4 X 4 matrices, such that y(X)? = Q(X.X) I, any two such maps being
conjugates by a fixed invertible matrix. Let the e, (j = 0, 1, 2, 3) be the vec-
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tors in the original four-space with all components 0 except | in the jth posi-
tion. The Lorentz group can be defined as that of homogeneous linear trans-
formations leaving invariant @, and its action on M, is accordingly gencrated
by the vector ficlds L, = €xd, — €.x.9;, where €, = Q(e,, ¢)). The spin rep-
resentation R of L can be defined as that for which the corresponding infini-
tesimal representation carries L, into 2y;y,. The Dirac equation takes the form
Dy + imp = 0 (m > 0), where D denotes the operator in the space of func-
tions over M, with values in the four-dimensional spin space, D = Z gygd,.

c null space of D + im is invariant under the following representation U of
P:

U(g): (X) = R(g)(g~'(X)).

Just as the C* solutions of the Klein-Gordon equation having compact sup-
port in space at each time form a P-invariant pre-Hilbert space in a unique
way, the same is true for the Dirac equation, with some slight differences. In
the latter case, the so-called ‘‘wave function®” ¢ is complex-valucd; and the
completion of the solution manifold is not irreducible under P, but decom-
poses into four irreducible components, each of which is transformed in a
unitary way by the action U of the Poincaré group. The spectrum of the self-
adjoint generator of temporal evolution is positive for one pair of the compo-
nents and negative for the other pair; each pair is interchanged by space rever-
sal, which is not contained in the connected group P. The physical
intcrpretation of the apparent negative energy of one pair of components,
which was advanced by Dirac and remains in heuristic use, is that this pair
esscntially represents antiparticles to the particles represented by the positive
componcnts. More specifically the antiparticles arc represented by **holes’” in
a ‘‘sca’’ of negative cnergy particles. This has not appeared satisfactory to
some physicists. We will see that the problem arises essentially because of the
usc of an inappropriatc complex structure in the solution manifold of the Dirac
cquation. To begin with, we treat one of the components, namely the positive-
frequency solutions of the indicated equation, having finite Hilbert norm: con-
ventionally, this is the *‘particle’” component.

Consider then the space H,, of all solutions i of the equation (I) + im)s
= 0 having positive frequency. To specify this space preciscly, we notc that
on multiplication by ¥, the cquation attains the form

i = a0 + 0o + adW + amb,

where the u, are hermitian matrices on spin space, for an appropriatc represen-
tation to the y's.

It follows that if ((,")) denotes the usual positive definite inner product in
Ct. then (p. &) = J{{e(s, X}, W(t. x)))d>x is independent of ¢ for any two solu-
tions ¢ and ¢, and it can be shown to be P-invariant. Accordingly. H,, is



164 Chapter 6

defined as the Hilbert space of all solutions { for which [ = (W, ) is finite.
The subspaces H,; of positive/negative frequency are the corresponding ei-
genspaces of the selfadjoint generator of temporal evolution.

In these terms the quantized (positive-frequency) Dirac field may be for-
mulated as follows: let (K, C, I, v) denote the free fermion field over the Hil-
bert space just defined, C denoting the complex-Clifford map

CC(Y* + C*CH) = (x,y),  CWC(y) + C(yC(x) = 0

for x,y € H,,. Let W(t, 1) = F(U®)Cw)T(U(1))-! where t € P denotes tem-
poral evolution (translation) by time 1. The symbolic function ys(¢, x) is the
kernel of W (t, u), which has the symbolic form

W, u) = [ (W, x), u(x))) d>x.

The Dirac field just established satisfies all but one of the basic physical
desiderata: (1) the Dirac equation, as adapted to operator-valued (generalized)
functions; (2) the Clifford (or canonical anticommutation) relations; (3) posi-
tivity of the energy, as a sclfadjoint operator generating the temporal evolution
of the field; and (4) the existence of an essentially unique vacuum vector, i.e.,
the lowest eigenvector for the cnergy, which moreover is a cyclic vector for
the field operators. It can be shown that these features alone uniquely deter-
mine the field, within unitary equivalence (cf. below), and that, moreover, the
field is Lorentz-invariant, in cssentially the same sensc as the scalar field
treated above. The one feature it lacks is invariance under **particle-antipar-
ticle conjugation.’’ To achicve this it is necessary to treat the full Dirac equa-
tion, including its negative frequency component. The treatment of this com-
ponent involves an additional feature that is now simple and transparent, but
was historically obscure and problematic; and to some extent, even recent
physical literature reflects this obscurity.

Dirac’s treatment was in part interpretive rather than analytical: as noted,
he argued that the ncgative-frequency vectors in the full solution manifold for
this equation represented ‘*holes in a sea of negative clectrons.’” A treatment
that was operational rather than intuitive took some decades to evolve. A rep-
resentative view, as cxpressed by G. Killén (1964), was that **a completely
consistent formulation of [the interpretation of] the negative-frequency solu-
tions of the Dirac equation can not be obtained without usc of second quanti-
zation.”” It is universally accepted that with suitably modified quantization of
the full Dirac equation, the encrgy operator is nonncgative. In the physical
literature the modification consists in the replacement of the free-field repre-
sentation of the Clifford relations by one that is inequivalent on the negative
frequency subspacc, together with consequent alterations of the basic formal-
ism. This is arguably somewhat opportunistic, but the result agrees, as regards
its practical implications, with what is obtained from modification of the initial
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complex structure on the basis of invariance and stability constraints, which is
used here. This latter general approach is in keeping with other indications
that it is not so much an equation that requires quantization, as a group repre-
sentation in a real orthogonal or symplectic space, which arises as an invariant
subspace of the section spacc of a homogeneous vector bundle over space-
time, or physically speaking, a specified class of fields. The cquation itself
scrves, from this point of vicw, as an alternative description of the action of
time translation in the group rcprescntation.

Thus the single-particle frequency (i.e., dual variable to the time) must be
distinguished from the energy of the particle as a state of the quantized ficld.
This may be interpreted mathcmatically as a change in thc complex structure
of the single-particle Hilbert space H, according to which the original complex
structure i must be replaced by the modified complex structure i' = isgn(k,),
where k; is the dual variable to the time coordinate x, (i.e., the frequency).
Here sgn(k,) is defined by the operational calculus for selfadjoint operators (or
by Fourier transformation). The operator i’ is equally Lorentz-invariant, of
square equal to — |, and orthogonal relative to the symmetric form Re({-,-)):
but temporal evolution on the negative frequency subspace has a positive gen-
crator, relative to the Hilbert spacc H' obtained by using i’ in placc of i as
complex structure, and retaining the cited symmetric form.

The modified Hilbert space H' is correspondingly decomposable as the di-
rect sum H+@H-, where H* and H- are the positive and negative frequency
components in the original space H. This decomposition is Lorentz-invariant,
and the representations of the Poincaré group P on H* and H- arc abstractly
identical, i.e., unitarily equivalent. Relative to the complex structure i’, the
two subspaces cannot be distinguished Poincaré-wise (e.g., by conventional
**quantum numbers,’’ which arc represented by the actions of elements of the
enveloping algebra of the Lic algebra of P). They may be distinguished only
by a two-valued *‘label,’" which is physically interpreted as charge, and given
the values = 1 in suitable units. The quantization of H' then results in a phys-
ically appropriate quantization for the full Dirac equation, including positivity
of the energy and the other physical desiderata earlier cited, as well as a simple
form of charge conjugation.

The unicity theorem of Chapter 3 shows that the result of the foregoing
procedure is the unique positive-cnergy quantization of the full Dirac equa-
tion. The complex structure i’ is unique, and any positive-cnergy quantization
must be unitarily equivalent to that given above, by virtuc of this theorem.
However, since modification of an initial complex structure in accordance
with physical constraints of invariance and stability is an idca that is not yet
commonly encountered in the physics literature, the full *‘fermion-antifer-
mion’* quantized field is usually obtained in another manner. The device used
for the quantization of the ncgative-frequency component of H has an appear-
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ance of opportunism, but is effectively (i.e., as regards **practical’’ implica-
tions) equivalent to that obtained by modification of the complex structure in
H. This is implied by the unicity theorem as a consequence of its positive
encrgy and other features characterizing free fermion ficlds.

More specifically, the basic device used commonly in the physical literature
consists in the interchange of creation and annihilation operators for the anti-
particle, and a corresponding redefinition of the ficld energy, particle num-
bers, etc., which in this literature are defined in terms of the creation and
annihilation operators. Consider, to begin with, the problem of the positive-
cnergy fermionic quantization of a classical field whose single-particle tem-
poral evolution generator is negative. It is clear that on the free fermion ficld
as defined carlier, the total energy of the free fermion field will be negative.
To overcome this, one may interchange the creation and annihilation opera-
tors, which can be regarded as a mathematical implementation of Dirac's es-
sential concept. This in itself would not change the representation I” of the
unitary group on the single-particle space, as formulated here; but in much of
the literature, such operators as the energy, the number operators, and other
gencrators of the Poincaré group are given explicit (if heuristic) expressions
in terms of the creation and annihilation opertors, rather than defined by group
invariance considerations, as here. 1n consequence, the cffective I' (more pre-
cisely, the restriction of I to P and to the ‘‘phasc transformations’* whose
generators define the particle number operators, which are the aspects of I’
required for practical purposes) is altered in such a way that the field energy
and particle numbers become positive operators.

This device was earlier viewed with some suspicion, in part because of the
apparent lack of unitary implementability of the canonical transformation in-
volved in the interchange of creation and annihilation operators. That this ap-
parent lack is real may be confirmed by application of Theorem 4.6. Relative
to an appropriate basis e,, ¢,, ... for the single-particle space. the interchange
of creation and annihilation operators is the implementation on the Clifford
algebra of the orthogonal, nonunitary, transformation: e, — e;, ie, = —ie,. It
is immediate that this is unitarily implementable only in the case of a finite-
dimensional Hilbert space. The literature includes many attempts to obtain
effective limits of the implementing unitary transformations in the n-dimen-
sional case, as n becomes infinite, which limits, of course, do not exist. A
simple, rigorous formulation of the stable quantization of a ncgative-fre-
quency fermion ficld is as follows.

We first define the anti-free-field over a complex Hilbert space H with a
given conjugation %. Let (K, C.T', v) denote the free ficld over H. Let K' =
K, C'(x) = C(x)*. I'"(U) = T(wUx). and v = v. The anti-free-field over H
is the system (K" C, "} v'). Now let U be a continuous, unitary representation
of the Poincaré group P on the complex Hilbert space H, and suppose the
generator of temporal evolution is negative. Then the anti-free-field over H
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with respect to the unique conjugation %, such that xUx has a positive gener-
ator for temporal cvolution, is such that the sclfadjoint generator of I''(V(.)).
where V(1) is the onc-paramcter group representing temporal evolution, is non-
negative.

It is clear that this construction yields onc that is identical (within unitary
cquivalence) to that obtained by changing the complex structure i on the neg-
ative-cnergy Hilbert space to the complex structure —i. The main result, that
this procedure is intrinsically a natural and essential onc, however it may be
formulated analytically, may be clarified by the following considerations: the
canonical representation I" of the unitary group U(H) of a Hilbert space H is
naturally extendable to a representation I' of the group U«(H) (*‘e"’ for *‘ex-
tension’") of all real-lincar operators on H that are cither unitary or antiunitary
(i.c., anticommute with i). Thus, in the particle representation, I'*(V) for any
V € U(H) may be defined as the direct sum of all symmetrized or skew-sym-
metrized powers of V (depending on whether the quantization is bosonic or
fermionic). Alternatively, it may be characterized by the propertics that I'«(V)
is the unique unitary or antiunitary operator T on K such that TC(z)T-! =
C(Vz) and Tv = v, taking for specificity the fermionic case.

Consider now the fermionic quantization of an arbitrary onc-parameter uni-
tary group of transformations on a Hilbert space. The application to wave
equations naturally involves the formulation of the solution manifold as a Hil-
bert space on which the temporal evolution defined by the equation is repre-
sented unitarily.

ScHoLtuM 6.1. Let V1), t € R, be a one-parameter continuous unitary
group on a Hilbert space H. Then there exists a system Z = (K, &, T, v) such
that K is a complex Hilber: space; & is a real linear map from H 10 llounded
hermitian operators on K such that (d(x), d(y)]. = Re(x,y); ['(*) ix a one-
parameter unitary group on K such that T()d(2)[' ()~ = d(V()2) (re R, =
€ H), and whose selfadjoint generator is nonnegative; and v is a unit vector
in K that is invariant under all T'(t) and cycliv for the ¢(x), x € H. Z is unique
within unitary equivalence if and only if V() has no nontrivial fixed vectur.

Concretely,  may be represented as follows. Let A denote the selfadjoint
generator of V(°), and let H = H.@H _, where A is positive on H, and
nonpositive on H_, cach of H, and H_ being invariant under V(°). Let the
Jrev fermion fields over the H. and H_ be denvted as (K..C..T..v.).
ThenK = K. QK_; C(z, +:_) = Cz.)® + QVC*(xz_). V() =
TV ())QT _(V_()%), where V(1) = V., (0)BV_(1), relative 1o thr decom-
positionH = H_.®H _.andv = v. @ v_.

Proor. This essentially recapitulates elements of the prior discussion. and
details are left as an cxercise.
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Problems

1. Show that the representation U of P on the Hilbert space H,, described
above is in fact strongly continuous, unitary, and splits into two irreducible
components that are interchanged by space reversal. (Hint: usc the Fourier
transform.)

2. Develop analogues to Corollaries 6.2.1 and 6.3.1 for the Dirac equation.

3. Let % be a conjugation on the given Hilbert space H, and suppose that H
has the form H, ®H _, where % carries H, onto H_. Formulate an appropriate
analog to the free fermion field for the free fermion-antifermion ficld over (H,
%). and show its essential unicity by adaption of the positive-energy constraint
as applicd in the proof of Theorem 3.6.

4. Let S denote all Cg-spinor-valued functions on space R*, and let W(1, f)
denote a function on R®S to bounded linear operators on a Hilbert space K
that satisfics the following conditions:

i) (@/0) W, f) = ¥, (D + im)*f) (D = Dirac operator);
i) (W@, ). W g)*l. = (f.8)., (Wt ¥(gl. =0
iii) there exists a nonnegative selfadjoint operator / in K such that ¥(s. 1)
= "0, f)e-"¥ (for arbitrary ¢ and f); and
iv) there exists a vector v in K that is cyclic for the W(0, f) and such that if
Hy = 0, then y = cv for some scalar ¢.

Show that any other such function W’ (¢, f) is unitarily equivalent to W(s, f).

5. Develop the C*-algebraic quantization of the Dirac cquation with the
inclusion of an arbitrary bounded measurable potential V, which is added to
the mass m. Show that if V is bounded by m, then a positive-cnergy Hilbert
space quantization cxists and is unique within unitary equivalence.

6. Prove the following variant of Scholium 6.1: if V is replaced by a con-
tinuous unitary represcntation of a Lic group G, which includes a given one-
paramcter group designated as temporal evolution, and if the respective posi-
tive- and negative-frequency components of the spectral decomposition of the
temporal evolution group arc invariant under V(G), then the conclusion of
Scholium 6.1 remains valid for the full group G, with the extension of T' to a
representation of all of G, and the corresponding adaptation of the concrete
representation given for X. (In particular, the positive-encrgy quantization of
the Dirac cquation is invariant under P.)

6.6. Quantization of global spaces of wave functions

A uscful way to regard the space of solutions of a classical wave cquation,
e.g., the Klein-Gordon equation []f + m?f = 0, is as an infinitcsimal cigen-
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space in a spectral decomposition of the differcntial operator in question—
here, O. Thus the space L = L,(M,, R) of all real square-intergrable functions
on M, is acted on naturally by the Poincaré group P by f(X)— f(g~'(X)). g €
P, and by the P-invariant operator [J. But suitable global cigenspaces may
also be quantized, and not merely the infinitesimal ones, which can be re-
garded as arising in the ‘“direct integral’* decomposition of L under the actions
cither of P or of the wave operator. The infinitesimal case treated above can
be regarded as a limiting case—as a mass packet becomes of vanishing width,
in physical terms. There are, however, some limitations; m? must be nonneg-
ative, though the spectrum of [J extends into positive as well as negative val-
ues. The positive spectrum corresponds to negative values for m?, or *‘imagi-
nary mass,’’ representing purcly hypothetical fields described as tachyonic in
the physical literature. Tachyonic subspaces require scparatc treatment, in part
for the reason indicated in the following Scholium. (Concerning tachyonic
cquations, see also Problem 2 of this section).

ScHoOLIUM 6.2. Let M denote the closed linear subspace of L,(M,, R) con-
sisting of the eigenspace of O in spectral range from N to \'. If A and \' are
both negative, there exists a continuous P-invariant antisymmetric form on
M. the direct integral of the forms earlier indicated for the Klein-Gordon
equation. If A and \' are both positive, there exists no nonzero continuous
antisymmetric form on M that is P-invariant.

Proor. Taking Fourier transforms, the action of translations in M, on L
become multiplication operators by complex exponentials, on the subspace of
all hermitian elements F of L,(M#%, C); that is, those F with F(K) = F(—K),
K € Mj}. These multiplication operators gencrate all multiplications by
bounded measurable hermitian functions on subspaces of the indicated types.,
and any operator commuting with translations must itself be represented by a
multiplication by a bounded hermitian function F, by the maximal abelian
character of the totality of such. A continuous bilincar form will be represent-
able by an operator in conjunction with the underlying inner product, and the
form will be invariant if and only if the operator commutes with the action of
P, and antisymmetric if the corresponding function F satisfies F(K) =
~F(—K). When A and A’ arc both negative, thc operation of multiplication
by sgn k, (where ky(K) is the first component of K, i.c., the dual variable to
Xo) is Lorentz-invariant and provides the operator for the form whose existence
is claimed in the theorem. When they are both positive, the question is that of
the cxistence of a bounded hermitian function defined on the region between
hyperboloids corresponding to A and A’ in M, which is Lorentz-invariant and
antisymmetric under reflection in the origin. However, in this region, K and
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—K are on the same Lorentz orbit, so there exists no nonzero antisymmetric
Lorentz-invariant function in the region. O

The examples of single-particle space treated in this chapter have all been
spaces of functions, although vector-valued on occasion. This is a noninvar-
jant and special feature that derives from the simplicity of the representations
involved, and of the space-time M,. More invariantly and generally, single-
particle spaces are formulated as spaces of sections of a homogeneous vector
bundle over the space-time under consideration, e.g., differential forms, spi-
nor fields, etc.

It is beyond the scope of the present work to enter into the treatment of these
matters, but we note especially that **the quantized field at a point’" is not an
invariant notion. More properly, the quantized field should be defined as an
essentially linear map from the dual §* of the section space S of the section
space S of the vector bundle in question to the operators on the quantized field
vector space K. Formally, this map Z is of the form Z(t) = (¢, §), where {
is arbitrary in $* and ¢ is the quantized field. When the bundle is **paralleliz-
able,’* S* is representable as a space of smooth functions from the space-time
manifold to a finite dimensional vector space, and ¢ can be represented as a
generalized function. But this representation depends in an essential way on
the parallelization, quite apart from the unitary equivalence of the structures
treated earlier. In addition there are important cases, that of Maxwell’s equa-
tions, for example, in which a quotient space of solutions, rather than a sub-
space, is involved. The selection of a representative in the residue class (or
choice of gauge) then becomes an issue in the definition of the field at a point,
which is involved in the formulation of a local interaction (which, however, is
ultimately independent of the choice of gauge). Despite these significant com-
plications, the underlying algebraic structures are primarily those of the free
or general quantized fields, corrclated with the given wave equation by vari-
ants of the procedures described in this chapter.

Problems

I. a) LetL denote C5(M,). Suppose that T is a P-invariant linear map from
L into the manifold of normalizable solutions of the Klein-Gordon equation,
O¢ + m*e = 0in M,. Let (K, W, T, v) denote the free boson field over this
manifold, structured as a complex Hilbert space H as above, and set Z(f) =
&(Tf). Show that Z is a strongly linear and P-invariant map from L into self-
adjoint operators on K. That is, Z(af + h) is the closure of a =(f) + Z(h),
for arbitrary real a and f, h in L; and for any g € P, Z(f,) = T(U(g)) 2(f)
I(U(g))~', where U denotes the action of P on H, and f,(X) = f(g~'(X).
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b) Let D denote the distribution solution of the equation O0D + m*D = 0,
having the Cauchy data at time zero, D(0, x) = 0 and 3,D(0, x) = &(x). Show
that the map T: f— [D(X — Y)f(Y)d*Y satisfies the conditions of a). (The
distribution D has the properties: D(—x) = —D(x), and D is invariant under
the action of the Lorentz group.)

¢) Conclude that the corresponding = is continuous from L to the selfad-
joint operators on K, in the strong operator topology (for unbounded opera-
tors) on the latter and the standard topology in L. Show that this definition of
= agrees with that given in Corollary 6.3.1 (with V = 0).

d) Show that there exists a map ¢ from M, to sesquilinear forms on D.(H).
where H is the energy operator in K, such that for arbitrary u, u’ € D.(H) and
feL

Z(Nu,u') = feX)(u, u')f(X) dX.

Establish a topology in the space of such forms in which the map ¢ is contin-
uous and unique, and conclude its P-invariance

e(g~'(X) = FWUENeXIWUEN-',

where unitary transformation of forms is defined to extend that on operators.
Show also that (p(X)u, u') satisfies the classical Klein-Gordon equation, as a
function of X.

2. Let L denote the class of all C> real solutions in M, of the tachyonic
equation (O — m?)¢ = 0, m > 0, having compact spatial support at cach time
in the usual Cg topology (which is P-invariant). For any two vectors ¢ and
inL, let A(¢, ¥) = J(Wop — @dP)d’x (integration being over space at a fixed
time). Show that (L, A) is a symplectic vector space that is invariant under the
action U of the Poincaré group: U(g) carries ¢(X) into ¢(g ~'(X)), but that the
action of temporal evolution in (L, A) is not unitarizable, so that there is no
quantization (of the type applicable to real mass, inclusive of a vacuum, etc.).
(Hint: use Fourier transformation.)

3. Develop the fermionic quantization of the Klein-Gordon equation in
analogy with its bosonic quantization, and show that Einstein causality is then
violated.

4. Extend Theorem 6.2 to the case when A and B are not nccessarily
bounded by a positive multiple of / (but remain positive). (Hint: work in the
completion of D(C) when C is a positive selfadjoint operator that is not
bounded away from 0, with respect to the inner product (x, ) = (Cx, Cy).)
Apply the result to the quantization of the wave equation, and extend Corol-
lary 6.3.1 to this casc.

5. The Maxwell equations apply to differential 1-forms, or *‘potentials,”
A on M,,. They assert that OF = 0, where F is the **field"* dA. Although only
the latter is construed as dircctly observable, it is important to work with 1-
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forms rather than 2-forms since the fundamental interaction with charged par-
ticles is local only in terms of 1-forms; but the underlying single-particle Hil-
bert space is then a quotient space. Show that the Poincaré group acts unitarily
in this space, when formulated as follows in terms of Fourier transforms A(K)
of the potentials:

Let C denote the class of all complex-valued measurable functions A de-
fined on the cone C = {K € M§: KK = 0} that satisfy the hermiticity condition
A(-K) = A(K) (corresponding to A(X) real) and the normalization K°A(K)
= () (i.c., A is in the *‘Lorentz gauge’’), almost everywhere on C. Let L,
denote the set of all A e C for which (4, A) = [, (-A(K)'Z(K) dK is finite, where
dK denotes the (unique) Lorentz-invariant element of volume on C, i.c.,
|ko| = telk\dkydk,. Show that (A, A) is nonnegative for arbitrary A satisfying the
normalization condition. Let L denote the quotient of L, by the subspace of A
for which (A, A) = 0, and for any two residuc classes [A] and [A’], definc
S(IA),IA']) as (A,A’). Let J denote the complex structure on L that is the
quoticnt of the structure J' that carries each A into its product with i sgn(k,),
and let H then be the complex Hilbert space obtained by completion of the
inner product space for which the real part of the inner product is given by S,
the complex structure by J, and the imaginary part of the inner product be-
tween x and y by —S(Jx, y).

6. a) Treat the analog of Problem 1 for the wave equationon R X §', and
develop explicit expansions for the quantized field into corresponding com-
plex exponentials e#*=", with cocfficients that arc operators of designated
commutation relations. (Careful about P-invariance!)

b) Do the same for the fermionic quantization of the Dirac equation on
R X S', yoob + Yi9pb = 0, where ¥ = 1 = —yjand ysy, + Yivo = 0.

7. Let H denote the Hilbert space of normalizable solutions to the Klein-
Gordon equation in Minkowski space M,, and let (K, W, T, v) denote the frec
boson field over H. Let V denote an arbitrary neighborhood of the origin in
space (R"), and let H, denote the (real-linear) subspace of H consisting of
vectors whose Cauchy data at time ¢ are supported in V. Show that v is a cyclic
vector for the set of operators of the form W(z) z € H,. (This result may be
interpreted as exhibiting the intrinsically global character of the vacuum, in
contrast to the local character of the commutation relations. It is a variant of
the Rech-Schlieder theorem [1961], which was developed in the context of
axiomatic quantum field theory. [Cf. Segal and Goodman, 1965.].)

8. In the context of Problem 7, show that even if V and V' have disjoint
support, the field operators W(€30) and W(f'B0), where suppf C V and supp
Sf' C V', are not necessarily stochastically independent with respect to vacuum
expectation values.

9. With the notation of Problem 1, show that if a particle is defined to be
localized in the region R at time ¢ if its Cauchy data f@g are such that Cf and
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C-'g arc supported in V, wherc C = (m* — A)“, then regions of space
having disjoint closurcs have stochastically independent fields localized in
them.

10. In the context of Problem 9, show that there are no selfadjoint operators
X, that are local in terms of the Cauchy data at a given time that transform as
do thc Minkowski coordinates x; under culidean transforms (j = 1,2, 3).
Show, however, that the nonlocal operators C - 'M,C, where M, denotcs mul-
tiplication by x,, have this property. (The latter operators are essentially those
considcred by Newton and Wigner [1949]. There is an extensive litcrature on
position coordinates for relativistic wave cquations, but locality, sclfadjoint-
ness, and stochastic independence in disjoint regions cannot be simultaneously
attained.)
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Renormalized Products of
Quantum Fields

7.1. The algebra of additive renormalization

Both multiplicative and additive recnormalizations arc used in practical
quantum field theory, but only the latter is clearly involved at a foundational
level. Additive renormalization in its practical form has somctimes been called
**Subtraction Physics.'" This refers to the isolation of apparently meaningless
or ‘‘infinite’’ terms in an additive symbolic expression, followed by their re-
moval as rationalized by such considerations as locality and invariance. In this
chapter we formulate the basic theory necessary to give mathematical viability
to the program of quantization of nonlinear wave equations and in particular
avoid infinities.

More specifically, we are concerned here to give appropriate mathematical
mcaning to the nonlincar putatively local functions of quantum fields that oc-
cur in symbolic quantized nonlinear wave equations. For example, the sym-
bolic expression ¢(X)”, where ¢ is a given quantized ficld, and X is a given
point of space-time, is such a putative function. However, as a distribution in
space-time, even after integration against a function of spacc or space-time,
«@(X)” has no a priori formulation. Indeed, there appears to be no useful defi-
nition of products cven of classical distributions of a level of singularity com-
parable to that of the simplest quantized ficlds. Underlying this is the lack of
any direct expression for the integrals [¢(X)f(X)dX, where [ is a smooth test
function, in terms of the integrals [ (X)f(X)dX that definc the distribution ¢.

It is remarkable that nonetheless, precisely because of the quantization,
there is an effective theory of powers and other products of quantized fields.
This involves the usc of a certain *‘renormalization map."* Intuitively, this
map subtracts away infinite divergences in a local and othcrwise physically
rcasonable way. It will promote logical clarity to develop the initial aspects of
the subject in a purcly algebraic setting.
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DEFINITION. The infinitesimal Wey! algebra E (or E(L, A) ) over a real sym-
plectic vector space (L, A) is the associative algebra over C generated by L
together with a unit e, with the relations

22" —2'z= —iA@z,2")e

for arbitrary z, z' in L. The subalgebra generated by e and the elements z of a
subspace N of L is denoted as E(N). The degree deg(u) of an element u of E
is the least integer r such that u is in the linear span of z,z,:+2,, the z; being
arbitrary in L; if u = ae with a e C we define deg(u) = 0 if a # 0 and deg(u)
= —wifa = 0.

ExAMPLE 7.1. Let L denote the space of pairs of real numbers (a, b), with
Al(a, b), (@, b")) = a’b — ab’, and let F denote the linear map from L to the
algebra A of all linear differential operators on R:

(a, b) = ax — ib(d/dx).

This map is an isomorphism of L into A with the usual definition of the bracket
in A. Accordingly, F can be extended to a homomorphism, which we also
denote as F, from E into A. It is not difficult to verify that F is then an iso-
morphism, and that F(E) = A. Thus the infinitesimal Weyl algebra over a
two-dimensional real symplectic vector space is simply representable as the
algebra of all ordinary linear differential operators with polynomial coeffi-
cients.

More generally, if L is a 2a-dimensional real symplectic vector space, E is
isomorphic to the algebra of all partial differential linear operators on R” with
polynomial coefficients. This follows from the two-dimensional case by tak-
ing A to be in canonical form.

Still more generally, suppose L has the form L = M®M*, where M is a
given real locally convex topological vector space and M* is the space of all
continuous linear functionals on M. Let A denote the form

Ax®f. xBf') = f(x') - f'(x).

Then the algebra E over the linear symplectic space (L, A) may conveniently
be represented as follows: let Q denote the associative algebra over C freely
generated by M* together with the function identically | on M: an element of
Q will be called a polvnomial on M. For x in M, let p(x) denote the derivation
on Q which is uniquely determined by the requirement that it carry an arbitrary
element f of M* into if(x). For fin M*, let o(f) denote the operation on Q of
multiplication by f. The o(f) are then mutually commutative, and [p(x), o(f)]
= if(x)e, where e denotes the identity operator on Q. From this it follows that
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© may be extended by linearity to a mapping defined on all of L, likewise
dcnoted @, and satisfying the relations

le(2), e(z")] = —iA(z. 2')e

for arbitrary z, z' in L. By general algebra, p then extends uniquely to a rep-
resentation @ of the enveloping algebra E as linear transformations of Q.

When L is finitc-dimensional, (L, A) is always of the foregoing form,
within isomorphism, as earlier noted, and E is isomorphic to the algebra of all
linear diffcrential operators having polynomial coefficicnts, acting on the pol-
ynomials Q on M.

DEFINITION. An isotropic subspace N of L is one such that A(z, z') = 0 for
all z, z’' € N. N is said to be Lagrangian if it is maximal isotropic.

ScHoLtuM 7.1. The center of the infinitesimal Weyl algebra E of a given
symplectic space (L, A) consists only of scalar multiplies of the identity. Therc
are no nontrivial two-sided ideals in E. If L is finite-dimensional and N is
Lagrangian in L, then E(N) is maximal abelian in E.

ProoF. Recall first that every finite-dimensional subspace of L is contained
in a finitc-dimensional nondegenerate subspace of L (i.c., onc such that the
restriction of A to it is nondegenerate). An arbitrary element « of E is cvidently
in E(M) for some finite-dimensional subspace M of L, and hence in E(M) for
some nondegenerate finite-dimensional subspace M of L. If u is central in E,
it is central in E(M), and hence it suffices to show that E(M) has trivial center.
This follows without difficulty from the representation given in Example 7.1.

If u is a nonzero element of a proper ideal in E, u is contained in a proper
ideal of E(M) for some finite-dimensional nondegenerate subspace M; hence,
the simplicity of E follows from the simplicity of E(M). This follows in tum
from the observation that by the formation of successive commutators of any
given nonzero linear differential operator with polynomial cocfficients on M
with multiplication by lincar functionals, or differentiations, a nonzero cle-
ment of Ce is cventually attained.

It is immediatc that if N is an isotropic subspace of L, then E(N) is abelian.
Now, suppose that N is Lagrangian in L, and that L is finite-dimensional. If
N’ is any complement to N in L, it follows from the representation L. = NGN’
that, up to isomorphism, (L, A) is the symplectic vector space built from a
finitc-dimensional space M, and N = M*. The maximal abelian character of
E(N) is then cquivalent to the maximal abelian character of the algebra of all
(multiplications by) polynomials, in the algebra of all lincar differcntial oper-
ators with polynomial coefficients on a finite-dimensional vector space. This
is casily seen.
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DeFINITION. A linear mapping T from a symplectic vector space L to a
vector space L' is called tame if there exists a finite-dimensional nondegener-
ate subspace M of L such that Tz = TPy for all z € L, where Py is the linear
mapping from L into M defined by the equation A(Pyz, 2') = A(z, 2') for all
2' € M. In this case T is said to be based on M.

DEFINITION. A monomial in E is an clement of the form z,z,++-z, with z,,
...»2, in L. Let E be a given linear functional on E. A renormalization map
on E, relative to E, is a function N from the monomials in E to E that is not
identically zero and has the following propertics, where the * means that the
vector is deleted:

NGz, +2,), 2'] = SEI (2, 2') N(2y23++5++2,) .1
E(N(242y°++2,)) = 0 (7.2)

for arbitrary z,,...,2, and z' in L. Heuristically, these conditions state that
N(z,2,°+2,) satisfies commutation relations analogous to those of the ordinary
product,

(21220020, 2') = 121 [z, 2') 242304730002,
but is ‘‘renormalized’’ so as to have zcro expectation value relative to E. We
shall prove that a unique renormalization map exists relative to any linear
functional E with E(e) # 0, and that the renormalized product has many of the
properties of the usual product, although with some notable differences. For
example, N(z,+++z,) is linear in cach argument and lies in the subalgebra of E
generated by z,,..., 2, and the identity.

THEOREM 7.1. If E is a given linear functional on the infinitesimal Weyl
algebra E over (L, A) such that E(e) # 0, then there exists a unique renor-
malization map on E, relative 10 E.

The following result can be regarded as a quantized version of the Poincaré
lemma concerning the exactness of a differential form.

LeEmMA 7.1.1. Let K be tame linear map from L into E such that (K(z), 2')
= [K(2'), z) for all z, 2’ € L. Then there exists an element u € E such that K(z)
= |u, z] forall z€ L.

Proor. Observe first that it suffices to treat the case in which L is finite-
dimensional. For if X is based on the finite-dimensional nondegenerate sub-
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spacc M, then K|M satisfies the indicated conditions relative to E(M); hence,
by the hypothesized resolution of the finite-dimensional case, there exists an
clement 4 € E(M) such that K(z) = [u, z] for all z € M. If now z is arbitrary in
L, K(z) = K(Py2) = [u, Pyz] = u, 2}, since [z, 2] = [z}, Pyz) forall z' in M.,

Taking L as finite-dimensional, it is no cssential loss of gencrality to assume
that (L, A) is the symplectic vector space built from M. Taking a basis r, ...,
r, for M and a dual basis ¢,....,q, for M*, it suffices to show that if A,,...,
A, and B,,...,B, are given in E, where n is the dimension of M, then there
cxists an clement u of E such that

lu.r) =B, [ugql=A40G=1..n),

provided the following relations equivalent to the condition that [K(2), 2'] =
(K(z'), 2] for all z and z' are satisfied:

[q/vAk] = [qs A,]; ["p B,) = [rAvB/]; lq, B,) = [rhA1]v

for all j and k. This element « will be obtained by successive reduction to the
cases in which i) A, = O and, ii)) A, = A, = 0, ctc.

It is casily scen that there exist unique clements ay, a,.... (only finitely
many nonzero) of the subalgebra of E generated by g,....,q, and r,....,r,,
such that

Now let
u= 3 iar{ €+ 1);
-0

then [u,, q,] = A,. Setting
K\(2) = K(2) — lu, 2],

K, satisfics the condition hypothesized for &, and the question of the existence
of u is reduced to the case in which A, = 0.
Taking this to be the case, apply the same procedure to A,. Ex-

pressing A, in the form A, = 2 brs, define
=0

Uy = 2 ibr$* €+ 1),
=0
and set Kx(z) = K,(2) - |u,, z|. K, again satisfics the same condition as X,
and has the property that K,(q;) = 0; in addition, K.(q,) = 0. For, on noling
that [r,. ¢,] = 0, it follows that
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[z, qu] = 2 ilbe gu] 5+ 1).

On the other hand, since, [q,, A2] = [9., A,] and A, is now zcro, it follows
that [q,, A;] = 0, which means that

2. lbe g11 r4=0.
=0

The uniqueness of the expression of any element of E as a polynomial in one
of the vectors q,,...q,, I, ...,T,, With coefficients on the lcft in the subalgebra
generated by the remaining vectors, shows that [b,. g,] = 0 for each €. This
implies that [u,, g,] = 0, which in tum implies that K,(¢,) = 0.

The question of the existence of « has now been reduced to the casc in which
A, = A, = 0. Itis evident that by continuing in the same fashion. the question
may be reduced to the case in which all A, = 0 (j = 1,....n). In this case,
[Bi. ) = [A), ] = 0, showing that each B, commutes with all the g,. Recall
now that, by the last part of the preceding scholium, the gq,.....q, gencrate
a maximal abelian subalgebra of E. Thus, each B, is a polynomial in the
Gis-e 2 Gn-

The problem is now equivalent to finding a polynomial « in g,.....q, such
that

duldq, = iB,,

the B, being given polynomials satisfying the conditions
0B,/dq, = aB,/aq,.

The usual method of solving this problem by a linc integral shows that a so-
lution exists and is a polynomial. )]

PrOOF OF THEOREM. Let M, denote the collection of all monomials in E of
degree d such that 1 < d < n. As the basis of an induction argument, assume
that there exists a unique nonzero map N, from M,, into E such that cquations
7.1 and 7.2 hold for all elements of M,. When n = 1, it is casily verified that
this is the case, N, having the form

N,(z) = z — E(2)/E(e).

To show that N, . , exists given N, (n = 1), letz,.....z,., € L be given, set
w = z,--.z,,, and let z be arbitrary in L. Set

n+1

K@) = D [z, 2l Ny(zy =3 o200y )i

=4
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then K is a tame lincar map from L into E. If 2’ is also arbitrary in L, then by
the induction hypothesis

n+l
K(2), 2'] = P2 [z, 2] (242 2] N(2)* 223y e 2020200 ).

The interchange of z and z' on the right has the same effect termwise as the
interchange of the indices j and k, and so leaves invariant the right side as a
whole; i.e., [K(2), 2'] = [K(z'), z]. By Lemma 7.1.1, there exists an element
u € E such that [u, z] = K(z2) for all z € L. By Scholium 7.1, u is determined
within an additive constant (i.e., a scalar multiple of the identity). which may
be fixed by the requirement that E(u) = 0. Defining N,,(w) = u and
N,.\(w') = N, (w') for all w’ € M, it is evident that equations 7.1 and 7.2 are
satisfied.

To complete the induction argument it suffices to show that N, , is nonzero
and unique. Since by construction N, , ,(M, = N,, N, is nonzero. To prove
uniqueness, let F; M, — E be the difference of two maps satisfying (7.1) and
(7.2). By equation 7.1 and the induction hypothesis, [F(w), z'] = 0 for all w
€ M,, z' e L. This implies by Scholium 7.1 that there exists 8 complex number
a such that F(w) = ae. Equation 7.2 then implies that a = 0, hence F = 0.

Defining N(w) for any monomial w € E as the common value of N,(w) for
all n = deg w, N is a renormalization map. The uniqueness argument given in
the previous paragraph also shows that N is the unique renormalization map.

Q

COROLLARY 7.1.1. N(u) — u has degree less than that of u, for all mono-
mials u in E.

Proor. This is true when deg u = 1. If the conclusion of the corollary is
assumed for u of degrec < n, then for any u of degrec n + 1, say u = 2,2,
*++2,,1, and arbitrary z'e L,

n+1

By the induction assumption, N(z,+-+%*+z,,,) — 2z,°+*2,>-*2,,, has degree at
most n — 1. Setting w = N(u) — u, this means that [w, ='] also has degrec at
most n — 1. Now w is determined within an additive constant by K, where
K(z') = [w, 2'], and the proof of Lemma 7.1.1 shows that if deg(K(z)) = n
— 1 for all z € L, then deg w = n. The corollary now follows by induction.
O

CoROLLARY 7.1.2. N(z,-+-2,) is a symmetric function of z,,... .z, (for any
fixedn = 1,2,...).
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Proor. This is evident for n = 1. Proceeding by an induction argument and
assuming the conclusion valid for lesser values of n, it is sufficient to show
that [N(z,°+-2,), 2'] is a symmetric function of z,,...,z, since these commuta-
tors. together with the symmetrical requirement of vanishing expectation
value, uniquely determine N(z,++-z,). The commutator in question equals

E [z, 2'] N(2)23++5,++2,)

=1

which under the permutation 7 goes over into
El [Zaggyr 2'1 NZa1Zmi2)** 2ty ** Zim) -
Fe

Employing the induction hypothesis, N(zu1Zmz)®**Zni)"* *Zm) = N(2,220°
Zaer*"*2a), 5O the sum in question is equal to

2 [znmv z'] N(zl'-'z"':‘m/)"'zn)
<

which, on making the substitution 7~ () for the summation variable, yields
the requisite result. O

COROLLARY 7.1.3. N(z,+--2,) is linear in each z, separately.

ProoF. This is clear when n = 1. Again using an induction argument, and
assuming the conclusion for all lesser n, it suffices to show that
IN(zy+++2,), 2] = K(2)
is a linear function of z,, for all z,,....z, and z in L. This follows from the
observation that the mapping between elements w of E such that E(w) = 0

and functions K: L — E satisfying the condition that [K(2), '] = [K(z'), 2
forall z, 2’ € L is a lincar isomorphism. Now

K(z) = 2| [z, 2'] N(z2\232++2j+-2,),
=

which is linear as a function of z, by the induction hypothesis. ]

COROLLARY 7.1.4. Suppose that M is a subspace of L that is either nonde-
generate or isotropic. Given arbitrary z,,... .z, € M, N(z,++-2,) lies in E(M).

This is in fact true for an arbitrary subspace M of L, but we will only need
these special cases.
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PROOF. It is no essential loss of generality to assume that M is finite-dimen-
sional; the corollary obviously holds in the case n = 1. Proceeding by induc-
tion, and so assuming its validity for all lesser n, it follows from the definition
of the renormalization map that [N(z,+++z,), 2] lies in E(M) for all z ¢ L. From
the construction in Lemma 7.1.1, it is easily seen that N(z,, ..., z,) also lies in
E(M) if M is nondcgencrate or isotropic (the latter case corresponding to the
case in which the A, are zero). a

CoROLLARY 7.1.5. If N is an isotropic subspace of L, then the restriction
of N 1o the monomials in E(N) extends uniquely to a linear mapping N’ from
E(N) into E such that N'(e) = e.

PrOOF. The uniqueness is evident, since e and the monomials in E(N) span
E(N). To show that the extension is possible, it suffices to show that if
W,,...,w, are monomials in the elements of N such that w, + -+ w, = 0,
then

Nw,) + -+ Nw,) =0 (7.3)

Since there exists a finite-dimensional nondegenerate subspace L’ of L on
which all the w, are based, and L' NN is isotropic, it suffices to establish (7.3)
for the case in which L is finite-dimensional. In this case N may be cxtended
to a Lagrangian subspace of L, and it is no essential loss of generality to take
N to be identical with this subspace. Nor is it an essential loss of generality to
further suppose that (L, A) is built from a finite-dimensional spacec M, and that
N = M*. E(N) is then the polynomial algebra over M, and is evidently in-
variant under ad L (i.e., the operators ad(w): u — [w, u], for we L).

It is evident that N satisfies equation 7.3 when the w, are all of degree at
most 1. Now supposc as an induction hypothesis that (7.3) has been shown in
the case when the w, are all of degree at most n. Then there exists a unique
lincar mapping N, from the vector space P, of polynomials of degree <n in N
to E that coincides with N on monomials. Note that by property 7.1 of N, if w
is any monomial in E(N) of degree =< n + 1, so that |w,z] € P, for all z € L.
then

IN(w), 2] = N ([w, z]).

To show that cquation 7.3 holds when the w, are monomials of degrece at
most n + 1, it suffices to show that the commutator of the left side with every
element z of L vanishes; for this implies that the left side is a scalar, which
must vanish since it must be carried into O by E. By the linearity of N, and the
equation above,
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[N(wl) + bt + N(W,). ZI = IN(Wl)v Z] + o + [N(W,). Z]
= Ny([w,.2]) + -+ Ni([w,,2])
= N(Iw) 2] ++-+ [w,z]) = N(Iw, +-+ w,,2]) = 0. g

CoROLLARY 7.1.6. The mapping N' of the previous corollary is the unique
linear map from E(N) t0 E such that [N'(u), z] = N'(Ju. z]) and E(N'(u)) =
Mu) for all u € E(N) and z € L., where \ is the unique linear functional on
E(N) such that Me) = | and M(z,+++2,) = O for arbitrary z,,....z,(n = 1) in
N.

ProoF. That N’ has the indicated properties follows from the foregoing
proof. If N” is another mapping with the same properties which is different
from N', let u be an element of lcast degree such that N'(u) # N"(u); evidently,
deg u = 1. Noting that for arbitrary z € L,

deg [u, z) < deg u,
it follows that
IN'(4), 2] = N'(lu, 2]) = N"([u. z]) = [N"(u). 2]

for all z € L. Hence N'(x) and N"(u) differ only by a scalar multiple of the
identity, but since both are carried into 0 by E, this multiple must vanish. The
assumption that N” is different from N’ thus lcads to a contradiction, i.e., N’
is unique. O

CoROLLARY 7.1.7. The mapping N' of Corollary 7.1.5. maps E(N) into
E(N).

Proor. This is a direct consequence of the linearity of N' and Corollary
7.1.4. ad

ExaMmpLE 7.2. Assuming for convenience that E(¢) = 1. the renormaliza-
tion map is readily computed in each given order:
N(z) = = — E(2)e,
NQ@Z') = 22" — E(2)2' — E(z"): — E(z2")e + 2E(2)E(Z")e.
etc. The expressions are slightly simpler in the case of renormalized powers.
Assuming that E(e) = 1 and E(z) = Oforallze L.
N(z) = 2,
N@) = 2t - E@2),
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N(*) = 22 - 3E(2*)z — E(2%),
N(zY) = z* ~— 6E(2%)22 — 4E(2*)z — E(2*) + 6E(z2)%.

Problems

1. Assuming that E(e) = 1, show that

NEY = i

=0 TR PRI L) VI T R T}

CUreeesdnmgs 1) EQ)NE(22) 20+-E(2"~ ) In-1 2,
where C(j,,... . jn~.» 0, 1) is equal to
(= Dhrhrtnmind(fy+jat oos 42!
Uit s amit @20 (m =)=,

2. Prove that the algebra of all polynomials is maximal abelian in the al-
gebra of all linear differential operators with polynomial coefficients on a fi-
nite-dimensional vector space.

3. Extend the renormalization map to the fermion case as follows: let F be
a given nondegenerate bilinear form on the real infinite-dimensional vector
space L; let C denote the Clifford algebra over (L, F); and let Q denote the
automorphism of C that extends the map z— —z on L. For any eigenvector
u of Q, let its parity p be defined by the equation Qu = pu, and set {u, z} =

z —(— 1)zu for arbitrary z in L. Let the operation {u, z} be extended from
the elements of exact parity to all u € C by linearity, and let E and E, be two
given linear functionals on C such that E(e) # 0 and E(e) # 0. Show that
there exists a unique map N on monomials u in C such that

{Nu), z} = N({u,z}),  E(N(u)) = Ey(u)

for all monomials & and z € L. (Hint: consider first the casc in which L is of
finite even dimension.)

4. In the situation of Problem 3, show that deg(N(u) — u) < deg(u) if deg(u)
is defined as in the infinitesimal Wey] algebra and u # 0.

7.2. Renormalized products of the free beson field

A Weyl system (K, W) over a linear symplectic space (L, A) induces a nat-
ural representation of the infinitesimal Weyl aigebra E over (L, A) by un-
bounded operators in K. This induces a correspondence between the unique
adjunction operator in E such that e and all elements of L are selfadjoint, and
the usual adjoint operator in K. restricted to the domain D given in
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ScHoLiuM 7.2. Let (K, W) be a Weyl system over the symplectic vector
space (L, A), and let the map z —> &(2) from L into selfadjoint operators on
K be the corresponding infinitesimal Weyl system. Let D denote the space of
vectors in K that lie in the domains of all products of the form &(z,):++$(z,),
24y .+ 12, € L. Then the map z > &(z) extends uniquely to a »-representation
w of the infinitesimal Weyl algebra E of L as linear transformations of D.

ProoF. The proof follows dircctly from the observations that E is generated
by L and that [p(x), (W)} = —iAx, y)u, ueD. O

We now consider renormalized products of the free boson field. In this case
the symplectic vector space (L, A) arises from a complex Hilbert space H, and
the complex structure may be used to define a distinguished linear functional
on E, the ‘‘normal vacuum,’’ which is closely related to the vacuum state of
the free boson field. The renormalization map relative to this linear functional,
sometimes called the *‘normal-ordered product,’” satisfies a number of useful
identities.

The infinitesimal Weyl algebra E over H is defined to be the infinitesimal
Weyl algebra over (H? A). Given z ¢ H, we define the creator c(z) € E as
follows, where J is the complex structure in H:

oz) = 2-%(z - iJz)
and the annihilator c*(z) € E by
c*(2) = c(2)* = 2="1(z + iJ2).

To avoid possible confusion, it should be recalled that complex numbers are
involved in the infinitesimal Weyl algebra over a real symplectic space only
as elements of the coefficient field.

DerINITION. Let E be the infinitesimal Weyl algebra over the complex Hil-
bert space H. A normal vacuum on E is a linear functional E on E such that
E(e) = | and

E(c(x))--c(x,)c*(¥y) -+ c*(yn) = O
forall x,,....x,and y,,...,¥, in H (where n + m > 0).
ScHoLiuM 7.3. Let E be the infinitesimal Weyl algebra over a complex Hil-

bert space H. Then there exists a unique normal vacuum E on E. Let (K, W,
T, v) denote the free boson field over H. The normal vacuum E satisfies

E(u) = (wlu)v, v)

for all u € E. where the representation w is given as in Scholium 7.2.
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ProoF. Noting that as clements of E,
= 2-%(c(x) + c*(x))
for all x € H, and

lex), *()] = ={x, e

for all x, y € H, it follows that E is spanncd by products of the form c(x,)---
c(x,)c*(y)) - c*(y.), so that a normal vacuum is unique if it exists. It thus
suffices to show that {(w(u)v, v) is well defined for u € E and vanishes if

u = e(xy) e e(x,) () *(ym)-

It is clear from the particle representation that v is in the domain of all the
products &(z,):+-d(z,), where z,,...,2,€ H, so that (w(u)v, v) is well defined
for all u € E. It is also clear from the particle representation that

w(c(x)) s -cx,)c(y)* < c(yn)*)v = Cx,)): = C(x)C*(y,) =< C*(ym)V.

This vanishes if m > 0, and taking adjoints, (w(1)v,v) = 0if m = Oand n >
0. a

ScHoLtuM 7.4. Let E be the infinitesimal Weyl algebra over a complex Hil-
bert space H. There is then a unique representation y of U(H) as +-algebra
automorphisms of E such that y(U): = Uz for all ze H, U € UH). If E is the
normal vacuum on E, then E(y(U)u) = E(u) for all u e E, U € UH).

Proor. The proof is straightforward and is omitted. O

The renormalization map for the normal vacuum coincides effectively with
the **Wick product,”’ which was introduced as a means of standardizing the
*‘correspondence principle’’ in the case of polynomials in the canonical p’s
and ¢'s. The correspondence principle was the basis for associating with a
given classical Hamiltonian a corresponding quantum Hamiltonian. A lengthy
process of development from the original **Ansatz’" of Heisenberg indicated
that considerations of symmetry and of the Lic-theoretic conneetion between
the Poisson bracket in the classical case and the operator bracket in the quan-
tum case were insufficient to fix uniquely a mathematical form for the heuristic
correspondence principle. At the same time, this process suggested giving pn-
macy to the creation and annihilation operators rather than the hermitian p's
and g’s (c.g.. as a means of avoiding unwanted **zero-point’* energics). Using
a definition that was intrinsically limited to the normal vacuum (cf. below),
Wick standardized a renormalization map along such lincs and established
simple explicit rules for the computation of expectation values of products of
renormalized monomials. Practical quantum mechanics in the form of Feyn-
man graph theory has been based in significant part on these rules.
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With the identification of the Wick product as the renormalization map rel-
ative to the normal vacuum, which is made later, thesc rules are given in

THEOREM 7.2. Let E be the infinitesimal Wey! algebra over a complex Hil-
bert space H, let E be the normal vacuum on E. Then the renormalization map
N relative to E satisfies the following relations, where the z, (j = 1,2,...,
r + 1) are arbitrary in H:

a) Nzyo++2,2,01) = N2y 202,01 — Zy5pe, N2y 8002 )22, 0 )

b) zy0eez, = N(z;+++2,) + 21:}<k=r~(2|"'f,"'fn"'-'-,)E(Z;ZA-) +
2l=i;<k|=r-l=/z<1:='N(zl'"fn"'fh’"f/z"'flz'"zr)E(:/.zh)
Ez21) + o + Zisyycnymraspytgsramy a4 EGa )G 2)

where s denotes the integral part of ri2, and if r is even u = e (the identity of
E), but if r is odd u = z,, where t is the unique integer such that I <1 < r
and t # j,. 1t # kyforallm = 1,2,....s. (Note also that all the sums in b)
are taken only over j,,, k,, such that j,, # j,, jn# k.. and k,,# k, for all m, n.)

Proor. To prove a) by induction, it suffices to show that the expectation
values of both sides agree, and that their commutators with an arbitrary ele-
ment z' € H are the same. In case r = 1|, a) states that z,z; = N(z,z,) +
E(z,z.), which is easily seen to be valid. For r > 1, the identity of the expec-
tation values follows from

LEMMA 7.2.1. For arbitrary z,,... .z,,, in B, wherer > 1,
E(N(Z|"'Z,)Z,+|) = O

PROOF OF LEMMA. By linearity, it suffices to consider the case in which cach
2, is a creator or an annihilator. If z,, , is an annihilator the conclusion is ob-
vious, so assume it is a creator. In view of the symmetry of N(z,-+-z,) as a
function of the z,.....z,. it may be assumed that z,---z, = ab, where « is a
product of creators and b is a product of annihilators, not both of degree 0.
Observing that E(ab) = E(b*a*) for arbitrary a and b. it may further be as-
sumed that a = e. Note that the map = — c(z) is complex-linear from H to E.,
while the map z + ¢*(2) is antilinear. Thus the unitary transformation ¢”* on
H (t € R) has y(e”')z,., = e"z,.,,. while Y(e’)b = ¢ b, so that y(e’)bz, , |
= e¢-#-Wpz__ . By Scholium 7.4, it follows that

E(bz,.,) = e~ WE(bz,. ).
implying that E(bz,.,) = 0. O

COMPLETION OF PROOF. Assume r > | in equation a), denoting left and right
sides of a) as L and R. for arbitrary = in H:
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[L.2] = N(z,>+2)[2,4y.2] + ,2, NGzyorpeez ) L2, 2);
[R.z] = N(z;**2)z,41,2] + Z. N@ -+30e02) 2,4, (2, 2]
j-
- 2 N(Zl"'fj"'fk"'zr) E(zz,. ) [z, 2).

I1sjr i xksr, jok

Applying the induction hypothesis to the double sum in the expression for
{R. z] by summing first over j shows that this double sum equals

2 N@zyo+2002,)2,00 — N(2yo224o002,40) 210 2],

ke1

On changing the index from k to j in this sum, the equality of [L. z] and (R, z]
becomes apparent.

To prove equation b) along similar lines, denoting left and right sides of b)
as L and R, first note that the identity of [L, z] with [R, z] for arbitrary z ¢ H
follows dircctly from the induction hypothesis; [L, z] is a sum of r terms over
i, in the ith term z, being deleted, while the characterization of N in tcrms of
commutators provides a precisely corresponding sum for [R, z].

It remains only to show that E(z,---z,) = 0if ris odd, while if r = 25 where
s is intcgral,

E(z,---2) =X jll E(z,z2,),

the sum being taken over the set of all partitions of {1,...,r} into two-clement
subsets.

In the case when r is odd, the required result follows from the invariance of
E under the induced action of the unitary transformation —/ on H, which
evidently transforms E(z,---z,) into its negative. When r is cven, first cxpress
2y**+2,_, as a sum of renormalized products in accordance with the induction
hypothesis

000z, = E N(u,)c,,
P
where the u, are certain monomials of degree 1,2,....r—1 and the ¢, ar
scalars. Then
Z)02,_42, = 2 N(u,)z,c,,.
P
By Lemma 7.2.1, E(N(u)z) = O except when deg u, = 1. Thus, only the

terms of degree 1 contribute to E(z,---z,), and it follows that it has the stated
form. O
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The original definition of Wick product is often used in the physics litera-
ture. The definition is in terms of the notion of ‘*normal product,’* which is
defined as a product of creation and annihilation operators in which all anni-
hilation operators are on the right and the creation operators on the left. This
has the obvious consequence that the normal vacuum expectation value of a
normal product vanishes. In the form given in the physics literature, ‘‘The
normal product :A,(x,)--+A,(x,): may be defined as the result of reducing to
the normal form the ordinary product A,(x,):+-A,(x,) provided that during the
process of reduction the quantized field functions are regarded as strictly com-
muting . . . and value zero is assigned to all commutation functions that ap-
pear’* (Bogolioubov and Shirkov, 1959).

In a more explicit mathematical form, this definition may be formulated as
follows: the Wick (or normal) product of vectors z,,...,z, in H is the element
of E(H):

No(zyoo02,) = 27%2 > {ﬂ c(zk)}[ N C‘(zk)}.
Scil..... n) | key kefl.....n}-§

Noting that the products involved in this expression are independent of the
order of the factors, it follows that Ny(z,+--z,) is well defined.

ScHoLiuM 7.5. If E is the normal vacuum on E(H), then N(z,+--z,) =
No(2,°+-2,) for arbitrary vectors z,,...,z2,in H.

ProoF. Since both sides of the foregoing putative equality have vanishing
normal expectation value, it suffices to show that the right side satisfies the
recursion relation characterizing the left side. Thus it suffices to show that

[No(zl'"zn)v ZI] = I'-zl [Z/, Z'] NU(:I"'ZA/""-")-

To this end it suffices to treat the case where all the z; are equal. It is easily
scen that No(z,-+z,) is symmetric as a function of the z, and real-linear in cach
variable z. Thus there is a unique linear function N, from the space of sym-
metric tensors over H to E such that

Ny(zy7++2,) = No(z,\/*+*\/z),
and the above property of N, is equivalent to

[No(z.v---\/zn).z'|=2 LRV A CAVERVZ IVARV-S)

Since this equation is linear in z,\/--\/z,, and the space of symmetric n-ten-
sors over H is spanned by those of the form z\/:++\/z (as it is an irreducible
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represcntation of the symmetric group, and such tensors span a subrepresen-
tation), it sufficcs to prove it in the case z,,....2, = z. Forany ze H,

No(z) = 2=72 Y ! [jin = D)~ 'cz) c*zyt;
J=0
hence for any 2’ € H it follows that

Ny(z"). c(2)] = 277z} 2) i n! in = j — DY te@) c* 200,
J=0

INo(z"), c*(z")] = — 27z, 2") "z n! [ = D= e(z) " c*(z) -,

/=0
and

[No(2"). 2') = [No(2"), 27%(c(z") + C*(z'))]

=inlm(zz) 27" Y (n = D jNn = j = DI cl2)! ey

0<j<n-])

= in Im(z, 2) Ny(zr-") = z |z, 2'] No(z"— "),
J=1
as was to be shown. O

Equations a) and b) of Theorem 7.2 are accordingly known as **Wick's
Theorem.™*

Problems

1. Let H be a complex Hilbert space and N the renormalization map relative
to the normal vacuum on the infinitesimal Weyl algebra E over H. Show that
for any = € H, N(z") is a constant multiple of the nth Hermite polynomial (cf.
Glossary) applicd to z. Determinc the constant.

2. a) Computce explicitly the cxpressions of all Wick products of degree =
4 in two vectors ,, z, in H, in terms of their ordinary products and expectation
values.

b) Express the ordinary products in terms of the Wick products and the
expectation values of the former.

7.3. Regularity properties of boson field operators

An important fcature of analysis in boson fields is the domination of rele-
vant operators by a Hamiltonian. In this scction the free boson field (K. W.
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I, v) over a complex Hilbert space H is treated in this context. In the simplest
form of this approach, there is a given in H a sclfadjoint operator A represent-
ing the single-particle Hamiltonian. This operator A and the corresponding
ficld Hamiltonian H = aI'(A) determine domains of regular vectors (differ-
entiable, analytic, etc.) in H and in K that facilitate the analysis of singular
operators. Such operators are often conveniently formulated as sesquilinear
forms on domains of rcgular vectors. These forms are equivalent to mappings
from the regular domains to their antiduals, rclative to an appropriate topology
on the regular domain, and thus represent generalized opcrators. Among such
operators are the local renormalized products of free relativistic fields.

To this end general machinery will now be devcloped. For any given
densely defined operator T in a Hilbert space H, having the property that Tx
= 0 only if x = 0, the domain D(T') as a pre-Hilbert space with the inner
product (x, y)' = (Tx, Ty) is denoted as (D(T')). The Hilbert space completion
of (D(T")) will be denoted as ((D(T'))). If A is a given strictly positive selfadjoint
operator in H, the intersection of the domains D(A") (n = 0, I, 2,--+) will be
denoted as D.(A), and when topologized so that convergence of a sequence
means convergence in each (D(A")), will be denoted as (D..(A)). The union of
the D(A"), as n varies over all integers (0, +1, +2,--+), will be denoted as
D . .(A) and when topologized so that convergence of a sequence means con-
vergence in some (D(A")), will be denoted as (D _.(A)). If x € (D(A™)) and y €
(D(A") where m + n = 0, then (x, y) is canonically definable by continuity,
in extension of the definition in H, and this extended inner product will be
denoted in the same way as in H.

A convenient concrete representation of the spaces D. .(A) derives from
spectral theory. Specifically, any sclfadjoint operator A in H is unitarily equiv-
alent to the operation M, of multiplication by a real measurable function & on
some measure spacc M, in such a way that H is correspondingly unitarily
cquivalent to L,(M). The domain of such a multiplication operator is defined
as the set of all vectors f € L,(M) such that the pointwise product gf is again
in L(M). It is readily deduced that D.(A) is correspondingly represented by
the space of all measurable functions f such that g"f € L.(M) for ali n = 0.
Similarly, D _.(A) is rcpresented by the space of all measurable functions f
such that g7f € L.(M) for some integer n.

ExampLE 7.3. Let H denote the space of Cauchy data for the Klein-Gordon
equation [(J¢ + m*¢ = 0 on M,,. where m > 0, that are normalizable relative
to the Lorentz invariant norm. Let the operators A and B be as in Section 6.3.
Then D(A*) = D(B** :)@®D(B*-":), and D(B*) is the Sobolev space L. ,(R") of
all functions that are squarc-integrable together with their first k derivatives. It
follows that D.(A) consists of all pairs (f, g) where f and g are C=on R”. and
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together with their partial derivatives of all orders, in L,(R"). It follows also
that D _...(A) includes all pairs (f, g) of compactly supported distributions.

As in the previous example, the operators A that are relevant typically arise
as generators of one-parameter unitary groups. If U(r) = e"* where A is self-
adjoint in H (r € R), there is a canonical extension of U(*) to all of D_,(A).
This extension, which will again be denoted as U(*) to avoid undue circumlo-
cution, acts continuously on (D _.(A)).

The strong smoothing effect of time-integration is cxemplified by

ScHOLIUM 7.6. Suppose that A is a strictly positive selfadjoint operator in
the Hilbert space H. If n < 0, x € D(A"), and f(-) € C'(R), then [U(t)xf(1)dr
is in H and has norm bounded by ||A"x{| |Lf1"" ||, ,in,-

Prook. The case of general n follows from that for n = —1, so assume
this. Then x = Ay with y € H, and using Stone’s theorem,

J UMxf(dr = [ UnAyf(de = lrl—[o.l?) J U (ig)~* [U(e) = Nyf(n)dt
= ',L'I,‘ @)~ f Uylft — €) — fOldr = i J Uyf'(t)dr.

This has the indicated bound. a
A useful related result is

ScHoLiuM 7.7. If L is a dense submanifold in H that is invariant under U(-)
and contained in D(A"), then L is also dense in (D(A")), where A is as in
Scholium 7.6.

Proor. Otherwise let z be a nonzero vector in (D(A")) that is orthogonal to
L in D(A"): (A"z, A"w) = 0 for all w € L. By the invariancc of L,

(A2, A"U(w) = 0 = (A"z, U(NA"W) = (A"U( -1z, A"w)

for all real 1. 1t follows that {Anz) A"w) = 0if 2’ = [ U(r)zfl)dr with fe C;;(R).
whence (Az, w) = 0, since z' € D.(A). Such z' will be nonzero if f approxi-
mates O appropriatcly, whence A2z’ # 0, contradicting the density of L in

0

In these terms the field and annihilation operators enjoy the rcgularity prop-
crtics specified in the conclusion of

THEOREM 7.3. Given a complex Hilbert space H, let (K, W, ", v) be the
free boson field over H, let A be a strictly positive selfadjoint operator in H,
and let H denote daT'(A). Then the map (z, u) — &(2)u is continuous from
{D..(A)) X(D..(H)) into {D.(H)).



Renormalized Products 193

Moreover, the map (z, u) = C(z)*u has a unique continuous extension to a
map from (D _.(A)) X (D.(H)) into (D..(H)).

ProoF. We establish the incqualities
IHmb@ull = c [(H + 1)™*Yulf|Amz] (7.4)

by induction on m. The case m = 0 is Lemma 6.1.1. Now assume that (7.4)
is valid for all nonnegative half-integers m < n. To show that ¢(z)u is in the
domain of H" is equivalent to showing that H" - '$(z)u is in the domain of H.
This is in turn equivalent to showing that y(f) = 1-'(e¥ — [)H"~'d(z)u re-
mains bounded as t — O (by a corollary to Stonc's thcorem). z, = ez,

(1) = 7 (e""H"'d(2)u — H*'d(2)u)
H*'[1=Y(d(z) — (2)e"u] + H*='d(2)t~ e — Nu
by the intertwining relation between ¢ and I". Applying the induction hypoth-
csis to each of the two addends on the right side, it results that

vl = c 1 + ="l A"z, = 2)| +

clH + Dy="u='em — Dul| |An- 2.

Ast— 0,17z, — 2)— iAz, and if z€ D(A"*"), A"t~ \(z, — z) = {A™* 1z for
any positive integer m. Similarly, H"~%1-'(e# — [)u remains bounded in

norm and approaches H"* *u as r — 0. Thus y(¢) remains bounded in norm as
1— 0. and

IH b S I + 1r="sull A2 + ¢ I + D=l 142~ 12

Using the boundedness away from zero of the spectrum of H + [ and A, it
follows that

|H b))l < ¢ (H + 1y ") || A2

for a suitable constant. Thus the induction hypothesis remains valid at the next
stage and the proof of inequalities 7.4 is completc

The continuity of the map (z. u) — ¢(z)u asscrted by the theorem follows.
and implies the same for the map (z, u) — C(z)u and (z, u) — C(z)*u. The
stronger continuity claimed for C(z)*u follows from

LeEmMA 7.3.1. For arbitrary = € H, u € D.(H), and positive interger m,
ICE*ull = ¢ [|A " ™2 || H™ul.

PrOOF. Lemma 6.1.1 implics that u is in fact in the domain of C(z)*. Now
let P denote the projection of H onto the onc-dimensional subspace spanned
by z (which may be assumed # 0). Then for arbitrary =" € D, (A).



194 Chapter 7

lZXPz} 2') = [(z, 2')* = [|A-m2|P* |Am2'|F = J|A -2 (A>2} 2').
It follows that ||z|2P < ||A —mz|]* A2», whence
llz|[ 8T (P) = ||A ~™z|[2 8'(A*").

On the other hand, ||z}|? I'(P) = C(z)C(2)*, and it follows from the particle
representation and the positivity of A that

al'(A*) = oI'(A)>" = H*,

which is equivalent to the conclusion of the lemma. O

PROOF OF THEOREM, CONTINUED. The intertwining relation e™W(z)e " =
W(e*z) leads by analysis similar to that of Section 1.2 to the inclusion [H,
&(2)] C — i d(iA2) for arbitrary z € D(A), whence also [H, C(2)*] C C(iAz)*.
By repeated application of this inclusion it follows that if z € D..(A), then

H"C(2)* C D ¢, ,C(Akz)* H-*
k=0

for all nonnegative integers n, where the coefficients ¢, , depend only on k and
n. It follows in turn that if 4 € D (H), then for all integersmand n = 1,

IH + IyC)*ull < ¢ kZO [|A*=mz|| || H ==+ my),

where ¢ depends only on n. This inequality implies in particular the conclusion
of the theorem. O

The expression for the Wick product in terms of creation and annihilation
operators will now extend directly to one in which the factors are generalized
vectors, in D_.(A) rather than in H. In this and later connections, it will be
useful to develop some conventions and notation regarding the relation be-
tween sesquilinear forms and operators.

Let D denote a dense subspace of a Hilbert space H. If T is a linear
operator in H whose domain includes D, a sesquilinear form F on D is defined
by the equation F(x,y) = (Tx,y) (x,y € D). Evidently, |F(x, y)| = [Tx|| liy{.
so that for any fixed x, F(x, y) is an antilinear function of y that is bounded
relative to the norm in H. Now suppose there is given in D an intrinsic topol-
ogy stronger than that in H, in terms of which it forms a topological vector
space D, and that F is a given continuous sesquilinear form on D. There is
then a continuous linear operator T from D to the antidual *D of D defined by
the equation (Tx)(y) = F(x, y). H is continuously embedded in *D by the map
y— *y where *y(x) = (y, x) forx € D. In this sense, a continuous sesquilinear
form F determines a linear operator T from D into an overspace of H, namely
*D, so that such a form can be considered as a generalized operator. It has a
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strict Hilbert space operator T, associated with it, defined on the domain D, of
all vectors x € D such that [F(x, y)| = c |ly|| for all y € D, by the equation F(x,
y) = (Tex, y), but in general D, may consist only of 0. It will be convenient
on occasion in the following to identify forms with operators, where possible
without ambiguity, as indicated by the context, in accordance with these con-
siderations.

In these general terms, the extended Wick product of vectors in D_.(A) is
a form on (D.(A)), and thus a generalized operator, in accordance with

COROLLARY 7.3.1. There exists a unique mapping R from monomials in the
free associative algebra over D _.(A) to continuous sesquilinear forms on
(D(H)) that extends the mapping R, on the monomials in the subalgebra gen-
erated by H, given by the equation

Ro(zy+z,)(u, u') = (W(No(z,*++2,))u, u') (u, u' € D(H)),

and such that R(z,+++z,)(u, u') is jointly continuous in z,,...,z,, u, and u'.

ProoF. This follows from Theorem 7.3 and the equation

Ro(z,---z,,)(u, ul) = 2—nf£

which is implied by Scholium 7.5. O

DEFINITION. The Wick product of vectors z,, ...z, in D_.(A) is the sesqui-
linear form on D..(H) given by Corollary 7.3.1. It will be denoted as :z:--z,:.

It should be mentioned that the domains D _.(A) and D.(H) used here are
not really definitive. Domains of analytic, entire, and other classes of smooth
vectors, and their duals, may also be used in a generally similar way (cf. Chap.
8). The present domains are, however, relatively large, simple, and invariant,
and will suffice for the purposes of this chapter.

The extended Wick product inherits by continuity many of the properties of
the Wick product of vectors in H. Like the Wick product of vectors in H, the
extended Wick product can be characterized by its recursive commutation re-
lations with arbitrary vectors and the vanishing of its vacuum expectation val-
ues. More specifically, using operator notation for forms to clarify the under-
lying algebra:

ScHoLiuM 7.8. Let R’ be a mapping from monomials in the free linear
associative algebra over D _(A) to continuous sesquilinear forms on (D..(H))
such that
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i) For arbitrary z,, ... ,2,in D_.(A), y € D.(A),
[R'(zy*+2,), dO)] = i R'(2,2+4,+2,) Alz,. Y),
]

where A(z, y) denotes Im((z, y)).
i) (R'(2y++z,)v, v) = 0.
Then R’ coincides with the mapping R given by Corollary 7.3.1.

PrROOF. Let D, denote the lincar submanifold in K consisting of all finite
lincar combinations of the ¢(z,):++d(z,)v, with z, in D(A). Then Dy is dense
in (D.(H)) and contained in thc domains of all products of the form &(y;):
&(y,,) with the y, in H. This follows by analysis similar to that in Chapter 1,
together with the density of D, in K. The density follows from Scholium 7.7
and the observation that D, is invariant under the e*. The restriction of R(z,
«++z,) and R'(z,*++z,) from forms on D.(H) to forms on D, agree by algebraic
considerations that are similar to the unicity argument in Section 7.1, and will
be omitted. The density of D, in D..(H) completes the proof. O

The covariance of Wick products in appropriate contexts, such as in relativ-
istic free fields (cf. the next section) is shown by

THEOREM 7.4. Let A be a strictly positive selfadjoint operator in the Hilbert
space H. Let U be a uniary operator on H such that U and U-" leave D.(A)
invariant and act continuously on (D.(A)). Let (K, W, T, v) denote the free
hoson field over H, and set H = aI'(A). Then

i) T'(U) leaves D..(H) invariant, and acts continuously on D..(H);
ii) there is a unique continuous linear operator U on D _.(A) that extends
U: and
iii) Wick products of vectors in D . .(A). as sesquilinear forms on D.(H),
transform as follows under the induced actions of U:

((Uz)-(Uz,): = TU) : 2,2, : T() .

PrOOF. We assume A = /, which is no essential loss of generality since A
may otherwise be replaced by an appropriatec multiple. If x e D,NK,,, F'(U)x
= (U®-++®@U)xand Hx = X,. ., A, ,x. wherc A, , is the operator on K, given
by I®-:-®A®---®!, with the factor A in the ith place. For an arbitrary integer
p#0,

n

Hx = 3 A, A L
-1

/3
e odp

so that
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HTUR = 5 Ay 4, (UG- @V,

. p

Since U is continuous from (D.(A)) to itsclf, there exists a positive integer m
and a constant ¢ > 1 (depending on p and U) such that for all positive integers
g = p, [|AUz]| = c ||AmZ|| for arbitrary z € D..(A). It follows that if x e D,NK,,,

IlAll.n»--Alp.n(U®".®U)x ” = (W|IF1®"'®F,,I",

where the F, = A™(0 < k, < p) and £k, = p. But such a term F, is dominated
by one in the expansion of H™ in terms of the 4, ,, whence

F®:--®F, < H™

(all of the operators involved here being simultaneously diagonalizable). It
follows that for arbitrary x € D,,, if x, is the component of x in K,, then

2 2 2 ] 2
VT = & 2 nHees, . a5)

Since N < H, it results that

[T < 2o ZHom gt = o i v,
netl (7.6)
Turming to ii) of Theorem 7.4, since U* is continuous from (D.(A)) to itsclf,
for any integer m = 0, there exists an integer n(m), which may be assumed =
m, such that |[A=U*y|| =< c ||A"™y]|, for all y € D.(A). Now if x e D _.(A), say
x€ D(A-m), then [(x, U*y)| = c||A -"x]| [|A"||. Thus {x, U*y) is a continuous
antilinear functional of y in the space (D(A"™)), and hence of the form (x! y)
for some vector x’ € D(A-"™). Dcfining U as the map x — x', it is straight-
forward to verify that U extends U and is continuous on (D _.(A)).
Finally, the unicity of the Wick product and the invariance of v under all
T'(U) imply that for arbitrary z,,...,z, in H,

Uz (Uz): = TW) : 240+, : T,

whence iii) follows by continuity. )]

Theorem 7.5. which is an analog to Scholium 7.6 for the case of forms
rather than vectors, further exemplifics the relations between forms and oper-
ators and will be useful later. As noted. if F is a continuous sesquilincar form
on a locally convex topological vector space L, then there is a unique lincar
operator 7 from L into *L such that F(x. y) = (Tx)(y) forall x, v e L. We call
T the kernel of the form F. In the casc of the space L = (D..(A)), where A is
as earlier, *L is canonically identifiable with (D_.(A)) by the correspondence
given earlier, and the mapping T is continuous from (D.(A)) into (D _.(A)).
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The term *‘form” on (D.(A)) will mean *‘continuous sesquilinear form on
(D.(A))"" in the following.

THEOREM 7.5. Let A be a strictly positive selfadjoint operator in the Hilbert
space H. Let F be a continuous sesquilinear form on (D.(A)). Let f be arbi-
trary in Cg(R). Then the kernel of the form

G(u,u') = [ F(e"u, e"u')f(t)dt

is a continuous linear operator from (D.(A)) into itself.
ProoOF. This is based on the following estimate.

LEMMA 7.5.1. Let A be a selfadjoint operator = € (where € > 0) in the
Hilbert space H. Let B be a bounded linear operator on H. Let f be a given
Sfunction in L,(R). Let u and u' be arbitrary in D(A®) and D(A®) and

Gu,u') = [ (B e A, eA%u’)f(0)dt.
Then for arbitrary k > 0 such that u € D(A¥),
|G, u")] < c, |IB|l l|A*ull Ju'f],
where ¢, = sup{r‘*[f(r — s)|rast: r, s > €},
ProoF. Let E, denote the spectral resolution of A, i.e., for any Borel func-
tionfon R, f(A) = [ f(r) dE, in the usual notation. Similarly, Bf(A)u = [ f(r)
d(BE,u). Setting m(r, s) = (BE,u, E,u'), note that m is a function of bounded

variation in the plane. For defining the auxiliary set function /\,, (P, Q) for
arbitrary finite unions of intervals P and Q by the equation

NP, Q) = (BE(P)u, E(Q)'),

then |/\(P, Q)| = |IB|| |E(P)ull \E(Q)u'||. 1t follows that if the {P} and {Q)} are
respectively finite sets of disjoint intervals, then

2| AP, Q)1 = 18Il 22 \EEDN IEQ@wl,
which, by the Schwarz inequality and the orthogonality of the E(P;) and the
orthogonality of the E(Q)), is in turn bounded by

h(P, Q) = (B |EP)ull [EQ)u’ll,
where P and Q are the unions of the P, and Q;. It follows that
KBf(A)u, glaw') = |[f(r) gls)dm(r, )| = Jlf()] |g(s)| dhr. s),

where f and g are Borel functions. It follows in particular that

(BeAu, eAbu’) = [[einr—raostdm(r, ).
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Multiplying by f(¢) and integrating with respect to ¢, it follows in turn that
G, u') = [ f(r—s) restdm(r, s).
The integral over the plane of rtdh(r, s) is ||B|| || A*ull |lu’]l, which implies, by
the definition of c,, that
|G, )| = [ |f(r — 5)| res® dhr, 5)
= ¢, Jf r*dh(r,s) = c,|IB]| || A%ul] 1’|l O

PROOF OF THEOREM 7.5, CONTINUED. F may be represented in the following
form, for sufficiently large a:

F(u,u') = (BA°u, Au’),
where B is bounded. In particular, if b = a + ¢, where c = 0,
F(u, A<u’') = (BA°u, Atu').
It follows that
IG(u, Acu")| = C 1Bl I Akul 'l 1.7

If C, <= forc =0, 1, 2,...,this inequality shows that the kernel K of the
form G has the properties that [|A<Ku]| = g(c) [|A™'u||, which is equivalent to
the continuity of K as an operator from (D.(A) into itself. For ¢ = 0, this is
true by definition: Ku is defined as a vector such that (Ku, u') = G(u, u'). For
¢ >0, this follows from the fact that the restriction of A< to D..(A) is essentially
selfadjoint, which is easily seen by an approximation argument (see Prob. 1
following this section). Indeed, the inequality 7.7 shows that there exists a
vector w in H such that G(u, A<u’) = (w, A<u’), while on the other hand
G(u,A<u’) = (Ku,A<u'). The equality (w, A<u’) = (Ku, A<u’) for all u’ €
D.(A) shows that w is in the domain of (A<] D.(A))*. By the cited essential
selfadjointness, this means that A<Ku exists, and that ||A<Kulj =< const. ||A%y]|
for sufficiently large k. Thus, to conclude the proof, it suffices to show that C,,
is finite for all values of c if k is sufficiently large. To this end it is no essential
loss of generality to assume € = 1. Taking k = a + b, and noting that

Fol=ca +|yn-
since f € Cg(R), it follows that
C, < sup{F(r,s);r = 1 and s = 1},

where F(r,s) = Cr-ts*(1 + |r —sl)=". If s < 2r, then F(r, 5) < 2*C, while
if s = 2r, then |r — 5| = 5/2, so that

F(r,s)=Cs (1 + (s22))~' = 2°C,
implying that ¢, = 2*C < =, ]
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Problems

1. Show that if A is a strictly positive selfadjoint operator in the Hilbert
space H, then for any positive integer j, the restriction to D.(A) of A/ is essen-
tially selfadjoint. (Hint: if x € D(A/), show that x, = exp(—A/n)x — x and
Alx,— Ax.)

2. Show that Wick's theorem holds for any symplectic transform of the free
vacuum, i.c., for renormalized products with respect to the functional E7,
where T is an arbitrary symplectic transformation on the Hilbert space H, and
E™(u) = E(I'(T)u), I'(T) denoting the unique automorphism of the infinites-
imal Wey! algebra that carries z into Tz for arbitrary = in H. (Hint: show the
invariance of the defining properties of the renormalization map under the in-
duced action on the infinitesimal Weyl algebra of symplectic transformations
on H.)

3. With the notation of Section 7.3, compute the result of applying C(z)
and C(z)*, where z is arbitrary in H, to IT7., ¢(z)v, where z, are in D.(A).
Show that C(z)* maps these vectors into D.(H), while C(z) maps D.(H) into
itscif only if z € D.(A).

7.4. Renormalized local products of field operators

The formation of interaction Hamiltonians and Lagrangians involves local
products of fields. This represents the special case of the foregoing theory in
which points X in the underlying space-time manifold are mapped into vectors
uy in the space D_.(A), in such a way that the value of the quantized ficld at
the point X may be correlated with u,. The specifics of the mapping X — uy
naturally depend somewhat on the particular field in question, but the general
procedure is well represented by the case of a scalar field. This section devel-
ops the formulation of renormalized local products of quantized scalar ficlds.

Let M be an arbitrary complete C* Riemannian manifold, and let L,(M, R),
where the measure involved is the canonical one derived from the Ricmannian
structure, be denoted as L. The Laplacian A, is nonpositive and essentially sclf-
adjoint on the domain C5(M) (cf. Gaffney, 1955). The sclfadjoint closurc of
A, will be denoted as A. The Klein-Gordon equation on R X M takes the form

@2 - A+ m)p =0, (7.8)

where (¢, x) is a real function of the variables r € R and x € M. We restrict
considerations to the case in which the real constant m, the **mass,"" is posi-
tive, to avoid nongeneric technical complications. Setting B = (m?* — A)*,
the treatment can be consolidated and generalized by consideration of the
equation
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dd + B =0, (7.9

where & = &(1) is a function of 1 € R whose values arc in a real Hilbert space
L. which in the case of the Klein-Gordon equation consists of functions on
space.

This equation is readily quantized by the procedures of Chapter 1. Setting
C = B"%, the underlying single-particle (complex Hilbert) space H is the direct
sum (D(C)YD{D(C-"))), with the complex structure in H defined by the ma-

tnx
0 -B
B-' 0
relative to the given direct sum decomposition of H, and the following inner
product between the vectors ¢ and § in H:

(b, Y)u = (Co(), CY(N)y, + (C-'8,b(r), C-'3,p(D),,
+ i ((C19(0), CY(. — (Cd(r), C- 3 Pp(D)). (7.10)

In the last equation, 1 is arbitrary in R; the right side of the equation is inde-
pendent of ¢ by virtue of the underlying differential equation, which is now to
be understood in its integrated form:

cos(tB) B-'sin(tB)

—Bsin(1B)  cos(iB) )(¢(0)®6.¢(0)1. (7.11)

([b(NDad(n] = (

The single-particle Hamiltonian A is the selfadjoint generator of the one-pa-
rameter unitary group defined by equation 7.11. As earlier, the inner product
in H may be extended to a partially defined one in D . .(A), and the real inner
product in L may similarly be extended to a partially defined one in D _..(B).

Nonlinear local interactions typically involve formal expressions that ap-
pear as

(D1)XND:d)X)-++(D3,)X)D39,$)(X) -, (1.12)

where the D, and D; are given linear partial differential operators. as well as
integrals of such expressions after multiplication by a smooth function on
space or space-time. Thus, the most general local Hamiltonian is formally a
sum of such terms. When rigorously defined quantized fields are substituted
for the symbolic fields in equation 7.12, the result is a product of distributions,
and so is undefined, or at best, singular; and its putative integral is scarcely
less so. However, in perturbative scattering theory, the quantized fields (i.e..
the so-called incoming and outgoing fields) are frece. In this case, a rigorous
version of Wick's procedure leads ultimately to interpretation of these singular
quantities as forms on D.(H), where H is the Hamiltonian of the free field.
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Basically, the only feature involved in the rigorous formulation and treat-
ment of expression 7.12 is the suitable representation of the point-evaluation
vectors Qy, as generalized vectors, provided that the differential operators D,
and D, are appropriately dominated by powers of B, as is normally the case.
The covariance, continuity, and boundedness of the map X —  is relevant,
where a subset of D_.(A) is said to be bounded in case it is bounded as a
subset of (D(A")) for some integer n. In the case of the Klein-Gordon equation,
the basic point evaluation functionals are described in Theorem 7.6. To avoid
technical complications, we assume that the manifold M is either R" or is com-
pact; but the argument below applies to arbitrary compact regions in a non-
compact manifold, to which noncompact regions are largely reducible, by vir-
tue of hyperbolicity considerations. No infinite-dimensional issues arc
involved in the proofs of the next two results, and only the essentials will be
given.

ScHoLtUM 7.9. Let M be a Riemannian manifold, either compact or R". Let
L denote L(M,R), and let B = (m*— A)":, where m > 0. For arbitrary x €
M, there exists a unique vector 8, in D __(B) such that for arbitrary f in D_(B),

f(x) = (f. d,). (7.13)

Moreover, the map x — 0, is bounded and continuous from M into D _ .(B),
and covariant with respect to the isometry group of M. If T is an arbitrary C*
linear differential operator in the case of compact M, or an arbitrary such
operator with constant coefficients in the case of R", then T extends uniquely
to a continuous linear operator on D _(B), and

(TNHx) = (£, T*5,)  (feDu(B)). (7.14)

Proor. That f(x) is for fixed x a continuous linear functional of f in a So-
bolev space L, ,, if r > Y2 dim(M), follows from the Plancherel theorem in the
case M = R". The Sobolev space involving derivatives of order r is however
identical to D(Br). This shows the existence of 8, when M = R", and the
argument provides an explicit expression for §,, from which the bounded con-
tinuity of the map x — 9, follows. The case of a compact manifold is reducible
locally to the cuclidean case, and with the use of a finite partition of unity,
follows globally.

Covariance with respect to arbitrary isometries, meaning that if g is an ar-
bitrary isometry on M, and if U(g) denotes the mapping f(x) — f(g~'x) on
D..(B), and also the extended map to D_.(B), that U(g) sends o, to d,. ,,. fol-
lows from the unicity of 3, as defined by the equation f(x) = (f, b,).

For any lincar differential operator T of the type indicated, it is not difficult
to show that T is dominated by a power of B in the sense that 7B ~* is a bounded
operator on Ly(M) if r exceeds the order of T. In consequence, T admits a
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unique continuous extension to all of (D_.(B)) and satisfies the indicated
equation by virtue of the definition of T*. ]

THEOREM 7.6. Let M, L, B and 8, be as in Scholium 7.9. Let H denote the
complex Hilbert space of all real normalizable solutions ¢ of the Klein-Gor-

don equation 7.8. For arbitrary X € R X M, there exists a unique vector Qe
D _.(A) such that for arbitrary ¢ € D.(A),

$(X) = Re((d, Q).

Moreover, the map X — 2 is bounded and continuous from R x M into
(D_.(A)). and covariant with respect to the isometry group of M and time-
translation. In the case of Minkowski space-time, it is also Lorentz-covarian.
Q. may be described explicitly as the solution of the Klein-Gordon equation
having the Cauchy data |B-'6,8D0] at time 1, for X = (1, x).

ProoF. Observe that H is unitarily cquivalent to L,(M, C): for cach 1, there
is a unitary operator S(r) from H onto L,(M, C) that maps the vector ¢ in H
into Cd(r) — iC~'a,b(r). This unitary equivalence carrics the operator A in H
into the operator (m> — A)"“ in Ly(M, C); we denote this operator as B to
distinguish it from the operator of the same form in the rcal Hilbert space L.
Since D.(A) is a unitarily invariant concept, S(t) cxtends uniquely to an iso-
morphism of (D.(A)) with (D.(B<)) and of (D _ .(A)) with (D _.(B)). Now

Re((d. Yhu) = (Cd(D), Cy(n)y. + (C~'a,d(1). C~',p(1))y.

while &(1, x) = (d(1), ,),., whence d(1, x) = (Cd(r), C-'d,),. Setting Q for
the solution of the Klein-Gordon equation with the Cauchy data at time ¢,
[B-10,6D0], it follows that &(X) = Re((d, §2)). Unicity is immediate, and
boundedness and continuity of €, as a function of X follows from that of &,
in conjunction with the observation that temporal cvolution is e, which
leaves invariant the norms in (D(A")) for arbitrary n. The Lorentz covariance
in the case of Minkowski space-time follows from the Lorentz invariance of
the norm in H. O

COROLLARY 7.6.1. With the same notation as earlier, and with linear dif-
ferential operators D, and D, that are of constant coefficients in the case M =
R" or C= if M is compact, the (finite) Wick product

VX) = (D $)X)D:)(X)--+(D33,b)X)D 30 D)X)--+:

exists and is a continuous and bounded function of X with values in (D _ .(H)).
For arbitrary f € C5(RX M) (resp. in C;(R)),

J V. x)f(X)dX  (resp. [V(t, x)f(t)dr)

exists and is a continuous linear aperator from (D.(H)) 1o itsclf.
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ProoF. It follows from Theorem 7.6 that if S is a continuous lincar operator
on D_.(A), then (S$)(X) = Re((d, $*Qy)). Thus, the factors D(X) and
D,3,4(X) in V(X) are all of the form ¢&(z) for suitable vectors z in D_.(A), to
which the Wick product applics. Continuity results from the continuity of
Wick products as a function of the factors involved. For a finite number of
differential operators of bounded orders, the V(X) all lic in D(A") for values of
n bounded away from — . Continuity as a function of X, together with in-
variance of the norm in (D(A")) under temporal evolution, then implies that
the V(X) form a bounded function of X within any compact X-region.

It follows that the indicated integrals exist as forms. That the temporal in-
tegral represents a continuous linear operator on (D..(A)) to itself follows from
Scholium 7.8. By virtue of the boundedness of the integrand and the estimates
of Lemma 7.5.1, the further integral over X involved in the space-time integral
remains a continuous linear operator on (D.(H)). O

COROLLARY 7.6.2. Let ¢ denote the free Klein-Gordon field over Minkowski
space My. The map f— [:@(X)": f(X)dX from C;(M,) to forms on (D.(H)) in
fact maps into the continuous linear operators on (D.(H)) and is Poincaré-
covariant.

ProoF. This is immediate from the preceding corollary and the Lorentz-
covariance of the Wick product. O

LEXIcON. In the carly days of quantum ficld theory it was noted by Kramers
and emphasized by Bohr and Rosenfeld (1933) that the value of a quantum
ficld at a point was a purely ideational object, physically speaking. The view
was that any physically realizable probe of the ficld could at best determine
the field average, in some region, or with respect to an appropriate averaging
function. In this connection, Bohr and Rosenfeld computed the commutation
relations for the appropriately averaged quantized free clectromagnetic field in
the neighborhood of a point. Since that time it has been recognized that, in
mathematical terms, appropriate local smoothing of the quantized field was
required to obtain a bona fide (densely defined) operator in Hilbert space. In
the interest of manifest relativistic invariance, smoothing in both time and
space is indicated, and is described above in the technically adaptable space
Co(My).

For dynamical purposes, averaging in space at a fixed time is more effec-
tive, particularly where nonlinear expressions arc involved. For example. the
Hamiltonian H of the free Klein-Gordon field may be expressed in terms of
the field ¢(1, x) at the fixed time ¢ as

H = [:(Ve(X): + [(ap(X)): + m?:@(X)*]dx
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This symbolic expression, obtained simply by substitution of the quantized
field into the expression for the classical Hamiltonian (i.e., the correspon-
dence principle) is much more complicated from a mathematical position than
the expression of H as aI'(A). In a way it is remarkable that it can be validated
at all; each of the three summands under the integral sign is only a form-valued
distribution on space. But this integral expression for / is importunt because
it is essential to justify the use of the correspondence principle for the quanti-
zation of nonlinear wave equations. In the latter case there is no established
representation for / in a form analogous to dI'(A). We leave to the reader the
problem of inserting an appropriate spatial cutoff f € C3(R") into the above
expression for H, obtaining an essentially sclfadjoint operator by virtue of
cancellations in the sum of the three forms. Following this, it is necessary to
pass to the limit f— 1 in the space of selfadjoint operators. Although lengthy,
no essential difficulty is involved.

This is also no difficulty in expressing the underlying equation and com-
mutation relations in terms of the quantized field as a form-valued function.
The equation is simply

@+ mp =0,

which in terms of space-time averages takes the form ®((0) + m*)f) = 0 for
arbitrary f € Cg(M,). Forms in general have no well-defined commutator
(which is again a form), but if one of the forms is an operator, the commutator
may be defined. Thus in relativistic terms,

W) oW = @X) + [ DX - DY) (feCoMy)).

where W(f) is defined as W(Tf), T being the Poincaré-covariant projection of
Co(M,) into the solution manifold H of the Klein-Gordon equation. We again
leave the details of these alternative formulations to the rcader.

Problems

1. a) For the free Klein-Gordon field ¢ on Minkowski space of dimcnsion
n + 1, show that [g~ :(X)": f(x)dx exists as a continuous scsquilinear form F
on (D.(H)). if fe Cg(R") and r is a positive integer.

b) Show that if n = 1, the kernel of F maps from D.(H) into the Hilbert
space K (i.e., [F(u. u")| < c(u) lu'l| for all u € D.(H)).

c) Show that if n > | and r > 1, then in general the Hilbert space operator
corresponding to F has only 0 in its domain.

2. Let M denote the n-torus T, where n > 1. and let ¢ dcnote the free
Klein-Gordon field over R x M. Show that if p > 1, then the domain of
J:(0. x)7: dx as a Hilbert space operator in K has domain consisting only of
0.
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3. Show that if f € C5(M,) and if ¢ is the frec Klcin-Gordon ficld over M,
then f:@(X)% f(X) dX is essentially sclfadjoint on D.(H). (The analog for
higher, cven powers is an open question even with the restriction that f is
nonncgative.)

4. Extend the treatment of the Wick products of free Klein-Gordon field
operators to the case m = 0.

5. Show that Theorem 7.6 remains valid if the conclusion is changed to the
existence of a unique vector Qy € D_.(A) such that (X) = Im({(d.Q2:)n).
Determine the Cauchy data for 2 at time 1.

6. Show that (D.(A)) is irreducible under the action of the Poincaré group
in the case of the Klein-Gordon equation in M,. Show also that the most gen-
eral Poincaré-invariant continuous sesquilinear form on (D.(A)) is the given
inner product in H, within a constant factor. Establish the similar irreducibility
of (D _.(A)). Derive from this the most general continuous Poincaré covariant
map from M, into (D_.(A)).

7. Let x(r) denote the Brownian motion as formulated by Wicner, and let
¥(#) denote its fractional derivative of order Y2, as a random-variablc-valued
Schwartz distribution (defincd by Fourier transformation). Show that there ex-
ist similar Schwartz distributions, which may be denoted as :y()":, that are
uniquely determined by the properties of having vanishing expectation values,
and satisfying the relations

(y() + ()" = YO + nf(@):y(e)~": + Yan(n — Df(OD2y(0)" 2 4o,

where f is an arbitrary real function in L..(0, 1), and :(y(r) + f(1))" is defined
as the transform of :y(#)": under the transformation y(r) — y(1) + f(1), in the
following sense: et U denote the unitary operator on L,(C), where C denotes
Wicner space, induced canonically from the absolutely continuous transfor-
mation that carries [h(f)dx(s) into [A(1)d (x(t) + F(1)), where F(1) = [, f(T)dx,
for arbitrary h € L,(0, 1). Then, conjugation by U transforms the operation of
multiplication by :v(f)": into the operation of multiplication by :(y(r) + f(n)™
(each after integration relative to the same function in C5(0, 1)). (Hint: show
that y(¢) differs inessentially from the fixed time frec quantum ficld for the
wave cquation in two space-time dimensions. )

8. The *'white noise’” w over a measure space M may be defined as the
isonormal distribution over the real Hilbert space L,(M. R). Let M be a C*
Riemannian manifold, cither R* or compact, let B = (m? — A)* as carlier,
and let ¢ denote the random Schwarz distribution over Ci(M) (i.c., linear
mapping from the latter space to random variables), f— w (B~ "1 ), f € C5(M).
Show that this distribution is (probabilistically) equivalent to the Klein-Gor-
don frec field over space at a fixed time, relative to free vacuumi expectation
values,

9. a) Let H be the Hilbert space solution manifold of the Kiein-Gordon
equation in R X M, as earlier, and supposc that all vectors are periodic in ¢
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with a fixed period 2p. Show that if ¢ denotes the free quantized Klein-Gordon
field over R X M, then the space-time integral [, _, ., «a:@(X)":dX is essen-
tially selfadjoint on D.(H). (Hint: use the result of Poulsen (1972) on the es-
sential selfadjointness of invariant forms.)

b) Taking M = S* with its usual Riemannian structure, and m = 1, show
the periodicity in (a) is valid withp = n.

c) By exploiting conformal invariance of the wave cquation, show the uni-
tary equivalence of the free quantized wave equation field over four-dimen-
sional Minkowski space M, and the quantization of the Klein-Gordon equation
@ ~A+ Dp=00onR xS

d) Conclude that if ¢ is the free quantized wave equation field over M,,,
then [ m, @(X)*: dX has a natural (conformally covariant) interpretation as a
sclfadjoint operator in K. (Hint: note the conformal invariance of the corre-
sponding classical intcgral. Do not use the usual relativistic Hamiltonian H,
which suffers from ‘‘infrared’’ problems, but work with forms on D..(H'),
where H' is the field Hamiltonian corresponding to temporal evolution in R x
§*.)

10. Develop the notion of power of a quasi-invariant distribution ¢ on C},
over a manifold M: &(f) = [ ¢(x)f(x)dx. Show that when N(¢{(x)") exists for
all r, where N denotes renormalization with respect to the expectation func-
tional derived from the given probability measure, it is local in the additional
scnse that ¢(x) is unaffected by the induced action of the translation & — ¢
+ f. where f € Cg(M), if f vanishes in a neighborhood of the point x.

11. Suppose that f and g are in Cg(M,) and that the region of influence
(relative to the Klein-Gordon equation) of the support of f is disjoint from the
support of g. Show that [:@(X): f(X)dX and [:¢(X)":g(X)dX commute, as op-
erators on D (H), wherc ¢ is the free Klein-Gordon field, r and s being arbi-
trary integers.

Bibliographical Notes on Chapter 7

The standardization of renormalization for products of frec fields by Wick
(1950) is rigorously applicable to normalizable ficlds; its adaptation in the
physical literature to products of fields at a point is heuristic. The present def-
inition applicable also to intcracting ficlds was given in an implicitly axiomatic
form by Scgal (1964b) and developed along rigorous constructive lines by
Segal (1967; 1969a. b; 1970c; 1971). Wightman and Gérding (1964) showcd
that the (Schwartz) distributions corresponding to local products of free ficlds
werc densely defined opcrators in Hilbert space, with the aid of combinatorial
properties of Wick products established by Caiencllo. Nelson (1972) and Bacz
(1989) wreated Wick product theory on the basis of scales of the D.. 1ype.
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Construction of
Nonlinear Quantized Fields

8.1. Introduction

The intuitive conceptual simplicity of nonlinear quantized ficld theory con-
trasts strikingly with the depth of the complications that arise from attempts at
rigorous mathematical implementation of the underlying ideas. A priori, not-
withstanding the formal simplicity and physical appeal of the proposed the-
ory—rooted in the work of Dirac, Heisenberg, Pauli, ct al.—there is no as-
surance that this thcory actually exists, nor as yet is therc a definitive
mathematical interpretation for it. In dircct formal terms, it involves nonlincar
functions of quantized distributions, which are rightly looked on with consid-
crable suspicion from a mathematical standpoint. In practical terms, the situ-
ation is not that much better; in the original and most studied case of quantum
electrodynamics, there is still no mathematically manifestly rigorous proof of
*‘renormalizability'' in formal perturbation theory, although a posteriori and
partially subjective computations along these lines have reproduced the results
of some of the basic measurements that were indicative of the empirical rele-
vance of quantum ficld effects.

For thesc reasons it appears most important that the construction of nonlin-
ear quantum fields be not only technically rigorous but also intuitively con-
vincing, by virtue of closc conformity to both basic physical principles and
the mathematical ideas in terms of which these ficlds are formulated and de-
veloped. Otherwise there will remain a real possibility that nonlincar quantum
ficld theory as sought for more than a half century may be a specious illusion.

As yet it is only in two spacc-time dimensions that nonlinear quantum ficlds
have been constructed in conformity with such desiderata, and even in this
simplificd, and of course unphysical case, there remain some unresolved and
significant issucs. But the general method is a mathematically interesting and
physically convincing one, which cxtends on a preliminary basis (e.g., con-
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struction of ‘‘cutoff’’ theories) to the empirically relevant four-dimensional
case. This chapter treats the underlying mathcmatical theory in the simplest
form that displays the essential idcas but also has potential adaptability to an
attack on the four-dimensional case.

In formal principle, the Hamiltonian H for the prototypical scalar nonlinear
wave equation [J¢ + p’(p) = 0, where p is a given polynomial, is a func-
tional of the putative *‘interacting’’ field ¢ satisfying this classical cquation,
given as follows:

H(p) = [[Y2((Ve)* + (39)) + p(y)] dx.

The integration here is over space at a fixed time, but is independent of time
by virtue of the underlying differential equation. According to standard quan-
tum-mechanical ideas, the corresponding quantized field ¢ is propagated by
the Hamiltonian H(¢) obtained by substituting the quantized ficld for the clas-
sical field in the expression for the Hamiltonian. Formally, if the Cauchy data
are given for the field ¢ and its first time derivative d,¢ at an initial time, say
t = 0, then H(¢) may be evaluated, and the quantized ficld obtained at all
time by conjugation of the initial data with ¢« However, p(¢) requires
renormalization, being infinite if interpreted by a straightforward limiting pro-
cedure, and this renormalization depends on the vacuum, as seen in Chapter
7. The *‘physical’’ vacuum, represented by the lowest cigenvector of H(¢p), is
the appropriate one here. However, since this is not known a priori, the precisc
interpretation of p(¢) is also not known. In addition, the initial data, i.c., the
quantized field ¢ and its first time derivative d,¢ at the initial time, arc not
known a priori, apart from the presumption of irreducibility and the canonical
commutation relations, which, as seen in Chapter 4, by no means determine
(within unitary equivalence, which is all that matters here) these initial ficlds.

Some such complications are not unexpected in a truly nonlincar problem.
A natural strategy for their resolution is by successive approximation starting
from the free field as a first approximation. The next approximation is then
defined by a formally linear differential equation, or equivalently as the ficld
obtained from the free field by propagation with the Hamiltonian formally
given as H(g,), where ¢, denotes the free field. However, the rigorous imple-
mentation of this formal procedure is not straightforward. The problem is,
briefly, that H(¢,) is formally equal to H, + V. where H,, is thc Hamiltonian
for the free quantum field, while the interaction encrgy V = [ p(e,)dx is rel-
atively singular, and thereby outside the scope of conventional perturbation
theory, e.g., of the Kato-Rellich type. The interpretation of H,, + V as a self-
adjoint operator having a unique lowest eigenvector, etc., will occupy the first
part of this chapter.

The strategy of the treatment of H(¢,) is as follows: one needs a common
domain on which both H, and V are well defined and act appropriately. Rather
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curiously, one proceeds via analysis of the one-parameter semigroups e~
and e~ (1 > 0), to establish a one-parameter selfadjoint semigroup that can
be identified with e-%, where H = H, + V. A direct construction of the
physical time cvolution group e is not presently known. The treatment of
these semigroups is facilitated by relating them to a scale of Banach subspaces
K, of K, whose norms increase in strength with p. More specifically, e~
improves the status (relative to the scale) of a given vector at a rate that is
more rapid than the ratc at which e~ worsens its status. In a fairly general
context of this type it is then possible to establish H, + V as a sclfadjoint
operator, and to develop aspects of its spectrum. The functional-analytic tech-
niques in so doing involve notably the Duhamel and Lie-Trotter formulas for
eA+8, wherc A and B are given operators, and are facilitated by basic interpo-
lation theory for operators.

8.2. The L, scale

Since the quantized field at a given initial time represents the Cauchy data
in the solution of quantized differential equations, there is a corresponding
conjugation % in the single-particle space H, as seen in Chapter 6. The real
subspace H, of all vectors x in H for which xx = x is associated to the canon-
ical pairing between the field and its first time derivative at the given time.
Accordingly, H, is not at all invariant under temporal evolution, i.e., under
the operators e, where H, is the Hamiltonian for the field. Despite this lack
of invariance, it serves as the basis for the establishment of an effective scale
of spaces; specifically, the scale L,(H,, g) for p € (1, «).

Formally, the Hamiltonian H for an interacting field is representable as H
= H, + V, where H, is the Hamiltonian for the presumed associated free field
and V is the interaction Hamiltonian. It is with the actions of the semigroups
e~ " and e~ relative to the indicated scale that we are here concerned. These
two semigroups behave quite differently, and we begin with the former. The
isonormal distribution g will be understood as the underlying distribution (un-
less otherwise indicated), with variance parameter | in connection with the
real wave representation.

THEOREM 8.1. There exists a universal constant € > O with the following
property. Let H be a complex Hilbert space (of arbitrary dimensian), and let
% be a given conjugation on H. Let A be a (x-) real selfadjoint operator on H
that is = 1. Let (K, W, T, v) denote the free boson field over H in the real
wave representation relative 1o x. Then e~""4)is a contraction from L (H,. &)
ta L,(H,, g), wherep = qe*and q = 2, for allt > 0.
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We set H = dI'(A) and N = oI'(I), and drop g where indicated by the
context.

LemMA 8.1.1. If H is one-dimensional, e~"" is bounded from L,(H,) to
LH,), for all sufficiently large 1, uniformly in A.

ProoF. Identifying H with C and % with complex conjugation, A has the
form z > az, where a = 1. Since e~ = ¢~V e-A-N and ¢-"lA~D js 3
contraction from L,(H,) to itself, it suffices to show that e-* is uniformly
bounded from L,(H,) to L,(H,), for all sufficiently large r. A classic formula
of Mehler (rigorously established by Hille, 1926) gives an expression for
exp( — tN) as an integral operator, with kemcl

Kx,y) = (1 = )~ "expl{—c¥x* + y?) + 2cxy}2(1 — )],

where ¢ = e~'. By the Schwarz incquality, and the cvaluation of a Gaussian

integral, for arbitrary f € L,(R) g),
[(e=™)x)| = (1 = ¢*)~YexplVacx(1 + )] |If]..
1t follows that if ¢ < 1/3,
le=#flle = (1 = %1 = 3¢ + A" ||flls

completing the proof.

LEMMA 8.1.2. If H is one-dimensional, e~'" is a contraction from L, (H,)
toL(H,) forallp=2andt=0.

Proor. From (e~#f)(x) = f K(x, y) f(y)dg(y) and the factorization

Kx, ) f(y) = (Kx, y)'*f) (K(x, y)'r),
where p’ = p/(p — 1), it follows via Holder's inequality that
e~ )@ = (f Kx. )| fPdg(y))'= (] K(x, y)dgyn™

But e-*1 = 1, so [ K(x, y)dg(y) = | (cqually obtainable by direct integra-
tion), and it results that |(e~¥f)(x)l" = [ K(k, )| f(y)lrdg(y). Integrating with
respect to x, the lemma follows. 0O

LemMa 8.1.3. If H is one-dimensional, then e~ is a contraction from
Ly(H,) to L (H,) for sufficiently large t.

PrOOF. It suffices to show that |le-"*f||, =< |If]l, for all f = | + h. where
(h. 1) = 0, and all sufficiently large r. For such f, ¢-"f = | + k, where k =
e~*h, and
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le=#fle = (1 + k(1 + k2
=1+ (k + k2 + (kk)> + 2kk + 2(k + Kkk + 2(k + k).
Using the Schwarz incquality, it follows that
I+ kl§ =1 + Cliklg + C'llkliz.

By Lemma 8.1.1, C'|k|l, = C"|}hll, if 1 = some 15, and evidently k||, =< e~"|lhll,.
For arbitrary ¢, > 0and t > ¢, + 1,,

llexp( —tN)hll, = llexp(—(t = o — 1,)N) exp(—toN) exp(— t,N)hll,.

Now exp(— (¢t — # — 1,)N) is a contraction on L,. Hence if ¢, is chosen so
that exp(—41,)C" < | and exp(—2¢,)C < 2, then

HU+ Kkl = 1+ 240G + Al = (1 + AR = (£},
completing the proof. a

LEMMA 8.1.4. Let M,(j = 1,2,...,n) be separable measure spaces, and
let T, be an integral operator on L\(M)) that is a contraction from L (M) to
L M)) (p and q being fixed, finite, and independent of j). Suppose also that
the kernels K(x, y) of the T, are nonnegative. Then the algebraic tensor prod-
uct T, X T, X+« X T, is a contraction from L,(M, X M, X---X M,) to
LM, X M; X=X M,).

Proor. It suffices by associativity to trcat the case n = 2. To this end, let
B be an arbitrary separable Banach space, M an arbitrary measure space, and
let L(M, B) denote the space of all strongly measurable B-valued functions F
on M for which the norm ||FI|, = (f |F(x)lPdx)"” is finite. Suppose T is an
integral operator that is a contraction from L,(M) to L (M) whose kernel K(x,
) is nonnegative. Then the operator 7" from L(M, B) to L (M, B) defined by
F +— G, where G(x) = [ K(x, y)F(y)dy exists and is a contraction. For the
mapping y — K(x, y)F(y) is easily seen to be strongly measurable from M to
B, for each x; and [G(x)lls =< f K(x, y) IF(y)llsdy, which imply that || |Gl I,
< || |FC)I |l This shows the absolute integrability of the integral defining G(x)
almost everywhere, and yields the estimate ||T'|| < 1.

Similarly, if B’ is another separable Banach space, and if T is a contraction
from B to B, then the operator T" from L (M, B) to L (M, B’), defined by the
equation (T"F)(x) = TF(x), for F € L (M, B), is easily seen to be a contrac-
tion. Taking B as L,(M,) and B’ as L (M,), and making the natural identifica-
tions of L,(M,, B) with L (M, X M) and of L, (M,, B') with L (M, X M) thal
are justified by the Fubini theorem, it follows that the contraction 75T extends
the algebraic tensor product T, X T,, which implies that the latter is also a
contraction. O
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LemMmA 8.1.5. For all p € (2, ), t > 0 and any real selfadjoint operator B
such that B = 0, exp(— 1d1'(B)) is a contraction from L,(H,) to L (H,).

Proor. If H is n-dimensional (n < «) and B is taken in diagonal form, the
kernel for exp( — 19I'(B)) is a product of kerncls for the one-dimensional casc,
and hence positive. The same argument as in the one-dimensional case then
applies by virtue of Lemma 8.1.4. Letting n — , the casc of an arbitrary B
of pure point spectrum follows. To treat the general B, let {f,} be a sequence
of countably-valued Borel functions on (0,%) such that 0 < £,(x) < x and f,(x)
~ xas n— . Sct B, = f(B), and let H, = aI'(B,) and H = 9I'(B). Then
exp(itB,) — exp(itB) (in the strong operator topology) implying that
T(exp(itB,)) — I'(exp(itB)), i.e., exp(itH,) — exp(itH). But this implies that
H,— H in the strong topology for unbounded selfadjoint operators, by virtue
of the uniform semiboundedness of the H, and 4. This implies in turn that
exp(—tH,) = exp(—tH) as n — . The proof is completed by applying Fa-
tou's lemma to the inequality |lexp( —tH,)f|l, < || f1l,.-

PROOF OF THEOREM. Since A — / = 0 and
exp( — 13l (A)) = exp( —1aI'(1)) exp(— 1 (A — 1)),

it follows from Lemma 8.1.5 that it suffices to establish the conclusion of the
theorem for the casc A = /. The operator exp(—(¢t + is)N), where N =
al’(1), is holomorphic as a function of r + is for t > 0, continuous as a func-
tion of s when t = 0, and unitary on L,(H,); for t = , it is a contraction from
L,(H,) to L,(H,). According to thc operator-interpolation theorem of Stein
(1956), exp(— (¢ + is)N) is then a contraction from L,(H,) to L,,,(H,), where
p(-' = Ya(l — t/ty) + Ya(t/t;). By an clementary estimate, p(f) > 2e* for
some constant € > 0. The convexity thcorem of M. Riesz then implies that for
arbitrary g > 2, e~ is a contraction from L (H,) to L_,..,,(H,). It follows by
induction that exp( ~ nt,N) is a contraction from L,(H,) t0 Ly, ppei,)(H,). from
which it follows that cxp( —¢N) is a contraction from L,(H,) to Ly, .(H.) for
all r. Applying the theorem of Riesz once again. it follows that e~ is a con-
traction from L (H,) 10 L,y (H,) forall g = 2. O

Theorem 8.1 implics the following estimate for quasi-polynomials in an
infinitc number of Gaussian random variables.

COROLLARY 8.1.1. There exists a universal constant € > 0 such that if V €
L,(H,) and if V is in the closed linear span of the polynomials of degree < d
on H,, then |V|,, = (p/2)y ||V|i.. Moreaver, exp(|V") € L,(H,) for some a >
0.
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ProOF. Let M denote the closed linear span of the polynomials of degree <
d. Then M is invariant under the e#, and N is bounded by d on M. Thus if p
= 2 exp(€r),

Vi, = lle-*(e*V)ll, =< lle*V I, = (p/2)*" V..
Now

lexp(VIl, = 2 ()=l VIl = Z (n) =" IV laa)™.

There arc only a finitc number of n for which an < 2, and the contribution
from these terms to the foregoing sum is clearly finite. For the remaining val-
ues of n, (|Vl)* =< (Yzany<<||V|]|7" and choosing a sufficiently small, the
series 2, (n!) ~(Vaany<ve||V]|3" < o, 0

8.3. Renormalized products at fixed times

The interaction Hamiltonian for a nonlinear quantized ficld has formally the
expression V = [ p(e(r. x))dx, where p is a given polynomial, and ¢(1, x)
denotes the putative interacting field. Even the free field at a fixed time is a
distribution or other gencralized function, as a function of the space variable
x, and there is no reason to expect the interacting field to be any more regular.
And in the casc of the free field, explicit analysis shows that if p is a monomial
of even degree, p(s) = s¥ for some integer r, then V is identically infinite, if
interpreted as a random variable relative to the Gaussian distribution associ-
ated with the frec field vacuum. There is thus no question that some specics of
renormalization is required to give clear meaning to the foregoing expression.
A natural—local, invariant, etc.—such renormalization was trcated in Chapter
7. which in the physical context should be defined relative to the physical
vacuum, which is usually described as the putative lowest cigenvector of the
total Hamiltonian. But at this point an essential complication intervenes: the
physical vacuum is not known at this stage, or even known to exist. It is there-
fore much simpler to treat renormalization with respect to the free vacuum,
which of course is known: and as a step toward the cstablishment of the phys-
ical vacuum, this is what is done, initially.

Some propertics of renormalized products relative to the free vacuum have
alrcady been developed in Chapter 7. In particular, when averaged relative to
a smooth function vanishing outside a compact subset of spacc-time, the result
is a densely defined operator on the underlying frec ficld state vector space K.
On the other hand, for the treatment of a nonlinear cvolutionary diffcrential
equation, the intcgration over time must be eliminated. Such an cquation has
the form du/dt = F(u, 1), where F is a given function of the unknown function
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u, whose dependence on ¢ is under consideration. When F is linear, this equa-
tion is readily reformulated in terms of temporal averages. Thus, if F(u, r)
takes the form F(r)u, where F(s) is a given lincar transformation, and if Utg)
= [ u(f)g(n)dt, where g is arbitrary in C5(R), then the differential equation
may be given an equivalent formulation in terms of U(-) as the equation Ug")
= —U(Fg) for arbitrary such g. But if F is truly nonlinear, this device is
ineffective.

Thus, without some wholesale reformulation of the underlying differential
equations of quantum field theory, it appears essential that the interaction
Hamiltonian be analyzed at a fixed time, without smoothing with respect to
time. Since the latter type of smoothing has a much stronger regularizing ef-
fect than smoothing over space, the fixed-time intcraction Hamiltonian must
be expected to be considerably more singular than the densely defined opera-
tors obtained from smooth averages over space-time. Indeed, when the num-
ber of space-time dimensions of a relativistic free ficld is greater than two, the
Wick powers of the field do not become densely defined operators on averag-
ing only over space with respect to a function in Cy. On the other hand, the
analysis of local nonlinear functions of a relativistic quantum field is greatly
facilitated by relativistic causality (in one of its interpretations), according to
which the field operators at different relatively spacelike points (e.g., points
at a fixed time) commute with each other.

The next sections are devoted to the establishment of the fixed-time prop-
erties of fields that are relevant to the construction of interacting fields. In
these sections we are concerned with a quantum ficld in space, and time will
not enter into the considerations explicitly. It will be advantageous for logical
clarity and generality to treat successively more restricted classes of spaces.
arriving eventually at the cases of R and S* for the presentation of the basic
theory of quantized nonlinear equations.

Renormalized products of theoretically observable quantum field operators
at a fixed time can be cffectively characterized by a nonlinear variant of the
Weyl relations involving only bounded operators. This serves to suppress ir-
relevant pathology that derives from formal manipulations with unbounded
operators. It will suffice here to treat the case of powers, or, more generally,
polynomials, in a scalar field. Initially, we make no assumption concerning
the space on which this field is defined, other than that it is a measure space
(S. 5). Here S denotes the underlying set, and s the given nonnegative count-
ably-additive measure on a given o-ring of subsets of S. We denote Ly(S, s) as
H, and assume given a dual couple (M, N, (-,-)) consisting of lincar subspaces
M and N of real functions in L,(S. s), with the pairing {-,-) defined as the usual
inner product in L,. We assume given a Weyl pair (U, V, K) over this dual
couple. and make the special assumption appropriate to the consideration of
local products of fields that if fe M and g € N, then gf ¢ M. We call such a
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dual couple multiplicative, and are concemned with a Weyl pair over a multi-
plicative dual couple that is grounded by the designation of a unit vector v
in K.

A renormalized power system for the grounded pair (U, V, K, v) over a mul-
tiplicative dual couple is defined to consist of continuous unitary representa-
tions U, of the additive group of M on K (n = 0, 1, 2,...) having the fol-
lowing properties: denoting exp(ifh(x)dx) as Uq(h) for h € LS. s), and
exp(ie(f)) as U,(f), then for arbitrary fe M and g € N.

(1) V(g)~'U(NIV(g) = UNU._(()RUa-A(2)fg?)--- Un( fg*): and
@ ULy = lifnz 1.

The selfadjoint generator of the one-parameter unitary group U,(tf), 1 real,
will be denoted as &"(f) and symbolically as [:¢(x)" f(x)dx.

LEXtcON. At first glance, the significance of the nonlinear Wey! relations
1) may not be apparent. To explain how they arisc naturally from the problem
of the appropriate definition of nonlinear local functions of a quantum field,
we interpolate a heuristic explanation.

Let ¢ and & denote point functions representing canonically conjugate fields
over S. That is, ¢(x) and ®(x) are hermitian ficlds, and they satisfy the com-
mutation relations
le). ®(M] = — id(x = y); lex). @(y)] =0 = [”(x), xX(y)] (x.veS).

Consider the problem of defining ¢(x)*. Whatever this may be, one would at
least expect that it commutes with all ¢(y), since formally

le(y), @(x)?] = [e(y), @x)]ex) + @x)e(y), ¢(x)] = 0.

Similarly, one would expect that

[%(¥), @x)*] = [%(y), @@X)le(x) + @)R(y), @(x)] = 2i &(x — y)p(x).
In terms of the corresponding distributions ¢, IT and &2, where

&(f) = [spx)f(x)dx,

these equations mean that for arbitrary functions f and h,
[b(f). d*()] = 0, TN, 2] = 2i d(fh). (%)

But as equations for ¢*(h). equations * arc fairly regular: they state that the a
priori undcfined object X = ¢?(h) satisfies the mathematically meaningful
equations [&(f), X1 = 0, [TI(f), X] = 2id(fh), in which all terms other than
X are well-defined operators. Thus, either such operators X exist, in which
case we say (x)? exists and defines the distribution [ @(x)2f(x)dx = X: or
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they do not exist, in which casc we may conclude that the intuitive concept of
the operator-valued distribution representing the square of the field was an
illusion. Moreover, when X exists, it is unique within an additive constant by
virtue of the irreducibility of the ¢(x) and %(y) in their totality, in the cases of
the frec and other fields normally contemplated. This additive constant may
be fixed in a natural invariant way by requiring that its vacuum expectation
value vanish.

Suppose we have resolved the question of the existence of ¢(x)? positively;
we may then proceed to treat ¢(x)* in a similar way. That is, formally it is
naturally constrained by the relations

(. X)) =0,  [&(Y), @*(x)] = 3i dlx — y)p(x)?,

providing a mathematically meaningful equation as earlier. Next, in casc ¢(x)*
exists, we may proceed to the treatment of ¢(x)*; and so on by recursion for
arbitrary powers.

Rigorous mathematical implementation of the foregoing idea would run into
ambiguities connected with the unboundedness of the operators involved, and
technical issues concerning domains, for which mere density in an underlying
Hilbert space, together with invariance under the operators in question, would
be quite insufficient, even though the appropriateness of such a technical as-
sumption is arguable. Some cxponentiation to unitary operators, which are
then free of technical domain requirements, is indicated, and there is no prob-
lem exponentiating the I1(g) to obtain the V(g) = exp(i[l(g)). By formal
powecr series manipulations it follows from the relations [%(y), @(x)] = in
O(x — yyp(x)"~! that

V(@) 'd"(NIV(R) = &"(f) + =+ (7) dm(fgm) +--- + & (fg").

This relation has been developed in a purely formal way; if, however, the
&’(h) are all selfadjoint and strongly commutative, then there is a natural way
to rigorize the relation, by forming the closure of the right-hand side. which
nccessarily exists and is selfadjoint (by spectral theory). Finally, exponcntia-
tion of this equation produces the nonlinear Weyl relations. Conversely, these
rclations rigorously imply the indicated partially infinitesimal relations.
Before resuming the rigorous development, beginning with some general
properties of solutions of the nonlinear Wey| rclations, including the property
just described, one last point about the physical justification for thc normal-
ization via vanishing vacuum expectation values should be noted. Mathemati-
cally. it would be possible to give arbitrary values to these vacuum expectation
values. However, in the putative eventual application to quantized nonlinear
wavc cquations, the vacuum expectation values are time independent. since
the vacuum state vector is eigenvector of the Hamiltonian. This mcans the
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vacuum expectation value would be the same in the infinite time limit, but the
physical expectation is that in this limit the quantized field is asymptotic to a
free field, and the nonlinear interaction term in the wave equation should tend
to 0, and so have vacuum expectation value tending to 0.

Recapitulating in rigorous terms,

ScHoL1uM 8.1. The nonlinear Weyl relations imply the equations

V(@) ' & (N)V(g) = &"(f) ++-+ (R) " (fg™) +--+ U fg), (¥

where boldface *‘+ '’ indicates that the closure of the indicated sum is formed.
Conversely, suppose given a Weyl pair (K, U(:), V(*)) over the multiplicative
dual couple (M, N) and mappings &",n = 1,2,..., from M to the selfadjoint
operators on K, that are linear and continuous (with respect to the strong
addition, etc., of operators),

o' (fy + £2) = &'(f) + d(f),
d(afy) = a d(f)), aeR; SufeM.

Suppose also that the &"(f) (f € M) are affiliated with the W*-algebra R
generated by the U(h), h € M. Then the nonlinear Weyl relations hold with
U.(f) = explid*(f)] if (*) holds for fe M and g € N.

The formal indications of unicity for the renormalized powers may be rig-
orously confirmed along the following lines: we define a grounded Weyl pair
to be simple in case the W*-algebras R and S generated by the totality of the
U(f) and the totality of the V(g), respectively, are maximal abelian in the
algebra of all bounded linear operators on K; and if, in addition, R together
with S forms an irreducible set of operators on K. We recall that in a separable
Hilbert space an abelian algebra is maximal abelian if and only if it has a cyclic
vector, in which case it is sometimes said to have a ‘*simple spectrum,’’ since
any selfadjoint operator that generates the algebra will then have (generalized)
eigenvalues of simple (unit) multiplicity.

ScHoLIUM 8.2. If a renormalized power system exists for a simple grounded
Weyl pair over a multiplicative dual couple, then it is unique.

PROOF. As the start of an induction argument, observe that U, is unique by
definition, and suppose that two renormalized power systems, denoted U,, and
U, coincide for m < n. It follows that for all fand g,

V(@) 'ULIV@Uf)! = V(@) U (NHV(@U.(f).
From this it follows that
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U(f)='ULN)V(g) = VQULS)~'U(f)-

Let S denote the maximal abelian algebra generated by the V(g). The last equa-
tion shows that U,(f)~'U,(f) is in 8. However, it is also in the W*-algebra R
generated by the e‘¢™® as h varies, since it commutes with every element of R,
and R also is maximal abelian. By the assumed irreducibility, the common
part of R and S consists only of scalars, so that U,(f) = c(f)U.(f) for some
scalar c(f). Hence (U.(f)v. v) = (f U (f)v, v) = |, showing that c(f) =
l. |

Renormalized power systems could now be treated over arbitrary complete
Riemannian manifolds, but in practice symmetries lacking in the general case
are important, and it will suffice here to treat the case in which the underlying
space S is a group G. The logical context is clarified by permitting G to be an
arbitrary locally compact abelian group, with the further assumption that the
energy operator is group invariant. Denoting this operator as B, this means
that BL(a) = L(a)B, where L(a) denotes the operator f(a) — f(x — a), f €
L,(G), and the measure in G is taken to be the essentially unique invariant
(Haar) measure. Any such operator has the form B = F-'M,F, where F de-
notes the Fourier transform operation, and M, denotes the operation of multi-
plication by the fixed measurable function b on the dual (character) group G*
of G. We call b the spectral function of B, and denote it on occasion as B(-).
In physical terms, G* is the momentum space and b(g*) for g* € G* is the
energy corresponding to the momentum g*.

In this context, a basic existence theorem for renormalized powers at a fixed
time is as follows: here and elsewhere, if 1 is a subinterval of {1, ®], L,(M)
denotes the intersection of the L, (M), p € L.

THEOREM 8.2. Let B be a given real G-invariant positive selfadjoint oper-
ator in L(G), where G is a given separable locally compact abelian group,
such that B(-)~' € L, «(G*), where B(-) denotes the spectral function of B. Let
M denote all real functions in L, .(G), and let N denote all real functions in
the domain of C = B". Let (K, W, T, v) denote the free boson field over H
= L(G), and set U(f) = W(C-f),feM, and V(g) = W(iCg), g € N. Then
there exists a unique renormalized power system for this Weyl pair with
ground state vector v.

ProoF. Observe first that (M, N, (-,-)) is a multiplicative dual couple. For if
g € N, then £C(-) € L,(G*), whence g € L (G*) for all g € (I, 2]. Accordingly,
g€ L(G) for all r € [2, ). Therefore if fe M and g € N, then fg € M. More-
over, the C-'f with fin M and the Cg with g in N are dense in H, = L,(G, R),
so that the W*-algebra R generated by the U(f) with f € M is the same as
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that generated by the W(f') with f* € H,, and hence maximal abelian; and
similarly for thc W*-algebra S generated by the V(g) with g € N. Morcover,
irreducibility for (U, V) follows from the corresponding property of the free
ficld over H, so that the present Weyl system is simple.

To show existence of a renormalized power system, ¢"(f) will be con-
structed as a limit in L,(R, v) of approximations to ¢~(f) obtaincd by smooth-
ing the underlying quantized field ¢(x). Let g be an arbitrary cven clement of
M for which [g(x)dx = 1 and |§(x)| < I; let M, denote the class of such g.
To simplify the notation we write I'(a) for I'(L(a)), and notc that
[(a)-'d@)(a) = d(g,), where g(x) = glx — a), writing the group G
additively, and similarly for the II(h), by virtue of the G-invariance of B.
Moreover, conjugation by I'(a) leaves R and S invariant (as a set), and also
lcaves invariant the expectation functional E, E(S) = (Sv, v), having statc vec-
tor v, defined on all bounded linear operators S on K. Accordingly, if S is a
given operator in L,(R, v), the mapping a — I'(a)~'ST'(a) is continuous from
G into Ly(R, v). It is clear that v is in the domain of all polynomials in the
(b(g). and we denote by :--+: the operation of renormalization with respect to

Now for arbitrary g € M and integer r > 0, :d(g): is a polynomlal in d(g)
of degrec r with real coefficients, whose term of highest degrec is ¢(g). It
follows by a simplc estimate based on this observation, together with spectral
theory, that :db(g): is selfadjoint and in L,(R,v). The same is true of
I'(a)-":d(g)I'(a). and it follows that the map a — :d(g,)': is continuous and
bounded from G into Ly(R, v).

It follows that [ :d(g,): f(y)dy exists as a Banach-space valued integral if
f € L,(G)NM, where the Banach space in question is L,(R, v). We denote the
value of this integral as u(g). It will next be shown that if {g,} is a scquence in
M, such that g,(y) — | as n— o (pointwise on G*), then the scquence {u(g,)}
is convergent in Ly(R, v). To this end, we compute the inner product (u(g),
u(h)), in the space L,(R, v), which will henceforth be denoted as K'. (Note
that K' is unitarily cquivalent to K via the mapping T — T, since v is a cyclic
vector for R.) Applying Wick's theorem, E(:z": :z":) = r!E(zz')" for arbitrary
z and 2’ of the form g, h e M, whence

(u(g), u(h)) = [[(:b(g.):, :b(h,):) fla)f(b)dadb
= r! [[(C-'g., C~'h,Yf(a)f(b)dadb.

By Fouricr analysis, (C~'g,, C~'h,) may also be expresscd as K(a — b). K
being the inverse transform of k = B(-)~'gh, where & and  are the Fourier
transforms of g and h. Since B(-)~' € L, ((G*), k is in L, .,(G*), implying
that K is in L, .,(G). Hence K is in L, (G). The convolution [K"(a ~ h)f(b)db
is again in L, .(G). since f € L,(G). Now (u(g), u(h)) is the inner product
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of the foregoing convolution with f, which by Parseval's theorem for the L -
Fourier transform is the same as the inner product of the respective Fourier
transforms. Accordingly,

(u(g), u(h)) = r! fooke(y)|f(y)[2dy,

where f is the Fourier transform of f and "7 is the r-fold convolution of & with
itself. Applying this result to the evaluation of [lu(g) — u(h)l|, this may be
expressed as

Jol(8B()-) + (RB()- ") = 2(hgB()~ )y )(w) f(y)ldy

(Note that since g and h are taken invariant under the map x — —x, their
Fourier transforms are real.) Setting g = g,, and h = g,, the Fourier trans-
forms of g, and g,, are uniformly bounded by 1 and converge pointwise to 1.
The expression

[(8"2'3()- l)('r) + (gmB(.)- I)('r) - 2(8‘"8:”8(.)— l)(-n]

is dominated by 4(B(-)~')*” and converges pointwise to 0 by the Hausdorff-
Young inequality. As n, m — «, the entirc integrand over G* converges to 0
and is dominated by the function

41B() 1) | fiml.

which is integrable since [B(-)~'|""is in L(G*) for all p > | and f(_v) €
L,(G*). Hence {u(g,)} has a limit in K', which we denote as &’(f). By conti-
nuity, ¢"(f) may be extended from L,(G)NM to all of M, and the extension
will also be denoted as &'( f).

1t is clear from this construction that e~/ is in R. To complcte the proof
of the theorem it remains only to show the nonlinear Weyl rclations. To this
end, note that

V(R 'd(fyVih) = (&(f) + (£ By  (r=1,2,.).

In order to establish the nonlinear Weyl rclation, it suffices to establish the
following half-infinitesimal form:

Vih) ' NIVIR) = @7(f) + nd=\(fR) + -+ by nn=m(fhm) + -

provided the ¢*(g) are all known to be affiliated with the same abelian ring R.
as is the case for the ¢’( f). To establish the half-infinitesimal form of the Weyl
relations, observe first that the corresponding relations hold when ¢(x) is re-
placed by d(g,), wherc g is as earlier: V(h)' '&(k)"V(h) = (k) + (k. W]
forn = 1,2, ... (as a consequence of the case n = 1). Obsecrve next the equa-
tion V() ~: (k) V(h) = :blk)y: + md k)"~ ik, h) + - + (5):b(kym:(k, h)™
+ -+-. This follows by induction on n. More specifically. substitution of th for
h followed by differentiation with respect to 1 reduces it to the same cquation
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with n replaced by n — 1. In this reduction use is made of the equation for
real h and k

[:b(k)™ d(ih)] = in(k, h) :blk)- ",

representing a special case of the defining relation for Wick products.
On replacing k by g, and integrating over G after multiplication by f(x), this
implies a relation of the form

Vi)~ ', (f. gV(h) = &.(f.8) + nd,_\(fig. h) +:+ (C)b,_.(f 8. h)
+ee ot [ (g, W)y S(x)dx,

where

&, (f. 8) = [:d@):f)dx,  &,(f. 8.1 = [:dg):(g.. h)f(x)dx

are operators in L,(R, v) that converge in this space to corresponding operators
in the putative half-infinitesimal form of the nonlinear Weyl relations. To com-
plete the proof,, it therefore suffices to show that if the S,,, arc selfadjoint op-
crators in K’ such that S,, — S, as j — o, and such that for some unitary
operator V for which V-'RVeR forall R e R,

VIS,V = S,y # Sary Fooet Sy, +o0n,

then the same equation holds with each S, replaced by its limit S,. This fol-
lows from the use of spectral theory to represent all the S, , by multiplication
operators on a probability measure space. It follows from this representation
that if a sequence of selfadjoint operators converges in K', then it converges
in the strong operator topology. For such convergence of a sequence {H,} of
sclfadjoint operators to another selfadjoint operator H is cquivalent to the con-
vergence of exp(itH,) to exp(itH) in the strong operator topology for bounded
operators, for all real 1. Lebesgue integration theory shows that if {A,} is a
sequence of real measurable functions on a probability measure space P that
converges in L,(P) to h, then the operation M, of multiplication by h,, acting
on L,(P), converges in the strong operator topology to M,. The unitary invari-
ancc of this type of convergence for unbounded selfadjoint operators then im-
plics that V-1S, V converges to V-'S,V in this topology.

Problems

1. a) Show that the M of Theorem 8.2 is a topological algebra in the topol-
ogy of convergence in each L (G), p € |2, ).

b) Show that &~( /) is continuous from M in this topology to L, ..,(R. v).

2. Show that Theorem 8.2 remains valid with the following choices for M
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and N: M consists of all real functions in L,(G); N consists of all real such
functions whose Fourier transforms have compact supports.

8.4. Properties of fixed-time renormalization

This section develops properties of the fixed-time polynomials in a quantum
field. It treats function-space aspects, the applicability of renormalization to
interacting fields rather than the free field, and locality features. All of these
are involved in the solution of nonlinear quantized wave equations. For an
arbitrary polynomial of the form p(x) = gox* + a,x"~! + -« a,_,x, we define
&,(f) as closure of ad"(f) + a,d"'(f) + - a,_,d'(f) when this exists.
With the hypotheses of Theorem 8.2, this is the case for all fin M, by spectral
theory.

COROLLARY 8.2.1. With the hypotheses of Theorem 8.2, & (f) is in L (R, v)
for all 2 < g <=, p being an arbitrary given polynomial.

ProoF. This could be shown by direct computation of the vacuum expec-
tation value of &,(f), for even integers ¢, using Wick's thcorem. However,
it is easy to deduce the result from Theorem 8.2, which also yields a simple
estimate for [|d,(f)I,. Let N denote the number (of particles) operator in the
free boson field over H = Ly(G). It is clear that &,(f)v is a limit in K of
vectors in the at most n-particle subspace K = @, K, where # is the degree
of p, whence &,(f)v is an element of this space. Denoting the spectral mea-
sure for N as E(B), where B is an arbitrary Borel subset of R, then K' is in
the range of E([0, n]). Now by Theorem 8.1,

"e_w¢p(f)v"q = "¢p(f)vlllv
showing that [|b,(f ), < e |ld,( f)VIl. for sufficiently large 1. a

The solution of a nonlinear quantized wave equation at a fixed time cannot
be expected to be similar to the free field at this time, and in particular the
physical vacuum will certainly be different from the frec vacuum for a physi-
cally nontrivial theory. Accordingly, what is needed in order to give precise
meaning to such an equation is a notion of renormalized powers that is appli-
cable to a general type of vacuum. The next two theorems will show the ex-
istence of a unique local concept of powers extending that treated in Section
8.3, to the case of an arbitrary (nonfree) vacuum of appropriate regularity.

THEOREM 8.3. Let B, C, G. M. and N be as in Theorem 8.2. Let (K. W,
T', v) denote the free boson field over H, set U(f) = W(C" 'f) for fe M., und
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V(g) = W(iCg) for g € N. Then, if u is any unit vector in K, and u € K, with
P > 2, there exists a unique renormalized power system for this Weyl pair with
ground state vector u.

Let :d: denote the renormalized power system (r.p.s.) for the frec vacuum,
whose existence is asserted by Theorem 8.2. The putative r.p.s. with the
ground state vector « will be denoted as Y«(+). By definition, Y°(f) = [ f(x)dx
= ¢°f) for f € L,NM. Thus the following induction hypothesis (#,) holds
(trivially) for r = 1:

For s < r, {'(") exist satisfving the r.p.s. conditions, and have expressions
of the form
() = &'(f) — sPr'(fk) == (NI fR) — -+ — A fK). (H,)

It will be shown that (H,) implies (H, . ,), thereby establishing the thcorem.

LEMMA 8.3.1. There exists k, in M such that

(b u,u) = (f k), forn>0.

Proor. From Hélder's incquality and the bound
b, = C,lib(Nl:

for g € [2, =), it follows that u is in the domain of &"(f), and that [(d( /. u)|
s C [|d"(f)ll., where C is a constant (dependent on n). By the proof of
Theorem 8.2,

"N, = (11 [S. B~ 1m(y)| f(y)|2dy]*

for n > 0. Since B~ '*"(-) is in L, for any q € (1, ], this implies, in conjunc-
tion with Fouricr transform theory that for all positive n, ||g"( /)|l = C, |If].
for any r € (1, 2]. By the Ricsz representation theorem there exists a &, € L,(G)
such that

((fu. u) = {f. k).
Since |(f, k)| = C|If|l, forany re (1,2], k,e M. ]

ProoF OF THEOREM 8.3. Suppose that H, holds. Definc T as the closure of
&) = (k) = = OWISR) == R,

Since all the summands arc selfadjoint and affiliated with R, the indicated
closure cxists. It will next be shown that T satisfies the r.p.s. conditions for
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Yr(f). To this end, conjugate by V(g) and use the induction hypothesis to
obtain the equation

V(g)~'TV(g) = closure of
{{d(N) + Db ='(fo) + ()~ fgD) ++++ + (N(SE)]
= W'k + (r = DU 2(fkg)
+ O fhig?) + oo+ W fhg )
= (D~ fka) + (r = 20X fhog) + (23~ 4(fk287)
+e ot WO(fhag o) — oo - SR}
All the summands here are affiliated with R, and the closure indicated exists

and is selfadjoint as earlier. Summing by columns instcad of by rows shows
that V(g)~'TV(g) is the closure of

{ld() — TGN~ '(fk))
+ (D '(fe) — 5B  ~'~( fkg)|
+ (D (fg?) — Zi 3 X fkg)]
+oor DO S2).

Applying the induction hypothesis. this last expression is expressible as the
closure of

T+ (O r='(fg) + GWr~2(fg?) + -+ + W(fg").

Thus the transformation properties of T relative to conjugation by the V(g) are
as required for an r.p.s. It remains to check the vanishing of the expectation
value (Tu, u), but by the induction hypothesis, (T, u) = (b7(fu, u) —
¥°(fk,) = 0, completing the proof. (]

The foregoing proof is casily secn to be reversible as regards the two ground
states, and indeed both may be distinct from the free vacuum state.

CoRrOLLARY 8.3.1. With the hypothesis of Theorem 8.3, let u and w be unit
vector in K, for some p > 2, with corresponding renormalized power systems
" and y". Then there exist functions k, (j = 1,2,...) in M such that

Y =) = O URD) = @Y (k) = = Sk

ProOF. Estimates on (Y"( f)u, u) similar to thosc on ($"( f)v. v) in the proof
of the theorem follow from the recursive expression relating Y"(f) and &~(f).
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With these estimates the proof applies equally to the case when the r.p.s. for
v is replaced by that for u. O0

A basic property of the renormalized powers is their locality. From a foun-
dational physical standpoint, and also for the derivation of the finite propaga-
tion velocity of the associated nonlinear quantized wave equations, it is im-
portant that $s"( f) depends essentially only on the Ys(x), with x in the support
S(f) of f. For any subset S of G, we denote by R(S) the W*-algebra generated
by the U(f) for those f in M such that a neighborhood of S(f) is contained in
S.

COROLLARY 8.3.2. For arbitraryfe M, andn = 1. 2,...,W"(f) is affiliated
with R(S), for any neighborhood S of the support of f.

PRrOOF. In the proof of Theorem 8.2, the approximation g to § may be cho-
sen to have arbitrarily small support Q2. The approximation u(g) to "(f) is
then affiliated with R(S), where S is S(f) + 2 (sum in G), and hence so also
is its limit ¢"( f). The proof of Corollary 8.3.1 applied to the case when w =
v shows that the same is true of the y"(f). O

Problems

1. Show that the renormalized powers treated in the preceding section are
covariant with respect to translations on G:

F@~'¢"(N)F@) = ¢(f) (L&) = fix—a)).

2. Modify the preceding results by using the algebra L, ..,(G) in place of M
as the algebra containing the functions f on which ¢~ is defined.

3. Show that the map f— &"(f) is continuous from M and from L, .,,(G)
into the selfadjoint operators in K, where the topology on L, ..,(G) is the se-
quential topology in which convergence means convergence in every L, space,
pell, ).

4. Show that ¢"( ) may alternatively be defined by the equation

d(fy = }:ﬂ P(n) {J &(g)f(x)dxlv,

where P(n) denotes the projection of K onto its n-particle subspace. (This
simple expression for renormalized powers does not generalize to interacting
fields.)

5. Show that if G is a finite group, and if n is even, then ¢(1) is bounded
below; but that if G = §', then ¢?(1) is unbounded below. By explicit com-
putation show however that exp(— ¢(1))v is in Ly, .,,.
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8.5. The semigroup generated
by the interaction Hamiltonian

Next we treat the semigroup expressed formally as e-*, where V is an in-
teraction Hamiltonian of the form d,(f) treated earlier in this chapter. This
semigroup is fairly singular, and is hardly tractable at all without the assump-
tion that p is bounded below. It will clarify the origin of the arguments in-
volved to use the suggestive notation ¢,(f) = [ :p(¢(0, x)): f(x)dx, while
recognizing that ¢ does not exist as a point function, to which p is directly
applicable. As seen in Chapter 7 ¢(0, x) can be given appropriate rigorous
meaning as a densely defined sesquilinear form, but this would not facilitate
our immediate object—roughly, to show that the semigroup e~ degrades the
L,-status of a vector in K more slowly than the semigroup e~ improves it.

The underlying wave equation for which V has the indicated form is for-
mally

Oy + p'(9) = 0.

In the case of a classical wave equation, it is only when the energy is bounded
below, or substantially when p is bounded below, that solutions generically
exist globally. This is physically natural, since the lower bound of the energy
is necessary for stability. The same motivation suggests that an effective the-
ory for quantized wave equations will require similar restrictions on p. How-
ever, the nonnegativity of p by no means implies the semiboundedness of the
operator V, as a consequence of the infinite number of degrees of freedom.
This can be seen explicitly in simple cases (cf. Prob. 5, Sec. 8.4).

Thus, e~ is not a bounded operator even when p is bounded below. But
the unbounded semigroup e~*, t > 0, acts appropriately on the L, scale for
the solution of nonlinear quantized wave equations in two space-time dimen-
sions. This is described in

THEOREM 8.4. Let G = R' or §', B = (m* — A)": where m > ( in the
context of Theorem 8.3, and assume further that f € M is a nonnegative inte-
grable function on G. If p is a nonnegative polynomial vanishing at 0, and V
= &, (f) theneVisin L (R, v).

PrOOF. Note that p being bounded below means that p has the form p(x) =
ayx" + ax"~' + -+ + a,_,x, where a, > 0 and n is even. If X is a normal
random variable of vanishing mean and variance ¢?, then all of its moments,
and in consequence all of its renormalized powers, scale with c. Thus, if G is
taken in Theorem 8.2 to consist only of its unit element, X may be identified
with cé(1), and its renormalized powers correspondingly defined. It follows
that
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PX): = apX" + aycXn=t + o+ a,cn,

where the g; are independent of ¢, and subsequently that :;p(X): = — kc” for an
appropriate constant k. For g € M, let

Ve = Jap(d(g):f(x)dx,

and let Z = V — V,. Then &(g) has variance ||B - “ig| whence, by the preced-
ing paragraph, V, = —k|[B~"g]|P [f(x)dx.

We now estimate the distribution of V on the negative half-axis. For any
AeR PVs —A - 1) = PriZ + V,< =\ - 1. IfV,= -\, then Z +
V.canbe = =\ — lonlyifZ= ~1. Setting P(A) = Pr[V =< —~\ — 1], this
implies that

PO\ = Pr{iz] = 1) = El|2}9)

for arbitrary ¢ > 1.

We take advantage of the arbitrariness in q as follows. Since Zv is in the
spectral manifold E(n) of thc number of particles operator N = [ A dE(}), it
follows from Theorem 8.1 that if g < 2%, then P(A) < (e | Z|},)+. We take q
= e~ (|Z|l;)~“" (which will be greater than 2 if ||Z] is sufficiently small,
which in turn will be the case when g approximates  sufficicntly closely) in
order to optimize the inequality. With ¢ correspondingly chosen such thatg =
2¢, it results that

P(\) = expl —ne~'e~'(IZ[l;)~=").
In the course of the proof of Theorem 8.2, an expression was obtained for
[V, — VI which leads to the following estimate in the limit h — &:
Vi = VIE = nt (]2 BC)-1Y™ = (4B()-1)em),

where it is assumed that p(x) has the form x*, the general case being reducible
to this case by Minkowski’s incquality. Since fe M andfeL,, f€ L2, ,(G*)
for some € > 0. Accordingly, if r is sufficiently large,

Ve = VIE= cl(BC)-1)*™ — (gBC()- """, (c = c(n,f)).

Using the Hausdorff-Young inequality as in the proof of Theorem 8.2 it fol-
lows that

B~ — (BBC) ")l =< c IBC) ="' — £B()~'ll,

ifnig = l/r + (n — 1), and g > 1, where the uniform boundedness in L (G*)
of the ¢B(-)~"' is used, g being restricted by the constraint that [g(y)] = I.
Choosing the conjugate index ¢’ to g so that ¢' > n, p is then given by the
equation r-' = 1 — n/q’, showing that if ¢’ is sufficiently close to n. r be-
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comes arbitrarily large. In consequence, the preceding inequalities apply, and
it results that

Ve = VIE = clIBC)-" — £BC) L,

Choosing g = g,, where g, is the inverse Fourier transform of the charac-
teristic function of the interval (- s, 5), then ||B~Yg ||, is asymptotic to log s
as s — . Accordingly, the inequality above on P(}) is applicable if A = ¢
(log s)". Noting that ||(§, — 1B(-)~']l, = O(s~"¥), it follows that

P(\) < expl — ne—'e~\(|IZ[l,)-#"] = exp| — aexp(bA<)},

where a, b, and c are constants depending on g, n. Thus, as A— =, P(A) tends
to O sufficiently rapidly to imply that -V is in L, .,(R,v). O

8.6. The pseudo-interacting field

The putative interacting quantized field satisfying the given scalar wave
equation (¢ + p'(¢) = 0 has as its Hamiltonian, in symbolic physical form,

H = [[V2(Ve) + () + p(ep)ldx,

where the integration is over space at any fixed time, e.g., at time 0. But this
form of the Hamiltonian appears of little use for rigorous construction, since
the interacting field is not known—at time 0, or at any finite time. According
to onc widely accepted physical model, there is, or is expected to be, an *‘in-
coming'’ field in the infinite past (or, heuristically, ‘‘at time —oo"" that repre-
sents the quantized field before the interaction has commenced. and so is a
free field). But this raises new issues, of temporal asymptotics (or **scatter-
ing'’), etc., rather than resolving the question of how to interpret the symbolic
expression for A at a finite time.

What has been shown in the preceding sections is that each of the two terms
in H, namely the quadratic or *‘pseudo-free’” term, and the higher order or
**pseudo-interacting’' term, become analytically somewhat controllable when
the free quantized field ¢, is substituted for the putative interacting one ¢. The
total pseudo-Hamiltonian H' obtained by adding these terms bears in principle
only a specious resemblance to the true physical Hamiltonian, but if the phys-
ical interacting field does not deviate very greatly from the free field at finite
times, it can reasonably be expected to provide a first approximation to it.

On the other hand. even if the free and interacting fields were unitarily
equivalent at finite times, there would be a fundamental distinction between H
and H' in the interpretation of the higher-order term p(¢). which has no phys-
ical rcason to be renormalized relative to the free-field vacuum (represented
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by the lowest eigenvector of H,) rather than to the putative physical vacuum
(represented by the lowest eigenvector of H). Moreover, the appropriate free
field is arguably of unknown mass a priori, since the interaction should infiu-
ence the mass of the putative free incoming field.

The replacement of the symbolic physical Hamiltonian H by the mathemat-
ically well defined operator H' is thus physically without justification, and
indeed replaces the original nonlinear problem by a linear one (which is ob-
tained by substitution of a known function ¢, for the unknown function ¢ in
the leading nonlinear term). It is nevertheless mathematically interesting, and
it will be seen that, a posteriori, it does lead to a solution for a nonlinear local
quantized wave equation. This equation is not the same as the original one,
but differs only in lower order terms and provides a reasonable first step in the
resolution of the underlying physical nonlinear problem.

The pseudo-interacting field ¢ (where, for simplicity of notation, we use
the same symbol as for the putative interacting one) will be defined symboli-
cally by the equation

o1, x) = e~ '@y(0, x)e",

where ¢, denotes the free field. There is no special reason to choose the time
t = 0, rather than some other time, as the starting point, and indeed H' is
materially dependent on this initial time 1,, but different choices for ¢, lead to
unitarily equivalent H', and ultimately to unitarily equivalent ¢(t, x). To show
actual existence of ¢(t, x), it is necessary to give appropriate meaning to H' as
a sclfadjoint operator. Having done this, the mathematical modeling of the
physical context is further validated by establishing an appropriate version of
the fundamental constraint of causality, in the sense of finite propagation ve-
locity. This is also needed to deal with the case of a noncompact space, which
requires a spatial cutoff in the definition of the interaction pseudo-Hamilto-
nian, with the result that the Hamiltonian is mathematically interpretable as a
derivation of a C*-algebra, but not a priori as a selfadjoint operator. Following
this, the unicity of the physical pseudo-vacuum will be shown. Corresponding
renormalized powers of the pseudo-interacting field are then established (rel-
ative to the physical pseudo-vacuum), and finally it is shown that ¢(z, x) does
indeed satisfy an explicit local quantized wave equation relative to this vac-
uum.

Turning now to the rigorous development, we first recall a general result on
the interpretation as a selfadjoint operator of the sum of two given selfadjoint
operators, having properties exemplified by the semigroup features shown in
Theorems 8.1 and 8.4. The general idea is that a scale of subspaces K, of the
underlying Hilbert space K with increasingly stronger norms as p increases is
developed, relative to which the respective semigroups generated by given
selfadjoint operators A and B have a kind of finite velocity: e~# improves the
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status of a given vector at a rate a, while e~ lowers the status at a rate p. If
a — b =0, and if A and B are moderately regular in a general way, then a
semigroup naturally identifiable with the putative one generated by A + B
may be derived, and will improve status at arate = a — b. To treat the present
pseudo-interacting field, the L, scale relative to the free vacuum is adequate.

As earlier, for any probability measure space M, the notation L, ,,(M) will
denote the space of all functions that are in L(M) for p € [a, b), in the topology
of convergence in each L, norm; the notation K,, will also be used on occasion
for L,(M), and K, will be denoted simply as K For any given linear operator
Tin K, ||T||, . will denote sup,,.ollTull /llull,.

We recall the definition of the strong convergence of A, in H and note that
if the A, are uniformly bounded below, then A, — A if and only if either
exp(—sA,) — exp(— sA) (strongly) for all s > 0, or for one s > 0.

THEOREM 8.5. Let H be a given selfadjoint operator in the space K =
L,(M), where M is a given probability measure space, with the property that
e~ is a contraction from K 10 K;expeiy for some € > 0. Let F be a real mea-
surable function in L, (M) such that e~ is also in L (M), and let V denote
the operation of multiplication by F, in K. Then H + V is essentially selfad-
joint, and if H' denotes its closure, H + b, (V) — H' for any sequence of
bounded Borel functions {b,} on R that is pointwise convergent to the function
b(x) = x and such that |b,(x)| = |x|.

Proor. We refer to SK, p. 320, Theorem 11.6, for the proof which is based
on successive use of the Lie-Trotter and Duhamel formulas. The proof gives
useful information about H', including

CoRrOLLARY 8.5.1. H' is bounded below by — ‘zelog|f exp(—2e~'F)].
Moreover, every entire vector w for H' is in Lj2,and in D(H); and H'w =
Hw + Vw.

The proof of Theorem 8.5 also establishes the regularity of A’ as a function
of F, for fixed H,. This may be stated as follows:

CoRrOLLARY 8.5.2. Let C denote a collection of functions F satisfying the
conditions of Theorem 8.5, and such that for each p € [1, «), |}, and |le—*]|,
are bounded as F varies over C. Then H' is continuous as a function of F €
C, in the relative topology on C as a subset of L, .(M). Moreover, there exist
positive constants €' and a (depending on C) such that

e~ ullyeapiery = €*liull:  (u € L(M)).

From this regularity, a certain symmetry between H and H' follows, as
noted in
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COROLLARY 8.5.3. If a > 1, there exists b € R, such that H < a H'(H, F)
+ bl (F € C). Moreover, H' is affiliated with the W*-algebra determined by
H and V; and H is affiliated with the W*-algebra determined by H' and V.

We are now in a position to treat the existence and properties of the pseudo-
physical vacuum. This is the state represented by the lowest cigenvector, if
such exists; in the present context, it does exist and is unique, and also has
further convenicent properties. The development of these propertics involves
positivity-preserving features of the semigroups treated earlicr, and their ap-
plication in the context of the theory of positive operators. For any measure
space M, an operator T in L,(M) is called positivity-preserving in case Tf = 0
whenever f 2 0 (in the sense that f(x) = 0 for all x € M). We call an operator
S inverse compact in case there exists a scalar ¢ such that (c/ + S§)~'is com-
pact. The basic result may be formulated as follows:

COROLLARY 8.5.4. In addition to the hypotheses of Theorem 8.5, suppose
that e~ is positivity-preserving for all t > 0. Then e~"" is also positivity-
preserving for all t > 0. Moreover, if H is inverse compact, then so is H', and
both H and H' have a nonnegative lowest eigenvector. And, if the lowest ei-
genvector of H is unique, so is that of H'.

PROOF. In the expression for e ="' given by the Lie-Trotter formula, each ap-
proximating operator is positivity-preserving since the operators exp( — tV/n)
and exp(— H/n) arc positivity-preserving and any product of such operators is
again such. It follows that the limiting operator e ~#' is positivity-preserving.
The inequality H < a H' + bl implies that a~'(H — bl) = H', whence, for
any sufficiently large constant ¢, (a-*(H — bl) + cl)"'= (H' + cI)"",
where the operators on both sides of this inequality exist and are positive. This
shows that if H is inverse compact, then so is H'.

We recall now some classic results in the general theory of positivity-pre-
scrving operators, where it suffices here to treat the case of a space of the form
H = L,(M). If T is a compact positivity-preserving operator, there cxists a
nonnegative function v # 0 in H such that 7v = ||T|jv. Moreover, T acts *‘in-
decomposably®’ on H, in the sense that T together with the algebra A of all
multiplications by bounded measurable functions act irreducibly on H, if and
only if v is unique.

Taking T = ¢~ or e~ for some ¢ > 0, it follows that both / and H' have
a nonnegative lowest eigenvector. Moreover, the part of Corollary 8.5.3 re-
ferring to affiliation shows that if e~* is indecomposable for some ¢, so is
e~ so that H' has a unique nonnegative lowest eigenvector if and only if H
does. a
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COROLLARY 8.5.5. Suppose G = §', B(k) = (m* + k*)%, and p is an arbi-
trary real polynomial that is bounded below, in the context of Theorem 8.2,
LetV = &,(1), let Hy, = dT'(B), and let H denote the closure of H, + V. Then
H is inverse compact and has a unique lowest eigenvector of the form Ay,
where A is a positive self adjoint operator in Ly(R, v) with null space consist-
ing only of 0.

PrOOF. B is easily seen to be inverse compact. In the n-particle subspace,
H, is bounded below by nm, from which it follows that H, is also inverse
compact. The remainder of the corollary follows from the preceding general
result. The triviality of the null space of A is equivalent to the nonvanishing
a.e. of the lowest eigenvector as a vector in Ly(G). a

8.7. Dynamic causality

What is usually called **relativistic causality,’’ which can be regarded as a
mathematical formulation of Einstein's principle that the velocity of propaga-
tion of a physical effect can not exceed that of light, is the commutativity at a
fixed time of physical fields that are conceptually observable. In this form.
relativistic causality has been fundamental in this chapter. But Einstein's prin-
ciple can be given a variety of natural extensions, which are in part exempli-
fied in the finite propagation velocity features of quantized wave equations.
As seen in Chapter 6, these closely parallel those of classical lincar wave equa-
tions. In this section we are concerned with the similar features of quantized
nonlinear equations, which are not implied by the parallel features of classical
wave equations. In addition, in the nonlinear case, temporal evolution is often
not given a priori as a one-parameter unitary group, but rather may be repre-
sented as a one-parameter group of automorphisms of a C*-algebra. Here we
extend the considerations of Chapter 6 to the case of such a group, as a step
toward the establishment of the finite propagation velocity feature of the so-
lution of a local nonlinear quantized wave equation, treated later.

We recall the definition of concrete C*-algebra and make the

DEFINITION. A graduation on a concrete C*-algebra A is a function p from
A to the interval [0, =] having the following properties:

i) [A €A: p(A) <cx]isdensein A;

ii) for arbitrary A and B in A, and arbitrary complex number a, p(A + B),
P(AB), p(aA), and p(A*) are all bounded by max| p(A), p(B)]; and

iii) if A,— A in the strong opcrator topology and if { p(A,)} is bounded, then
A € A, and p(A) = liminf, .. p(A,).

A C*-algebra with a given graduation is called graduated. The subset [A €
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A: p(A) = 1], which is evidently a C*-subalgebra, will be denoted as A,.

A one-parameter group a(r) of automorphisms of a graduated concrete C*-
algebra on the given Hilbert space K will be called proper in case:

a) there exists a constant a < o such that p(a(f)A) < p(A) + ar| forall A €
AandreR;and

b) given any positive numbers s and ¢, there exists a selfadjoint operator H
= H(s, 1) in K such that a(u)(A) = e“'Ae-"forallAe A,andue (—1,1).
A map (s, 1)— H(s, 1) (*‘a’’ rather than *‘the,"’ since H(s, ) is not unique) will
be called a generator for the automorphism group a(f). The infimum of the
constants a for which (a) holds will be called the velocity of a(r).

Theorem 8.6 expresses the principle that the composite of finite velocity
automorphism groups of a graduated C*-algebra is again of finite velocity,
which velocity cannot exceed the sum of the component velocities.

THEOREM 8.6. If a(+) and B(*) are proper automorphism groups of the grad-
uated (concrete) C*-algebra A, and if they admit generators A(s.t) and
B(s, 1) such that A(s, 1) + B(s. 1) is essentially selfadjoint, then there exists a
proper automorphism group () of velocity not greater than the sum of the
velocities of a(-) and () such that for arbitrary X € A with p(X) < o,

Y(OX) = lim (a(@/n)B(in))(X).

PROOF. Sctting C(s, t) for the closure of A(s, 1) + B(s, 1), and setting
exp(iuA(s, 1)/n)exp(iuB(s, t)/n) = V,(u), then, by Trotter's theorem,
elu('(:,l)xe—lu('u.l) = ||m V"(“)nx V"(u)-n

for arbitrary X € A. Now suppose that X € A,, r < «, and that r + (a + b)|y|
< t. Then it is easily verified by inductiononm = 1,2,...,n, that

V()" XV, ()™ = (a(u/n)B(u/n))™(X),

and is in A, . +pmun- T2KiNg m = n, it follows that the limit of (a(u/n)
B(u/n)y*(X) as n — = exists and equals ¢wt-nXe-wsn_ |t follows also that
this limit is in A,, ,. ;.- The latter expression is thus independent of s and 1
for sufficiently large s and any fixed r.

Let +vy,(u) denotc the corresponding lincar transformation X —
ewts.nXe~wcwn defined on the union A, of the A, with finite r; this is unique
and maps A, onto itself. If X and Y are arbitrary in A, , then taking s and 1 s0
large that for Z = XY, y,(u)(Z) has the form ev-nZe - wesn it follows that
Yo(1) is a #-automorphism of A , . From C*-algebra theory. it follows that yo(f)
extends uniquely to a onc-parameter group y(-) of automorphisms of all of A,
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and it is clear from its construction that y(-) is given by Lie's formula, and that
its velocity is bounded by a + b. Finally—since y(u)(X) = ec@.nXe-mctn
ifXeA, r+ (a+ b)u <s, and |u| < —condition b) is satisfied, with
generator C(s — (a + b)t, 1). 0

The domain of dependence and the region of influence properties of classi-
cal wave equations, which reflect their hyperbolicity, have analogs in the
quantized case. In these, functional dependence is naturally replaced by ap-
propriate affiliation with an operator algebra. In this connection it should be
recalled that a given selfadjoint operator A in a separable Hilbert space H is a
function of a second selfadjoint operator B on the space if and only if A =
F(B), where F is an ordinary real-valued Borel function. The following result
exemplifies the domain of dependence in the case of a quantized equation in a
form that permits global dynamics to be in part reduced to local dynamics, and
is an essential step in the treatment of nonlinear quantized equations in a non-
compact space. The point is that the formal relativistic Hamiltonian, of the
form &,(1), is not an operator, since in the noncompact case the function iden-
tically 1 on space is not in the requisite L, spaces. However, appropriately
limited functions f; and f, will lead to interaction Hamiltonians V, = &,(f)
that define the same field dynamics, locally in space-time, provided f, and f>
agree in a sufficiently large region. In particular, taking f to be | in increas-
ingly large regions, although of compact support, the theory developed earlier
in this chapter can be used to define globally on space-time a natural interpre-
tation of the transform of the initial field by the motion generated by thc formal
Hamiltonian H, + &,(1). Thus, in physical terms, a spatial cutoff is vastly
less singular than a momentum cutoff (or convolution of the field involved in
the interaction with a smooth function). Indeed, a spatial cutoff does not affect
the resulting field in some finite region, which may in fact be taken arbitrarily
large. (On the other hand, the vacuum is a highly nonlocal entity associated
with an interacting field, and will be materially sensitive to a spatial cutoff.)

We begin with the precise formulation of &,(1) in the noncompact case,
which is as the generator of a one-parameter group of C*-algebraic auto-
morphisms. These will be unitarily implementable in the free field if the un-
derlying space G is compact, but in general not otherwise.

THEOREM 8.7. In the context of Theorem 8.2, for any open subset Q of G.
let R, denote the W*-algebra generated by the ¢%/' and ¢™* for f and g
supported by Q. Let R denote the uniform closure of the union of the R, for
Q's having compact closures. If p is any polynomial, there exists a unique
one-parameter group a(t) of C*-automorphisms of R such that

a()(X) = explitd ()X exp| —itd,(f)]
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ifX e R, and if f is a continuous function of compact support that is 1 on Q.

Proor. It suffices to show that the given expression for a(f)(X) is indepen-
dent of f, within the given constraints on f; the further conclusions then follow
directly. To do this means to show that if the f; (j = 1,2) are continuous
functions of compact support on G, that are 1 on Q, then for all X € R,
explid,(f)IX expl—id,(f)] = explid,(£)IX expl—id,(f)]. This is im-
plied for all X € R, by its validity for any set of generators for Ry, in particular,
for the e/ and e"" with g and h supported by Q. This is trivial in the case
of the ef*@,

To deal with the e™®, note that the V, = &,(f) (j = 1,2) commute
strongly (i.e., their spectral projections do so). It follows that it suffices to
show that the e™® with h supported by Q commute with the closure of V; — V.
The closure is &, (f, — f.), which by its defining properties satisfies the
equation

e-Mhy (f, — f) Mt
= closure of &,(f; — f2) + & ((fi = f)h) + 12! b ((f; — fDB?) +-++ .

But (f; — f2)h = 0, so that all terms in the last expression vanish except the
first. O

ExampPLE 8.1. Let G = R", let B = (m* — A)" with m > 0, and define p
on R as follows: p(X) = infimum of s such that X € R, where Q is a sphere
around the origin of radius s (or + if no such s exists). Then R is graduated,
and the one-parameter automorphism group given by the theorem is proper
and has velocity 0.

Combining this example with Theorems 8.4, 8.5, and 8.7, the unitary and
C*-algebraic finite propagation velocity features of nonlinear quantized wave
equations may be represented as follows:

CorOLLARY 8.7.1. Let G = R, let B denote the usual relativistic scalar
single-particle Hamiltonian. Let p be any nonnegative real polynomial. There
exists a unique one-parameter automorphism group () of R such that if X €
Ry, and H(f) = closure of Hy, + &,(f), then y(1)(X) = "™ )Xe~ 1) for
any continuous nonnegative function f of compact support that is 1 on Q +
{—t1].

Thus the formal integrated interaction Hamiltonian, ¢,(1), can be given a
natural rigorous interpretation, as a derivation of the algebra R, which is the
earlier-defined space-finite Weyl algebra. Although this algebra is not repre-
sentation-independent, it is useful for expressing results in a form that makes
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manifest their independence from the use of spatial cutoffs. The case of a
nonlinear scalar wave equation in two-dimensional Minkowski space is sum-
marized in Corollary 8.7.2. In this connection, an operator on K will be said
to be compactly supported in case it is in R, for some compact Q. S(f) will
denote the support of the function f.

CoroLLARY 8.7.2. For any given real polynomial p that is bounded below,
there exists a unique one-parameter automorphism group a() of the space-
finite Weyl algebra R for the corresponding quantized Klein-Gordon equation
(of given mass m > (), having the following property: for an arbitrary oper-
ator X in the dense subalgebra R, of R consisting of operators of compact
support, a(t)(X) = "X~ "), where H(f) is the closure of H, + &,(f),
[ being any continuous nonnegative function of compact support Q on space
that is 1 on the region Q + [—1t,1].

8.8. The local quantized equation of motion

At this point it is appropriate to review the results thus far in relation to our
original objective: to *‘solve’” the quantized differential equation O¢ + p’(¢)
= (. The underlying framework is that of Hilbert space, on which ¢ is a
generalized operator-valued function; of canonical commutation relations at
fixed times; and other general desiderata such as stability (positive energy),
the existence of a vacuum, etc. But no such general constraints serve to define
a priori the purely symbolic expression p’(¢), and without such a definition
the equation itself is purely symbolic. An altemative to consideration of the
equation is the corresponding Hamiltonian formulation. However, this leads
to the nonlinear operation ¢ — p(¢), as well as the quadratic terms represent-
ing the free component of the total Hamiltonian, and so does not avoid the
issue of the meaning of a nonlinear function of a quantum field.

The formulation of the symbolic expression p(¢) as the renormalized poly-
nomial :p(¢): relative to the putative physical vacuum provides a rigorous and
natural interpretation of either the equation or its total Hamiltonian. But as
indicated above, because of the difficulty in dealing with :p(¢): when both ¢
and the underlying vacuum are unknown, we elected rather to insert the known
free field and vacuum into the nonlinear terms, thereby obtaining a tractable
linear equation, and deferring consideration of the underlying nonlinear issue.

In the case of a classical nonlinear equation, the analogous procedure would
be as follows: to simplify the solution of the nonlinear equation O¢ + p'(¢)
= 0, with given data ¢(0, x) = f(x) and d¢(0, x)/dr = g(x), we first solve the
linear equation (J¢ + m?p = 0, where m*> = p"(0), with the same Cauchy
data, obtaining a function ¢,. We then solve the equation o + m*e +
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(p'(¢o) — mPy) = 0, i.c., insert ¢, in place of ¢ in the nonlinear term with
the same Cauchy data. This cquation is of course lincar and hyperbolic, and
has a global solution (say, for finite energy Cauchy data and appropriate p)
enjoying the familiar finite propagation velocity features. Its solution is not a
solution to the original nonlinear equation, but a presumptive first approxi-
mation to this solution—whose cxistence remains in doubt—both a priori and
at the present stage of classical theory.

Again, in place of the dynamical equations one may use the Hamiltonian
formalism, which applies equally in the classical context, via an infinite-di-
mensional gencralization of the Hamiltonian-Jacobi-Lie theory. The solution
manifold of the given nonlinear classical equation has a natural invariant sym-
plectic structure, and otherwisc plays the role of a phase space for a dynamical
system. The Hamiltonian for the given nonlincar equation is the function on
this phase space

H(e) = [{al(Ve) + (a9) + m*¢?) + p(¢)}dx.

where the integration is over space at an arbitrary time ¢; as noted earlier, the
result of the integration is time independent. Here also one could modify the
difficult nonlincar problem by replacing the source of the nonlinearity, the
higher-order term p(¢). by p(¢,). where @, is the solution of the free equation
that has the same Cauchy data at some fixed time. The resulting Hamiltonian
is no longer time independent, and in general agrees with H(yp) only at the
initial fixed time.

To be sure, as alrcady indicated, the nonlincar (physical, interacting) field
may be asymptotic to the lincar (‘‘frec’’) field as the time approaches * .
This is the idea behind scattering theory, which is well developed in the clas-
sical case, and in which the physically expected temporal asymptotics of the
nonlinear cquation has been rigorously established in important cases. But this
relation between an interacting and a free field—intuitively to the effect that
the interaction is diffused after a long time, resulting in a ficld that is nearly
free—does not rationalize the assumption that the two fields are coincident at
some finite time while the interaction is presumptively taking place. Indeed,
the determination of the difference between the free and interacting fields is
the primary objective of the theory.

It is remarkable that our results at this point represent considerably more
than a first approximation to a putative solution of a nonlinear quantized equa-
tion. They do lead to solutions of local nonlinear wave equations—which,
however, are not the original equations, but fairly close to them. More specif-
ically, instead of solving the cquation ¢ + p'(¢) = 0, one solves the equa-
tion O¢ + q'(¢) = 0, where g is a polynomial whose leading term coincides
with that of p. but has (in gencral) different lower order terms. Here ¢'(¢) is
defined by renormalization with respect to the physical vacuum. This is rep-
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resented by the lowest eigenvector of the total Hamiltonian for the interacting
field, whose nonquadratic term takes the form [q(¢)dx.

This development could hardly have been anticipated from the analogy with
the classical case. A classical solution of the equation Ce + m*¢ + {(p'(¢,)
— m*g,] = 0, where ¢, is a solution of the lincar equation O + m2p = ¢
(here m? = p"(0), and it is assumed that p'(0) = 0), has no reason to satisfy
any equation of the form O¢ + ¢'(¢) = 0, for any polynomial q, or any other
smooth function. This difference between the quantized and the classical case
can be understood as a consequence of the greater specificity of the quantized
case, in which the fixed-time commutation relations constrain the initial data
much more strongly than in the classical case, in which the data arc arbitrary
functions, apart from being in designated function spaces. This is the same
feature of the quantized case that enables an appropriate definition of powers
of the operator-valued distributions that represent quantized ficlds, notwith-
standing the lack of an effective definition of powers for classical distributions
of comparable singularity. Thus in ccrtain respects the quantized casc is more
coherent, if not acutally simpler, than the formally analogous classical case.
Note also that the vacuum plays a fundamental role in the quantized case, but
has no analog in basic classical theory.

The main additional theory involved in the derivation of the quantized local
nonlinear wave equation cited is functional analytic in character: in consc-
quence it is more succinctly and simply expressed in the following format: let
H be a given complex Hilbert space, let B be a given strictly positive sclfad-
joint operator, and let % be a conjugation on H that commutes with B. We refer
to a vector or subspace that is pointwise invariant under x as real and similarly
for an operator that commutes with %. Let (K, W, I, v) denote the free boson
field over H, let w = aW and H, = aI'(B), and set C = B“.

For any real number a, ((D(B))) will denote the completion of the domain
of B® with respect to the inner product

(x, y)a = (Bx, B").

We extend % by continuity to these spaces, denoting the extensions also as x.
The subscript » will denote the real subspace of a given space; c.g.. D (8") is
the set of all real vectors in D(B9).

The next theorem establishes the differential cquation satisfied by the trans-
form of the free field by the unitary group generated by a total Hamiltonian of
the type earlier considered in this chapter. While the differentiability condition
used is adapted to this application. the theorem is morc simply expressed in a
general form.

THEOREM 8.8. Let R denote the W*-algebra generated by the Wix). x € H,.
Let V denote a selfadjoint element of the Hilbert space L(R. v) (which will be
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denoted as K'), such that V and e~V € L, (R, v). Let H denote the closure of
Hy + V. And for arbitrary x € D,(C), let

o(x, 1) = etw(C-'x)e- ", II(x, 1) = e®”'w(iCx)e—*¥,

Then the following equations hold:
(8/91)(d(x, Huy, uy) = (N(x, Hu,, u,);
(8¥0r)((x. uy, uy) + (D(Bx, Duy, uy)
+(e"V'(x)e~ "'u,, uy) = 0,
provided
i) x is an element of D, (C*) such that the map
S eimien | g iniCn

from R into K', is differentiable at s = 0 with derivative V'(x); and

ii) the u, are analytic vectors for H.

ProoF. We define do(x. 1) = exp(itH,)w(C - 'x) exp(—itH,), and Ily(x, 1)
= exp(itH)w(iCx) exp( — itH,) for x € D,(C).

LEMMA 8.8.1. If x € D(C), and if u, and u, are arbitrary in D(H,"%), then
(bo(x, Nu,, w,) is a differentiable function of 1 € R with derivative (Ily(x, f)u,,
u,). If in addition x € D(C"), then the latter expression is also differentiable
with derivative —(dy(B>x, Nu,, u,).

ProoF. This follows straightforwardly from results in Chapter 1. O

LEMMA 8.8.2. If P and Q are selfadjoint operators on K of which Q is
bounded, and if T is an arbitrary bounded linear operator on K, then

qu‘eQ;T e-—ml'» o~ ('”"T e-ul'

1
+ ij el(l-:)(l'-fQ)lQ' eul""e—ul'l e"""""*‘?’ds.
(V]

Proor. If P is bounded, this is a special case of Duhamel’s formula, applied
to the perturbation ad(Q) of the operator ad(P) in the Banach space of all
bounded linear operators on K. If P is unbounded, let {P,} be a sequence of
bounded selfadjoint operators such that P,— P. Then P, + Q— P + Q. and
a limiting argument employing dominated convergence completes the proof.
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LemMa 8.8.3. Let G be an arbitrary bounded linear operator on K, and le1
u, and u, be arbitrary analytic vectors for H. Then

(e"G e~"Mu,, u;) = (explitHy) G exp( — itH)u,, u,)

+i L (ett==¥[V, exp(isH,) G exp(—isHy)] e ="~ ™y, u,)ds.

ProOF. When V is bounded, this follows from Lemma 8.8.2. For V un-
bounded. take V, = f,(V), where {f,} is any sequence of real valued, bounded,
continuous functions on R such that |f,(x)| < |x| and f,(x) = x for all x, and
replace V by V,. The only question in passing to the limit as n — = is with the
integral on the right. To this end, set w,/(s) = e-"-24y_ Then, by carlicr
estimates, [|w,(s)|, = clle”u,|l, where p and the constant ¢ depend only on the
€ > 0 for which the u, are in D(e), and so are uniform in 5. Applying Hol-
der’s inequality to the integrand, and noting that V,— Vin L , ¢ < =, including
the value of g such that g = p/(p — 2), the requisite domination for appropri-
ate convergence of the right sidc follows.

LEMMA 8.8.4. For arbitrary analytic vectors u, and u, for H,
(e"™*T1(x) e~ "Mu,, uy) = (TLy(t, X)uy, uy)

+ i L (et =WV, explisHo)1(x)exp( — isH,)] e~ %~¥u,, u,)ds.

Proor. This follows by a succession of arguments similar to those used in
the proofs of the preceding lemmas, and details are omitted. (]

PROOF OF THEOREM, CONTINUED. For arbitrary € > 0,
e~ Y(e" HI(x) ="+ — e"'TI(x)e~“")u,, u,)
= e (e Tl(x) e~ — TI(x))v,, va),
where v, = e~"#u,. By Lemma 8.8.4, the last expression is
£~ N(My(e, x) — T1,0, x)v,, v,)

+ t-:"ifo (e —*¥[V, exp(isH,)H(x)exp( — isHy))e =< —*¥y,, vo)ds.

By Lemma 8.8.1,
e~ {(To(e, x) — T1(0, X))y, va) = = {bo(B2x)I), v2).
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Since (et~ [V, exp(isH)[1(x)exp( — isHy)| =" - ™y,, v,) is a jointly con-
tinuous function of € and s,

£ 'ifor (et =V, exp(isHo)TT(x)exp( — isH,)] e =4 =Wy, vo)ds

- - (V’(x)"n va).
It follows that (a/ar) (I(x, f)u,, u,) exists and equals
= (Du(Bx)V,, vy) = (V'(x)vy, vy)
= — (b1, B, uy)) — ("V'(x)e~"Mu,, u,).

Finally, noting that the Hu, are again analytic vectors for H, and using the fact
that cvery analytic vector for H is in the domains of H, and V., and similar
arguments to the foregoing,

(3/01) (1, Xy, ug) = (T1(1, x)uy, uy). O

As yet in this section, d,(1, x) and (1, x) were treated only for suitably
regular x € H,, so that &,(t, x) and (¢, x) arc generalized and not strict func-
tions on spacc. They may be extended to actual point functions, at the cost of
using—in place of denscly defined operators—gencralized operators, formu-
lated as sesquilincar forms on a dense domain in Hilbert space.

The following notational conventions will be used in the treatment here of
sesquilincar forms: if B is a given such form with domain L in the Hilbert
space K, the value of B on the given ordered pair of vectors u, i’ in L will be
denoted as (Bu, u'). If P and Q are operators in K of which P is bounded while
Q and Q* arc defined on L, then ([P, Qlu, u') will denote (Qu, P*u') — (Pu,
Q*u'). We recall that D_.(B) denotes the union of the D(B-*) fork = 1,2,

.., with the topology on D _.(B) of convergence in (D(B -*)) for some &, this
space is denoted as (D _.(B)).

For the free cquation the extension is straightforward.

LEMMA 8.8.5. The sesquilinear forms ({1, u,, 1) and (T1(1. X)uy., 1) (y,
€ D..(H,)) extend continuously (and uniquely so) from the earlier given domain
for x to the domain (D _ (B)).

Proor. This is by recursion from the relations

(M0t Xy 1) = (LM, dolt, )iy, uz)
(bt B,y uy) = ([iH,, Tt x)u,, us).

Thus (IT4(1, X)u,. 11y), originally defined only for x € D(C), is bounded by ¢
IC=1xll I + H)u, |l IXI + H)uyl. and so extends in a unique continuous fashion
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to (D(C-")). Similarly, (&(, x)u,, u,) extends in a unique continuous fashion
from x € (D(C—")) tox € (D(C-3)). The original relations remain valid for these
extensions, and the argument just made may be iterated indefinitely, leading
to the stated conclusion. 0O

For the perturbed equation, the argument requires some features of the per-
turbation theory developed earlier.

LemMma 8.8.6. Let N denote the domain of all entire vectors for H, in its
natural topology. Then the sesquilinear forms (b(t, x)u,, u;) (X € (D(C~")))
and (T1(t, x)u,, uy) (x € (D(C)), u,, u, € N) extend continuously (and uniquely
s0) from the given domains for x to the domains (D, (C-?)) and (D(C~")); and

(9/a0) (b(t. x)u,, uy) = (II(t, X)u,, uy).

PrOOF. By the argument used in Chapter 7, for arbitrary z € D(B),
Iw(2)ull = c Il (7 + Ho)*sull,

whence |w(z)(/ + Hy)~‘ull = dlzll llull. Taking adjoints, it follows that
I + Hg)~“w(z)ul| < clizl] llull. Noting that for u’ € D.(H,).

w(iBz)u' = i [Ho w(2)u',
it follows that
(I + Ho)"'w(iBz) (I + Ho)~ "’ = [iw(z) (I + Hy)~' — i (] + Hy)~'w(z)|u’.
Taking norms on both sides, it results that
(I + Ho)='w(iBz) (I + Ho)~'|| = c|l:ll,
from which it follows in tumn that if u,, u, € D(H),) and z is arbitrary in H. then
[(w(2)uy, u)l =< cIB-2 N7 + Houll (7 + Hyus).

Finally, note that if u is entire for H, then by Corollary 8.5.1 ||Hyd| < ¢
lle**#u|| for some s > 0. The extension claimed in the lemma follows, and the
proof of the final equation is left as an exercise. a

The last equation obtained in Theorem 8.8 is not a local differential equa-
tion in time or in space. Thus, the ‘‘source’" term (e"#V'(x)e~""u,. u,) is in no
effective sense a function of the Cauchy data for the *‘interacting’* field d(x,
1) at time 1. A truly local differential equation in time is rather of the general
form dy/dt = F(y, 1), where F(-, 1) is a well-defined function from the spacc ¥
in which y(r) lies. The equation is thus not yet in a form that is satisfactory
from a foundational view. according to which thc central problem of quantum
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field theory is in the solution of a local nonlinear quantized partial differential
equation. Indeed, besides locality in time, locality in space is also required.
That is, the spatial support of F(y, f), where y is any given vector in Y, should
be essentially contained in that of y.

As noted earlier, there is no a priori physical reason for the putative physical
(interacting) field to resemble the frec field at a finite time, apart from such
general features as their common satisfaction of the Weyl relations. But it is
nevertheless the case that the field ¢(x, 1) defined by Theorem 8.8, with V
taking as &,(f) as earlier, may satisfy a local nonlinear wave equation, the
renormalization of nonlinear terms being with respect to the physical vacuum.
This is the case in two space-time dimensions, with the usual relativistic en-
ergy-momentum relation, i.e., B = (m?* — A)"%. In higher dimensions, it
seems unlikely that if solutions exist to analogous wave equations, the corre-
sponding Weyl system at a fixed time is unitarily equivalent to that of a frec
field. We state the two-dimensional result only in the case of the space S'; a
slightly more complicated statement applies to the case of R with a spatial
cutoff, in extension of Corollary 8.7.2. Moreover, S' is the simplest prototype
for the space S* that is important for the treatment of conformally invariant
fields in four-dimensional space-time.

Before stating the existence theorem for quantized nonlinear fields in two
space-time dimensions, it is necessary to state precisely what is meant by the
term *‘solution,’’ since the interpretation of this term is one of the key math-
ematical issues in the trcatment of quantized equations. In order to free the
concept of solution from any appearance of dependence on the dimensionality
or special structure of space-time, and for potential general application, we
treat the case in which space is represented by a complete Riemannian mani-
fold S. We use the canonical measure in S that derives from the assumed Rie-
mannian structure, and denote the usual inner product in Ly(S) as (/. g) =
[ f(x)g(x)dx. The Laplacian on S, in its usual selfadjoint formulation, will be
denoted as A, and the wave operator on R X §, 8} — A, will be denoted as
0.

DEFINITION. Let S be a given complete Riemannian manifold. Let p be a
given real polynomial. Let h be a given rcal function on S. Let ¢ € R be such
that ¢/ — A > ¢l for some € > 0. A solution of the quantized nonlinear
equation

Oe+co+hp'(p) =0 (8.1

is the following mathematical structure:
1) a multiplicative dual couple (M, N, A). where cach of M and N is dense
inLyS,R), heN, and
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A(.ﬂ@glvﬁegl) = (f?- gl) - (flv 82);

2) a Weyl system (K, W) over (M, N, A);

3) a nonnegative selfadjoint operator H in K;

4) a unit vector v in K such that Hv = 0;

5) a renormalized power system for the grounded Weyl pair (U, V, K, v),
where U(f) = W(C~'f) and V(g) = W(iCg),. fe M, geN, and C =
(c/ — A)%; and

6) functions ¢( ¢, f) and II(r, g), fromM X Rand N x R respectively to
sclfadjoint operators in K, having the following properties:

Do, f) = eHw(C- ' fle—H, I1(1, 8) = e""w(iCg)e-

wherefe M, geN, re R, and w = oW; and
ii) for any entire vector u for H and f € D(C*)NM,

(8/0r) (1, NHu = T, f)u;
[@/31) (1, f) + &1, C4f) + &1, hf)lu = 0,

where here &,.(-, 1) refers to the renormalized power system for (U(-. 1),
V(-, 1), K, v), which are dcfined by the equations U(-, 1) = e""U(-)e~"!,
V(. 1) = eU(-)e— ", whose existence follows from the fact that e’y =
V.

In order to treat locality of quantized equations, we introduce the following
notation: for any open subset Z of S and ¢ > 0, let R(Z, f) denote the domain
of dependence, at time ¢, for the classical Klein-Gordon cquation onR X S,
of Z. The quantized equation (8.1) is local if: a) it is soluble and remains
soluble when A is replaced by Ak for an arbitrary Cg function & on S; b) for any
neighborhood Z of the support of an arbitrary given vector f€ M, [f(x)h(x)k(x)
:p(d(x)):dx is affiliated with the W*-algebra generated by the explid( ;)] for
those f, in M that arc supported by Z; and c) for arbitrary fand g in M and N
supported by the given open subsct Z of S, and t > 0, &(1, f) and I1(z, g) are
affiliated with the W*-algebras generated by the U( f;) and V(g,), where f, and
g, arc in M and N and supported by an arbitrary neighborhood of R(Z, 1).

It should be noted that in the definitions there is no reference to the free field
or to any other specific field. The representation of the Wey! relations has at
no time an a priori restriction. Moreover, the underlying vacuum is not given
a priori, either at a finite time, or at a limiting time such as *+ <, us in the
scattering theory. The imposition of such restrictions, with whatever degree
of physical plausibility, can only serve to overdetermine the equation, from a
general mathematical standpoint, and may well result in the nonexistence of
solutions.
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In these terms we may describe the results earlier attained on nonlinear
equations in two-dimensional space-time as

COROLLARY 8.8.1. Let S = Ror S* and let M and N denote the spaces of
all real C*functions of compact support on S. Then, for any given nonnegative
function h in N, and for given real polynomial p that is bounded below, there
exists a polynomial q having the same leading term as p such that equation
8.1 is soluble. The equation and its solution are local and the temporal evo-
lution defined by the equation is causal in the sense of Section 8.7,

Again there is no reference to the free field, which now appears only as an
instrument that is useful in two space-time dimension as a first approximation
to the local interacting field described by Corollary 8.8.1. It appears unlikely
to serve effectively as such in higher dimensions.

EXAMPLE 8.2. Let S = §', let p(x) = VYagx*, and let d(x, 1) denote the free
Klein-Gordon quantized field with mass m; let (K, W, T", v) denote the free
boson ficld over the Hilbert space H of normalizable classical Klein-Gordon
wave functions. Let N, denote the operation of renormalization with respect
to the free vacuum v, and let V = [N,[(d(0, x)*]dx. Let H, denote the Ham-
iltonian for the free field, and let H denote the closure of H, + V. Then H has
a unique ground state u, within proportionality. Let E denote the expectation
functional corresponding to u, and let E, denote that corresponding to v. By
Corollary 8.3.1, Ny[(d(0, x)*] may be expressed as follows in terms of the
NI(d(0, x)’], where we use distribution-type notation:

Nold(0, x)*] = Nid(0, )] + 4k,NId(0,x)*] + 6k;NId(0, x)?]
+ 4kyNid(0, x)] + ki,

where k(x) = E(N,[d(0, x)']).

If T, denotes the classical transformation é(x, 1) = &(x + y, 1), then I'(T)
transforms ¢(0, x) into ¢(0, x + y), V thercforc commutes with I'(T,) for ar-
bitrary y € S. It follows in turn that H also commutes with the I'(T,), whence,
by the unicity of u, E is invariant under the indicated action of the I'(T,) on
the expectation valuc functionals. Accordingly, the functions k(x) arc invari-
ant under translations on S, and so are constants.

Furthermore, transformation by I'(—/) carries ¢(0.x) and I1(0, x) into
their negatives, and thercfore leaves V invariant. H, and, hence, H are simi-
larly invariant, whence E is invariant also under the induced action of I'(—1)
on expectation value functions. It follows that k, = 0 if j is odd, so that we
have simply N,{&(0, x)*] = NId(0.x)*] + 6k,Ny[d(0.x)*] + k,. From this
it follows in turn that (¢, x) satisfics the differcntial equation
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(301’ + (m* + g)b + gN($*) = 0

as an operator equation on the dense domain of all entire vectors for H. More
specifically, N(db(z, x)*) is defined relative to the r.p.s. at time ¢ indicated ear-
lier, with time-independent ground state vector u. At each time ¢, N is a local
function as regards space, which is explicitly definable in accordance with
Section 8.7. Note that Ny(d(¢, x)*) is well defined via Section 8.3, and is quite
distinct from both Ny(bo(t, x)*) and e*'Ny(do(0, x)4)e -1,

LExicoN. The definition of a solution to a quantized equation given previ-
ously embodies the following elements from a physical standpoint: parts (1)
and (2) embody the canonical commutation relations at a fixed time; (3) is to
the effect that there is a Hamiltonian; (4) is to the effect that thc Hamiltonian
has a normalizable lowest eigenvector; (5) is the existence of suitably dcfined
powers :(t, x):;, when renormalized relative to thc physical vacuum de-
scribed in (4); (6i) is to the effect that the temporal evolution of the field ¢
and its first time derivative Il is gencrated by the Hamiltonian of (3): and (6ii)
is the underlying wave equation in an analytically controlled form.

The local character of the equation assures that the nonlincar term that
drives the solution is in fact a local function of the unknown field, in spacc. at
any given time. That the equation is local in time is automatic from its form,
i.e., the nonlinear term at time ¢ depends only on the field at time 7. The lo-
cality of the solution implies that the field value at relatively spacelike points
commute, irrespective of a possible difference in time. The causality of the
equation confirms that one of the essential motivations of local ficld theory is
embodied in a strong form.

The difference between p and g represents ‘‘counter terms'’ that arc not
negligible, and that cannot simply be discarded. The dependence of the coef-
ficients of g on those of p is smooth but complex, and a nonperturbative class
of polynomials that are possible g’s is not explicitly known. Both this problem
and the treatment of solutions in higher dimensions appear to depend on the
development of a class of grounded Weyl systems that is closer to the putative
interacting field than the free field.

Problems

1. Let ¢ denote the free quantized Klein-Gordon ficld in two-dimensional
Minkowski space, and let H, denote the Hamiltonian of the ficld. Let p be an
arbitrary real polynomial on R. and demonstrate that the operation 7 — [T,
Jr :p(¢(0. x)):dx] can be interpreted as a densely dcfined derivation of the
space-finite Weyl algebra. Does [g :p(¢(0, x)):dx cxist as a form on (D, (H,))"?
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2. Show that for the free quantized Klein-Gordon field over R X S, H, +
V(g), where S is the n-torus, V(g) = [, :d(0, g,)%:dx, and H, denotes the frec
Hamiltonian, remains uniformly bounded below as g (assumed nonnegative,
even, and of Fourier coefficients bounded by 1) tends to d only if n = 1.

3. In the context of Problem 2, show that the L, norm of exp(— V) tends in
LR,v)tooasg—difn> 1.

4. Let p(x, y) denote a real polynomial in the two real variables x and y that
is bounded below. Let ¢ and Js denote two independent free quantized Klein-
Gordon ficlds on R X §', of free Hamiltonians H, and H, on Hilbert spaces
K and K'. Define V = [q :p(d(0, x), Y(0, x)):dx in extension of the analysis
in Chapter 8 and show its essential selfadjointness on D.(H ), where Hy is the
closure of H,, X I + I X Hy. Show also that H, + V is cssentially selfadjoint,
and derive the other basic results of Chapter 8 (unique vacuum vector, local
differential equations of motion, etc.).

5. Treat the casc of a selfinteracting scalar ficld in Minkowski space of
arbitrary dimension, with a **'momentum cutoff.'* This means that in place of
the interaction Hamiltonian V = [:p(¢(0, x)):f(x)dx, one uses the interaction
Hamiltonian V(g) = [:p(¢(0, g,)):dx, where g is a smooth function. (Either
introduce a spatial cutoff, to be removed later, or use *‘periodic boundary
conditions, "’ i.c., replace R" by n-torus.) Show the existence of a unique phys-
ical vacuum for a selfadjoint total Hamiltonian, and renormalized equations
of motion that are local in time, but nonlocal in space.

6. With the notation of Theorem 8.7, show that if § is a product of intervals,
then (R(S))’ = R(S"), where 5 is the complement of S. (Cf. Araki, 1963.)

7. Show that the only vectors in the space K for the quantized Klein-Gordon
field over Minkowski space that are invariant under the induced action of spa-
tial translation arc proportional to v. (This indicates that a spatial-translation
invariant interacting ficld cannot have a normalizable vacuum vector in the
free ficld representation, and is referred to as Haag's theorem.) Show also that
there are no trace-class density operators on K that arc invariant under the
induced action of spatial translations.

8. Let {A,} and {B,} bc two sequences of mutually strongly commutative
operators in a Hilbert space M. Show that there exists a Weyl system (K, W)
over the pre-Hilbert sequence space €% (of all finitc sequences {a,} with
({a.}, {b,}) = Za,b,) such that £,(A, X P, + B, X Q,) is essentially sclfad-
jointon M X K, where P, = aW(e,), @, = aW(ie,). (Cf. Segal, 1960.)

9. For the nonlincar wave equation (32 — A + 1)¢ + p'(¢) = 0onM =
R X S*, where p is a given real polynomial, the energy may be expressed as

T
H(g) = (2T)"! I_T L,l(a,«p): + (Vo) + ¢* + p(¢)]dxdt

(with the usual measure on S°). Let ¢ denote the quantized free field for the
equation (87 — A + 1)¢ = 0. Show that H(¢). when interpreted in accor-
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dance with Wick products, is an operator if T = 1, and is in fact essentially
selfadjoint on D.(H,), where H,, is the free Hamiltonian. (Hint: show that @is
periodic in time with period 2x, and use Poulsen’s theorem. |Cf. Paneitz and
Segal, 1983.].)

10. Show that the full Poincaré group, and not mercly time evolution and
spatial transformations, acts as C*-automorphisms of the space-finite Weyl
algebra, for the quantized scalar ficld that coincides with the free Klein-Gor-
don field in two-dimensional Minkowski space at time 0, and H, + [:p(¢(0,
x):.dx, where p is a nonnegative polynomial as symbolic Hamiltonian. in-
terpreted rigorously as in Corollary 8.7.2. (This shows the relativistic covari-
ance of the associated nonlinear field. [Cf. Klein, 1973; Cannon and Jaffe,
1970.))

11. a) Inthe real wave representation of the frec boson ficld over the Hilbert
space H, show that e~* (where N is the number of particles) is bounded from
L(H,) to L(H,), where = is the relevant conjugation, if and only if it is a
contraction from the former to the latter.

b) Show more specifically that the boundedness holds if and only if ¢ — |
=< (p — De%. (Cf. Nelson, 1973b; Gross, 1975.)

12. a) In the complex wave representation of the free boson field over H,
show that e~ is a contraction from AL,(H) to AL (H) if ¢ < pe* for a suitablc
constant €. Here AL,(H) denote the space of all antientire functions F on H for
which the norm

"F"p = (SUPMIMIF(Z)I"dg%(Z))""

is finite, where the supremum is taken over all finite-dimensional subspaccs of
H.

b) Show more specifically that if e~* is bounded from the one spacc to the
other, then it is a contraction, and the boundedncss holds if and only if ¢ =
pe?. (The results of Prob. 12 are due to Z. Zhou.)

13. Show that in the context of Theorem 8.8 that if p is an even polynomial,
and V = [:p(e(0, x)):dx then the physical vacuum expectation values of
J1:¢(0, x)":dx vanish for all odd n.

14. Show in the case p(x) = ax* + bx* (a > 0) that thc renormalized poly-
nomial g(x) = ax* + b'x* + c for suitablc b’ and .

15. In Problem 14, show that ¢ is a C> function of the original mass m and
of the constants a and b.

Bibliographical Notes on Chapter 8

The construction of nonlinear quantized fields along the present lines was
initiated by Segal (1967). where the nonlinear Wey! relations in rigorous form
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and the cffective independence from spatial cutoffs on the interaction were
first treated. The use of the L,-scalc in the real wave representation for the
analysis of the free and interaction semigroups was introduced by Segal
(1969c).

The semiboundedness of the Hamiltonian for the model on S* in which the
free field is substituted into the nonlincar expression for the interaction Ham-
iltonian was first indicated by Nelson (1966). This analysis was based on study
of the analytic continuation from real to pure imaginary times, and is corre-
spondingly known as the euclidean approach, in distinction from the directly
physical (or Lorentzian) approach. A starting point was the observation that
the onc-dimensional harmonic oscillator semigroup e~ carries L,(R, g) into
L,(R, g) with p > 2 if 1 is sufficiently large. Glimm (1968) showed that e~
was a contraction from the former to the latter space for sufficiently large 1,
and Segal (1969c; 1970d) established the analogous result in infinitely many
dimensions.

The rcal-time approach used here may be more adaptable to general types
of fields, and follows Scgal (1970d, 1971). A summary of the basic results
and ideas for the proofs was given by Segal (1967; 1969b, c). Both approaches
involve properties of e 'Y, where V is the interaction Hamiltonian, which were
first established by Nelson (1966). Renormalization with respect to the phys-
ical rather than free vacuum, and the establishment of fully local equations of
motion for the interacting quantized ficld, were developed by Scgal (1971).

The euclidean approach has been extensively treated, notably by Nelson
(1972; 1973a, b).  Relevant to both approaches are studics of Gross (1972;
1973; 1974; 1975a, b).
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Appendix A. Principal Notations

2 Xy)

A point of space-time, also denoted (f, x), where ¢ is the time
and x is the corresponding point of space.

1) A point of space. 2) A vector in a vector space.
Minkowski space.

The coordinates of the point X in (n + 1)-dimensional Min-
kowski space.

The dual of the topological vector space L.

The antidual of the topological vector space L.

A complex Hilbert space.

The inner product of two vectors x and y in a Hilbert space
(linear in x and antilinear in y).

A conjugation on H.

The real-linear subspace of H consisting of all vectors left
invariant by x.

H as a real Hilbert space, i.e., disregarding its complex struc-
ture, with the inner product (x, ¥)' = Re((x, y)).

The Hilbert space of the free field over the single-particle
space H.

A classical field, evaluated at the point X.

A quantized field, evaluated at the point X (boldface letters
are used for quantized fields).

The weighted space integral of the field ¢, at the time ¢, with
weight function f. Formally, &(, f) = [ (1. x)f(x) dx,
where § is space. &(0, f) is denoted as (/).

The weighted space-time integral of the field ¢ with weight
function f. Formally, ®(f) = [,,@X)f(X)dX. where M is
space-time.

The vacuum vector in K.

The unitary operator on the free field space K corresponding
to the unitary operator U on the single-particle space H.

The creation operator in K for the state vector = in the single-
particle space H.

The annihilation operator in K for the state vector = ¢ H.

The hermitian field operator V2- {(C(z) + C(2)*) for the state
vector z € H.

The Weyl operator exp(id(z)) on K for the vector = in H.
—id, where d is the usual differential. (Example: aI'(A) is the
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8c
GL(L)
(L,F)

Sp(L, A)
oL, S)

B(H)

LM, L)

L(A,v)

L(H;g.)

L

L, M)
D(T)
(D(T))

(DT
D.(T)
(D(T))

frec ficld Hamiltonian corresponding to the single-particle
Hamiltonian A.)

The total particle number, aI'(I) (unless otherwise indicated).
The isonormal probability distribution of covariance operator
C and mean 0.

The group of all invertible continuous lincar transformations
on the topological vector space L.

A topological vector space L together with a nondegencrate
bilincar form F on L.

The symplectic group over (L, A), where A is antisymmetric,
consisting of all transformations T in GL(L) lcaving A invari-
ant.

The orthogonal group over (L, §), where § is symmetric, con-
sisting of all transformations T in GL(L) leaving S invariant.
The algebra of all bounded operators on the Hilbert space H.
For any subset A of B(H), the set of all bounded operators in
B(H) that commute with every operator in A.

The adjoint of the operator T.

For any measure space M and Banach space L (both assumed
separable), the space of all strongly measurable functions f
from M to L for which the norm

I£1l, = Sulfx)lpde)'r < eo.

For any abelian W*-algebra A and vector v, the space of all
closed operators T affiliated with A such that v € D(|T|?),
with the norm |[T[|, = ([T |2v, |T|*2v)"», where |T| is the self-
adjoint component of T in its polar decomposition.

If H' is a rcal Hilbert space, the space L,(H\ g.), where usu-
ally C = [, defined by completion of the real polynomials
overH'.

For any real interval 1 C [1, ], N, L, with the topology of
convergence in cach L,,.

The Sobolev space of all functions in L, together with their
first r derivatives, on the manifold M.

The domain of the operator 7.

The domain of the operator T in a Hilbert space, as a pre-
Hilbert space with respect to the inner product (x.y); =
(Tx, Ty).

The completion of (I(T')) (or {(D(T')) if alrcady complete).
The sct of all vectors in the domain of 7" foralln = 1, 2,-+-.
The set D.(T') in the sequential topology of convergence in
every pre-Hilbert space (D(T™)).
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D_.(T)
(D_o(T)

The antidual of D(T').

D_.(T) in the sequential topology of convergence in some
(D(T™)), where m may be negative (for invertible T).

The direct sum (of vector spaces or of Hilbert spaces).

The tensor, or direct, product (of vector spaces, opcrators).
Complex conjugate of the function f.

r-fold convolution of the function f with itsclf.

The space of all C~ functions of compact support on the man-
ifold M.

The (nonpositive) Laplacian on thc Riemannian manifold M.
The wave operator 32 — AonR X M, M as under A.
Empty set.

Wiener space, normally the set of all rcal continuous func-
tions on [0, 1] vanishing at 0.

The set of all elements x satisfying condition P.

The set of all real numbers.

The set of all complex numbers.



Appendix B. Universal Fields and
the Quantization of Wave Equations

There are four main points in the subsumption of all types of boson or fer-
mion fields under the universal fields over an abstract Hilbert space.

1) There is a mutual correspondence between covariant wave equations and
irreducible unitary representations of an underlying symmetry group G.

2) For each type of field there is a covariant mapping T from the space of
test functions appropriate to the field into a dense subset of Hilbert space H.

3) T carries the commutator (resp. anticommutator) into the imaginary
(resp. real) part of the inner product in H.

4) In consequence, the quantization of a given wave equation is effectively
cquivalent to the quantization of a given unitary group representation in Hil-
bert space (or some variant thereof, such as a symplectic or orthogonal repre-
sentation). This latter quantization is simply a specialization of the quantiza-
tion for the full unitary group on Hilbert space, and so is universal, i.e., the
same for all wave equations.

To exemplify these points, we consider the casc in which G is the Poincaré
(i.c.. “*inhomogeneous Lorentz'') group, acting on Minkowski space M,
Mathematically, this is the pseudo-euclidean group for the four-dimensional
real vector space with fundamental quadratic form

xj—xf = xk - 1,

where the x, arc suitable coordinates, of which x, is called the *‘time.”” A
unitary representation of G is a continuous mapping g — U(g) from G to uni-
tary operators on a complex Hilbert space H that prescrves the group opera-
tions: U(ab) = U(a)U(d) for arbitrary a, b in G. The simplest nontrivial irre-
ducible unitary representation U of G that has positive energy (meaning that
the sclfadjoint generator of the onc-parameter unitary group U(xo . Xy 4 1) is
positive) is that associated with the Klein-Gordon equation (or physically
speaking, ncutral scalar fields). This is the equation

(*) Op+me=0 (m>0).

This is a slight variant of the classical wave cquation that is readily solved.
For example, if f(x) and g(x) are arbitrary C; functions of the space variable x
= (x,,X3, Xy), there is a unique solution ¢ of cquation (*) with the Cauchy
data f and g at time 0: ¢(0, x) = f(x). (0, x) = g(x). This solution ¢ is C*
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and has compact support in space at all times. The set H, of all such solutions
is G-invariant, where G operates as follows:

U:eX) = o '(X)) (X = (x5, %, X3, X3).

An important aspect of this situation is that the space H, admits continuous
symplectic and quadratic forms that arc invariant under G and unique (within
multiplication by a constant). The symplectic form A is local, taking the form
of an integral over space.

A, ¥) = [IY6.e) — (B y)pldx.

The orthogonal form is nonlocal, taking the following form:
S(¢, @) = [ [(C~'(39))* + (Cp)?)dx,

where C = (m? — A)“. The form A is closely related to the commutator form
for the quantized Klein-Gordon equation, and the form S to the two-point
function. Together they determinc a unique complex Hilbert space H, by ap-
propriate introduction of the action of the complex unit i, characterized as a
transformation on H, (which maps H,, outside of itself but into its completion
with respect to the form S) such that 2 = —/, and S(g, Y) = A(ip, V). (In
terms of the Fourier transform of ¢, i simply muitiplies the positive-frequency
component by the complex number i and the negative-frequency component
by the complex number —i; but the Fourier transform approach doesn’t work
in general space-time and appears less directly physical.)

The upshot is a unitary representation U of G in the completion H of H,,; H
is the space of normalizable solutions of the Klein-Gordon equation. Con-
versely, as shown in the classical work of Wigner (1939) (cf. Mackey, 1963),
every unitary positive-energy representation of the Poincaré group arises in a
similar way, from some invariant wave equation.

Turning now to (2), a familiar formulation of the notion of quantum field is
as an operator-valued distribution on space-time. In this approach, corre-
sponding to any Cg function h on space-time, there should be an operator &b(h)
on the quantum field Hilbert space K, satisfying the underlying wave equation
and appropriate commutation relations. In the universal field over the Hilbert
space H, there is available an essentially unique mapping ¢o(x) that is defined
for all vectors x in H. To derive a mapping ¢ in the present particular case
from the universal mapping ¢,. what is nceded is an appropriate mapping T
from Cg over space-time into H; the definition &(h) = ¢o(Th) then applies.
To preserve relativistic invariance, the mapping T must be covariant, i.c..
intertwine the respective actions of G: TU,(g) = U(g)T, where Uy(g) denotes
the action of g on C5(M,). which happens to be formally identical to the action
of U(g), i.e., Uy(g): h(X) — h(g ~'(X)), where X is arbitrary in M,,.
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This mapping T is not entirely unique, but different choices for T lead to
quantizations that are unitarily equivalent, and thereby physically indistin-
guishable. The technically most succinct procedure is to use Fourier analysis,
and restrict the Fourier transform of A to the ‘‘mass hyperboloid’ K? = m?,
obtaining the Fourier transform of a function ¢ in H, which can now be de-
fined as Th. More generally applicable is a partial differential equation ap-
proach, using the fundamental singular functions associated with the wave
equation. A simple local formulation uses the commutator function (more ex-
actly, distribution) D, defined as the solution of equation (*) with the Cauchy
data ¢(0, x) = 0, 3,¢(0, x) = &(x). The mapping T

h(X)— [ DX — NA(Nd*Y,

is then a covariant map from Cg(M,) into a dense subset of H. Since the quan-
tized Klein-Gordon field satisfies the Klein-Gordon equation, nothing material
to this field is lost in this procedure, and some redundancy in the labeling of
field variables is eliminated, by discarding components of the test functions
that arc ‘‘off the mass shell,’" and so give vanishing contributions to the field
operators.

In particular, the commutator [d(h), d(k)] = i [ AXKVDX — Y)dXdY
may equally be expressed as iA(Th, Tk) in terms of the imaginary part of the
inner product in H. The two-point function of the quantized field is similarly
expressible by the real part of the inner product. The underlying differcntial
cquation for the quantized field ¢ may be expressed as

&(@ + m)h) = 0

after multiplication by the arbitrary function & in C5(M,) followed by integra-
tion. This follows from the fact that

TO+mdh =0+ m)Th =0

since [J commutes with convolutions and Th satisfies the Klein-Gordon equa-
tion.

Thus the quantization of the Klein-Gordon equation is derivable from a type
of quantization of the associated unitary group representation. But the latter
quantization is just the restriction to the Poincaré group of the corresponding
quantization of the full unitary group U(H) on the Hilbert space H. This quan-
tization carries an arbitrary unitary operator V on H into a unitary operator
[(V) on the quantized field Hilbert space K. The quantization for the Klein-
Gordon case is obtained simply by substituting U(g) for V. Since all Hilbent
spaces of a given dimension are unitarily equivalent, there is essentially just
onc universal quantization, for each type of statistics, Bose or Fermi.

It is a considerable clarification and economy to reduce the quantization of
wavce equations in this way to the treatment of the universal boson and fermion
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fields over a Hilbert space. This reduction applies irrespective of the covari-
ance group, the underlying space-time, or the transformation properties of the
underlying fields, as long as there is, as is typical, a canonical invariant com-
plex inner product on the solution manifold of the wave equation in question.
For groups such as the Poincaré or conformal groups, the solution manifold is
normally irreducible, and the essential unicity of the mapping T from the space
of test functions to the solution manifold of the wave equation follows by
group-theoretical considerations. But even when the group is only a one-pa-
rameter temporal evolution group, essential unicity may be deduced from sta-
bility, or positive-energy, considerations. Thus, for the (real) equation Cle +
V(x)¢ = 0, where V(x) is a given bounded nonnegative function on space,
there is a unique temporally invariant positive-energy (complex) Hilbert space
structure on the solution manifold, and quantization is again reducible to the
universal boson field treated in Chapter 1. This follows from a variant of the
universal theory in which the infinite-dimensional symplectic group takes over
the role of the unitary group on a Hilbert space.

For detailed treatment of the quantization of specific wave cquations, see
Chapter 6 and also some of the earlicr lexicons and problems. For nonlinear
functions of specific quantum fields, including generalized Wick products, see
Chapters 7 and 8.



Glossary

ADIOINT. If T is a densely defined operator in the Hilbert space H, its ad-
joint T* is defined as follows: a vector y is in the domain D of T* if and only
if there exists a vector y’ in H such that (Tx,y) = (x, y") for all vectors x in
the domain of T. For any such vector y, T*y is defined as y'.

This defines T* uniquely, but there is nothing to keep T* from having a
domain that is vacuous, apart from the vector 0. But, in case T* is densely
defined, its adjoint 7** is an extension (q.v.) of T. The adjoint of an operator
is always closed (g.v.), and 7** (when it exists) is the minimal closed exten-
sion of T, meaning that any closed operator that extends T also extends T**.
Conversely, if T is densely defined and has a closed extension, then T* is
densely defined.

Note that just because (Tx, y) = (x, Sy) for two denscly defined operators §
and T, for x in the domain of T and y in the domain of S, S doesn't need to be
the adjoint of T, even if closed, but only extended by T*.

ADJUNCTION OPERATION. An operation, usually denoted*, on a complex
associative algebra R, with the following properties: (A + B)* = A* + B*,
(AB)* = B*A*, (cA)* = T A*, and A** = A, for arbitrary A, B in R and
complex number c.

AFFILIATION. An unbounded or partially defined operator A is said to be
affilinted with a W*-algebra R in case it commutes with all unitary operators
in the commutor R’ (g.v.) of R, When A is selfadjoint or normal, this is equiv-
alent to the condition that every spectral projection of A be in R. When R is
abelian, any densely defined operator that is affiliated with it is automatically
essentially normal (i.e., has normal closure); in particular, if hermitian it is
automatically essentially selfadjoint.

ANALYTIC VECTOR. See REGULAR VECTOR.

BANACH ALGEBRA. This is a Banach space B that is also an algebra. with
the property that [lxy|| < {lx] |l|| for arbitrary x and y in B.

Banach spack. This is a vector space L. together with a norm |jxj| for vec-
tors x in L, that is *‘complete,’” in the sense that if {x,} is a (Cauchy) sequence
such that |lx,, — x| — 0 as m, n — =, then there exists a vector x in L such
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that lx —x,}| — 0 as n — . A Banach space is a particular type of topological
vector space in which convergence of a sequence {x,} to a vector x is defined
to mean that |x — x,J|— 0. The L,-spaces are Banach spaces.

BOREL FUNCTION. Let B be the smallest class of functions on R" that con-
tains all polynomials and has the property that if f, € B and f,, (x) = f(x) for all
x, then fe B. A function in B is called a Borel function.

BOREL SET. A Borel subset of a topological space X is one that is in the
smallest o-ring (q.v.) containing all open subscts of X. Its characteristic func-
tion is Borel.

C*-ALGEBRA. A concrete C*-algebra is an algebra of bounded operators on
a complex Hilbert space H having the property that it is closed in the uniform
topology and under the adjunction operation *. Unlike W*-algebras, C*-al-
gebras can be characterized purely algebraically, leading to the concept of an
abstract C*-algebra. This is a complex Banach algebra, having an adjunction
operation * such that ||A|| = [|A*|| and ||AA*|| = ||A|| [|A*|l. Any abstract C*-
algebra is isomorphic to some concrete C*-algebra, which, however, is in
gencral not at all unique spatially, in that if two concrete C*-algebras arc al-
gebraically *-isomorphic (meaning that the *'s correspond as well as the usual
algebraic operations), they are in general not at all unitarily equivalent (al-
though the norms ||A]| automatically correspond). Whereas the fruitful equiv-
alence relation for W*-algebras is primarily that of unitary equivalence (and
so is spatial), that for C*-algebras is primarily *-algebraic isomorphism. The
selfadjoint elements of a C*-algebra tum out to be a natural and cffective
mdel for the conceptual observables of a physical system, in such a way that
»-algebraically isomorphic C*-algebras correspond to physically equivalent
systems. In particular, the concept of state of a physical system is conveniently
expressible in terms of C*-algebra, and is also important in the mathematical
theory of C*-algebras. (Cf. Scgal, 1963, chap. 1.)

CaucHy PROBLEM. The Cauchy problem (also known as the initial valuc
problem) is the solution of an cvolutionary differential equation, e.g., the ab-
stract equation u’(r) = Au(r) + K(u(r)) where A is linear and X is nonlincar,
given the solution at a fixed time, as u(t,) = u,. Duhamel’s principlc provides
a corresponding integral equation that incorporates the initial condition and
provides a slightly more tractable and physically appropriate problem than thc
literal differential equation.

CLIFFORD ALGEBRA. If Q is a nondegenerate quadratic form on a linear vec-
tor space L, the Clifford algebra C over (L, Q) is the algebra generated by L
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and a unit e (e? = e and e commutes with all vectors in L) subject only to the
relations x2 = Q(x, x)e, for arbitrary x in L. In principle, the ficld of scalars
applicable to L is arbitrary, but only the case of real scalars in L, together,
however, with complex coefficients for the algebra C, is used here. If L has a
finite basis e,, e,, ... ,e,, then C has dimension 2" and is spanned by e together
with the e, e,,*++ e, with i, ¢ i <+:+<i.. When n is even, C is isomorphic to
the algebra of all m X m complex matrices, where m = 2"°, When Q is
positive definite, there is an adjunction operation * on C that is uniquely de-
termined by the condition that x* = x for all x in L. The definition of Clifford
algebra does not require that L be finite-dimensional, and if L is infinite-di-
mensional and Q is positive-definite, the corresponding Clifford algebra is
dense in the trace-endowed infinite-dimensional analog of a complete matrix
algebra discovered by von Neumann, known as the approximately finite I,
factor.

CLOSED OPERATOR. An opcerator T in a Banach space H is closed in case
whenever {x,} is a convergent sequence of vectors in the domain D of T such
that the sequence {Tx,} is also convergent, then the limit x of {x,} is also in D,
and Tx is the limit of {Tx,}.

CLOSURE. A linear operator T in a Banach space B has a closure 7 provided
it has a closed extension (q.v.). Equivalently, it has a closure if and only if the
closure G(T) of its graph G(T) is single-valued, in which case G(T) is the graph
of 7. The graph of T is defined as the subset of the topological direct sum
BB consisting of all vectors of the form xPTx with x in the domain of T.

CommuTOR. The commutor (also known as commutant) of a sct S of contin-
uous lincar operators on a topological vector space L is the sct (denoted S*) of
all such operators on L that commute with every operator in S.

COMPACT OPERATOR. An operator on a Banach space is compact if it carrics
the unit ball into a set whose closure is compact. In an infinite-dimensional
separable Hilbert space H, a selfadjoint operator T is compact if and only if H
has an orthonormal basis {e,} such that Te, = A,e,, where A,— 0 as n— .

COMPLEX STRUCTURE. A complex structurc in a real topological vector
space L is a continuous lincar transformation J on L such that J2 = —/, wherc
I denotes the identity on L. If (L, A) is a symplectic space (q.v.), J is called
symplectic in case A(Jx, Jy) = A(x, y) for all x, y € L: and is called positive in
case A(Jx, x) = 0 for all x € L. A positive symplectic complex structure in L
gives risc to a complex pre-Hilbert structure in L in which (a + ib)x is defined
as ax + bJx for arbitrary real a and b, and (x, y) is defined as A(Jx,y) +
iA(x, y). Similarly in the case of an orthogonal space.
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CoNFORMAL GROUP. Every one-to-one transformation of Minkowski space
M, onto itself that preserves causality is in the Ponicaré group apart from a
scale transformation when the space dimension n > 1. However, there exist
local transformations in a neighborhood of any point in M, that are one-to-one
and preserve causality inside the neighborhood, but typically cannot be ex-
tended to all of M, (without mapping M, outside of itsclf). These are the
conformal transformations. They are also definable as the transformations pre-
serving the conformal structure associated with the Lorentz (or pseudo-Rie-
mannian) quadratic differential form dx3 — dx} —--- —dx2. The conformal
group is (locally isomorphic to) the group of all causal transformations on the
**Einstein Universe,”’ in which M, is covariantly imbedded. The wave, Max-
well, and neutrino equations are covariant relative to the conformal group, but
equations involving nonvanishing mass, such as the Klein-Gordon and Dirac
electron equations, are not.

CONJUGATION. A conjugation on a complex Hilbert space H is an involutory
antilinear isometry. Thus if % is a conjugationon H, %2 = /, %(ax) = a %(x) for
all complex numbers a and x in H, and (% x, ®y) = {y, x). The clements of H
that are invariant under » form a real Hilbert space H, rclative to (-,-) and
every element of H has the form z = x + iy for unique x and y in H,. When
H has a more structured form such as L,(M), M being a given mcasurc space,
there is a natural special conjugation, namely complex conjugation, but in
general there is no unicity about a conjugation on a Hilbert space. Any two
conjugations x and %' are conjugate via a unitary operator: x' = U*xU for
some unitary U.

CycLic VECTOR. A cyclic vector for a set S of operators on a space L is a
vector z in L such that the set of all vectors Tz, where T is in thc algebra
generated by S, is dense in L. If S is an abelian selfadjoint algebra of bounded
operators on a Hilbert space that has a cyclic vector, then §' = §", i.e., the
algebra S’ is maximal abelian; conversely, in a separable Hilbert space every
maximal abelian selfadjoint algebra has a cyclic vector. The algebra is then
said to have simple spectrum. In particular, if S is the W*-algebra generated
by the spectral projections of a given selfadjoint operator A, then A is said to
have simple spectrum. This notion generalizes to Hilbert space that of a self-
adjoint matrix all of whose eigenvalues are distinct. Sce also SEPARATING VEC-
TOR.

DIAGONALIZABLE OPERATOR. In heuristic usage, this is an operator that is
appropriately conjugate to one that is in diagonal form. As used in lexicons
here, it is an operator on Hilbert space that is unitarily equivalent to the oper-
ation of multiplication by a measurable function, acting in L, over a mcasure
space. Such an operator T is densely defined and satisfies the equation T7* =
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T*T, and converscly such a operator (called *'normal’’ in mathematical liter-
ature) is diagonalizable,

DIFFERENTIABLE VECTOR. Sce REGULAR VECTOR.

DiFrERENTIAL. If T is an operator (not necessarily lincar) from a topological
vector space L to another such space M, its differential (dT), at the point x of
L is the linear mapping in L to M dcfined by the cquation (dT),y =
lim,_ ot~ '[T(x + ty) — T(x))].

Direct suM. A Hilbert space H is the direct sum of subspaces H, if the H,
are mutually orthogonal and every vector in H is the sum of its components x,
in the H, (or, equivalently, the H, span H). Onc writes H = ®H,.

DiReCTED SYSTEM. This is a generalization of the positive integers used to
label generalized sequences, called nets (q.v.). Specifically, it is a partially
ordered system (S, < ), with the property that any two clements a and b in §
have an upper bound c in S. A typical example is the set of all neighborhoods
of a point in a topological space, ordered by reverse inclusion. Little will be
lost if the rcader thinks of the term as cither the positive integers or this ex-
ample.

DisTRIBUTION. A predistribution on a topological lincar space L is a lincar
map D from the dual L* of L to random variables on a probability measure
space P. A distribution (also known as generalized random process) is an
equivalence class of predistributions relative to the following equivalence re-
lation: the predistributions D and D’ on L to random variables on P and P’ are
equivalent if and only if for arbitrary finite subsets f,, fi, ..., f, in L*, the joint
probability distribution of D(f,),... ,D(f,) is the same as that of D'(f)),...,
D'(f,). When L is finitc-dimensional, this notion of distribution is cffectively
coincident with the usual onc of a probability distribution in the spacc L, but
this is not the casc when L is infinitc-dimensional. Thus the isonormal distri-
bution (q.v.) in a real Hilbert space H is a distribution in the present sense that
cannot be represented by a countably additive probability distribution of the
usual type. The theory extends to **noncommutative’” distributions, in which
the values of D(f) are cffectively selfadjoint opcrators. Sec RANDOM VARi-
ABLE and SPECTRAL THEORY.

DuaL space. The dual of a topological vector space L is the vector space
denoted L* consisting of all continuous linear functionals on L. The antidual,
denoted *L. is the space of all continuous conjugate (or anti-) lincar function-
als, which functionals f differ from linear functionals in the property that f(ax)
= d f(x) for arbitrary scalars a and vectors x.
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DUHAMEL’s PRINCIPLE. In a succinct abstract form, this classic principle
for obtaining the solution of an inhomogeneous linear equation from the so-
lution of the corresponding linear one may be stated as follows. For ¢ = 0, lct
S(f) be a bounded operator on the Banach space B, and suppose that $(0) = /,
St + 1) = S(0)S(r') for arbitrary ¢ and ¢', and that the map ¢ — S(r)x is
continuous for all fixed x € B. (Such a function S(¢) is called a one-parameter
semigroup.) Let f(r) be a continuous function from [0, ®] to B, and let &, be
arbitrary in B. Then there is a unique (slightly gencralized) solution u(f) of the
equation ¥’ = Au + f, where A is the infinitesimal generator of S, given
explicitly as

u(®) = Su, + LIS(I — 5)f(s)ds.

A special case is a formula for e4~#. If A and B arc bounded lincar opcrators
on B, then

eNem = g + f ei=1 B e+ ds,
(1]

for arbitrary real 1. The formula also applies for ¢ = 0 in case A is unbounded
but generates a continuous semigroup. The tactical use of Duhamel’s formula
is typically different from but complementary to that of the Lie-Trotter for-
mula (q.v.).

EXTENSION. An extension of an operator A in a Hilbert space H is an oper-
ator B whose domain includes that of A and agrees with A on their common
domain. This is expressed symbolically as ACB.

Fatou’s LEMMA. If {f,} is an arbitrary sequence of nonnegative measurable
functions on a measure space, then

J liminf £, < liminf [f,

FIELD. Physical usage regarding this term cannot be made entirely precise,
but essentially, or normally, it refers to a section of a vector bundle over space-
time M. The treatment of this notion is beyond the scope of this book (cf..
Choquet-Bruhat et. al. 1982). Group-covariant. or homogencous, vector bun-
dles are determined by (or **induced from™’) a representation of the subgroup
leaving fixed an arbitrary point of M, known as the *‘isotropy’’ subgroup (dif-
ferent points lead to equivalent results). Scalar, spinor, and vector ficlds on
M, are induced from the following representations of the Lorentz group L.
which is the isotropy subgroup of the Poincaré group as it acts on M,,: taking
L in the simply connected form SL(2. C), the representations are (i) for scalar
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ficlds, L — 1 (on a onc-dimensional space); (ii) for spinor ficid, L — L L*-!
(on a four-dimensional space); and (iii) for vector ficlds, on the space of 2 x
2 complex hermitian matrices H, L maps into the transformation H — LHL*.
Vector ficlds on My may be identified with differential 1-forms in such a way
that their Poincaré transformation properties are the same.

GENERAL LINEAR GROUP. If L is a topological vector space, the gencral
linear group GL(L) over L is defined as the group of all continuous lincar
transformations 7 that have continuous inverses. If L is a Hilbert space, cvery
clement 7 of GL(L) has a polar decomposition T = US in which U is unitary
and § is sclfadjoint.

GROUP, TOPOLOGICAL AND LIE. A topological group G is a group having in
addition a topology such that xy~" is a continuous function of x and y, as they
range (independently) over G. A Lic group is one in which a neighborhood of
the unit clement can be given cuclidean coordinates in such a way that group
composition is defined by analytic functions. Any Lie group has a Lie algebra,
also known as an infinitesimal Lic group, which is much casicr to deal with
from an algebraic standpoint, but whose relation to the group involves analytic
problems (see REPRESENTATION OF A GROUP).

The simplest Lie groups are R", with addition of vectors as the group opera-
tion. More representative are the pseudo-orthogonal groups O(p, q), consisting
of all homogencous lincar transformations on a vector space of dimension p
+ q that leave invariant the quadratic form x} + -+ x2 — x2,, —«+~
x2..,, where the x; are the coordinates. The group O(3, 1) is the usual Lorentz
group, and O(n, 1) is its analog for (n + 1)-dimensional Minkowski space M.
Transformations in this group, as they act on My, cither preserve or reverse
causality, in the sensc that if X is in the future of Y, then gX is in the future
(resp. past) of gY. If n > 1, the most general one-to-onc transformation from
M, onto itsclf that is causal in this sense is the product of one in SO(n, 1) with
a vector translation x,— x, + a,, wherc the g, arc constants, and a scale trans-
formation, X — AX, where A is a positive constant. All these transformations
together form the scaling-extended Poincaré group. If the scale transforma-
tions are omitted, the result is one version of the Poincaré group. This version
includes the discrete symmetries of time reversal: x, — —x, and x, — x; for j
> 0; and of spacc reversal: x, — x, and x, = —x, for j > 0. When the discrete
symmetries arc cxcluded by limiting the group to its connccted component,
the result is the connected Poincaré group, generally called simply the Poin-
car¢ group herc and denoted P.

HAUSDORFF-YOUNG INEQUALITY. This specifies an L, space to which the
convolution of two or more functions belongs in terms of the L, spaces to
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which the factors belong. If G denotes R", or any locally compact abelian
group (with Lebesgue measure replaced by the invariant measure); if f; is in
L,,, (G), forj = 1,....m;and if p~' = p,=! 4+ + po! — |, where the p,
and p are all in the range [1, =], then the convolution f = f, *+--* f, isin L,
(G) and

WAl = Wil Ul

HERMITE POLYNOMIALS. Normalization conventions vary regarding the
definition of these polynomials H,(x), which have long figured in the expres-
sion of particle-wave duality in the free boson field. The classic definition is

H, (x) = (= 1y exp(x®) (d"/dx") exp(—x?).

The H,(x) satisfy simple recursion relations that can be regarded as an expres-
sion of the actions of creation and annihilation operators on an n-particle state:

(d/dx)Hn(x) = ann-l(x); Hu-ol(x) = Zan(x) - z'lHn-l(x)

They also represent the eigenfunctions of the harmonic oscillator in a suitable
representation; thus H,(x) is the unique polynomial solution H,(x), within a
constant factor, of the differential equation «” — 2xu’' + 2au = 0. The addi-
tion formula

27H (x + y) = .Zo H,_, (VZx) H, (VZx) (D)

can be regarded as a version of the binomial theorem in combination with the
Wiener transform (q.v., Ch. 1). In classical terms, the representation of #,, (x)
as the Wiener transform of x", within a constant factor, corresponds to the
formula

H(x) =m~"%2n L ) (x + iy)” exp( — y3)dy.

The H,(x) form an orthogonal basis for L,(R, g:,), where in general g, de-
notes the Gaussian measure of variance ¢ on R.

HERMITIAN OPERATOR. A hermitian (or symmetric) operator T is one whose
domain D is dense and that has the property (Tx.y) = {(x,Ty) for all x and ¥
in D. This is by no means sufficient to insure that T is diagonalizable (unless
T is bounded). In general. a hermitian operator has no sclfadjoint extension,
and even when it does, the extensions, when they exist, may have matcrially
different spectra. In distinction to a selfadjoint operator 7. which is character-
ized by the equality T = T*, a hermitian operator is characterized by the in-
clusion T C T*, meaning that 7* is an extension of 7. But there is no assurance
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that T* is itself hermitian; only the minimal closed extension 7** is surely
hermitian.

HILBERT SPACE. The unmodified term Hilbert space always means complex
Hilbert space here. Real Hilbert spaces are designated as real. The dimension
of a Hilbert space, complex or real, may be finite, countable, or uncountable.
A Hilbert space is separable if and only if it is finite or countably-dimensional.

HILBERT-SCHMIDT OPERATOR. The Hilbert-Schmidt norm ||T|, on a Hilbert
space H is defined by the equation |T|} = Z, ,[(Te,, e,)|?, where the ¢, form an
orthonormal basis in H. A Hilbert-Schmidt operator is one whose Hilbert-
Schmidt norm is finite. The norm is independent of the particular basis, and
may also be described as the trace tr(T*T'). The totality of all Hilbert-Schmidt
operators on a Hilbert space is itself a Hilbert space relative to the inner prod-
uct (A, B) = r(B*A). In particular, a Hilbert-Schmidt operator is compact,
and if selfadjoint, [[T|3 = Z, &, where the ), arc the cigenvalues of T.

HOLDER'S INEQUALITY. If f and g arc arbitrary measurable functions on a
measure space M, and if | <p,g=<oandp-' + ¢~ = 1, then, f|fg] = |1},
llgll,- The case p = ¢ = 2 is the Cauchy-Schwarz incquality.

INVERTIBLE OPERATOR. A continuous operator on a topological vector space
is invertible if it has a continuous inverse (defined on the entire space). Par-
tially defined inverses are not used in this book.

IRREDUCIBLE. A set of bounded opcrators on a Banach space is called irre-
ducible if it leaves no nontrivial closed linear subspace invariant. For a selfad-
joint set S on a Hilbert space, irreducibility is equivalent to either of the fol-
lowing conditions: (1) the commutor §' consists only of scalars, or (2) the W*-
algebra generated by S consists of all bounded linear operators. A *-represen-
tation o of a C*-algebra A is called irreducible if o(A) is irreducible.

IsONORMAL DISTRIBUTION. This is the isotropic, centered, Gaussian distri-
bution on a Hilbert space. Thus, on a real Hilbert space this distribution D is
characterized by the propertics that D(x) is Gaussian of mean 0 and variance ¢
[ixii2. and that D(x) and D(y) arc stochastically independent if x and y are or-
thogonal. The variant for a complex Hilbert space H involves in addition in-
variance under the phase transformations z — ¢z (z € H, 6 an arbitrary real
number).

KLEIN-GORDON EQUATION. This is the equation O¢ +m* = 0 on Min-
kowski space M, where (J denotes the wave operator 2 — A, A denoting the
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Laplacian on space, and m is a constant, usually > 0, and interpreted physi-
cally as the mass of the quanta of the field represented by the equation. If fand
g are given functions in Cg on space, then there is a unique solution ¢ such
that @(f, x) = f(x), 34p(to, X) = g(x), where 4, is an arbitrary given time. This
solution remains in Cg on space at all times, and its support at time ¢ is con-
tained in the sum of its support at time 0 with the ball in space of radius ||,

There is a Poincaré- (or relativistically) invariant symplectic and local form
A defined on the indicated class H, of smooth solutions by the equation (where
¢ is assumed to be real-vaiued)

A, 9') = JlG@)e" — ¢(34")dx,

the integration being over space at an arbitrary fixed time. The symmetric
energy form, which is not relativistically invariant, is also expressible in local
form:

E(p, ¢') = J1(6)8,(¢") + m2@p’ + (Vo) X (Vo')]dx.

The space H, is dense in a complex Hilbert space H of generalized solu-
tions, on which the Poincaré group acts in a unitary irreducible fashion, which
is stable in the sense that the (quantum) energy operator, defined as the infin-
itesimal generator of time displacement in this representation, is positive. The
complex unit i acts on this space of real functions as the Hilbert transform with
respect to time. The imaginary part of the inner product in H is given by the
form A. The real part of the inner product has an inherently nonlocal form:

(¢ @) = [ICelto. NE + [IC~ " dp(tu, )3,

where C denotes the operator in L, over space, (m* — A)%, and |||, denotes
the norm in this L,.

In terms of Fourier transforms (or in ‘‘momentum space'’), this Hilbert
space H becomes an ordinary complex L, space. over the positive frequency
branch of the ‘‘mass hyperboloid’’ M,,: K* = m?, where K = (k,, k,.....k,)
is a dual vector to the space-time position X and K? = k3 — ki—--- —k2.
There is a Lorentz-invariant measure du(k) = |k,|- ' dk,++-dk, on M,,, unique
within normalization, and an arbitrary function fin L.(M,,: k, > 0) correspond-
ing to the vector ¢ in H:

@X) = Re [, e*% f(K)du (k).

LEBESGUE INTEGRATION. A function that is measurablc on a mcasure spacc
(R, R, 0) (q.v.) is one that is in the smallest class of functions that is closcd
under pointwise convergence of sequences and contains all finitc lincar com-
binations of characteristic functions of sets in R. Any nonnegative mcasurable
function f has an integral [, f(x) do (x), or simply [f. which may be . char-
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acterized by the following properties: (i) if f(x) = C,(x), where C, denotes
the characteristic function of the set A, then [f = o(A); and (ii) if f;(x) < fo(x)
=<-- is an increasing sequence of nonnegative measurable functions, whose
pointwise limit is f, then lim, ff, = [f.

An integrable function is a measurable function f for which f |f| < %. The
dominated convergence theorem states that if { f,} is a sequence of measurable
functions such that |f,| = g for some fixed integrable function g, and f,(x) —
f(x) for all x, then fis integrable and lim, ff, = ff. What happens on a set of
measure zero does not affect the Lebesgue integral or convergence theorem
for sequences. See also FATOU’S LEMMA and L,-SPACES.

LIE ALGEBRA. A Lie algebra is a vector space L together with a bracket
operation [X, Y] for any two elements X and Y of L whose values are again in
L that satisfies the relations

[X’Y] = - [Y!XL [x, [Y’Z]] + [zv [Xv Y]] + [Y,[Z,X]] = O‘
and
[aX + Y,Z] = alX, Z] + [V, Z],

for arbitrary X, Y, and Z in L, and an arbitrary scalar a. Every Lie group G
has associated with it a unique Lie algebra G, which may be represented as
the space of all vector fields on G that are invariant under left translation, x —
ax, on G, as translations act naturally on vector fields. The bracket operation
is then the usual commutator of vector fields: [X, Y] = XY — YX. There is a
unique one-parameter unitary subgroup g(f) of G that is generated by any
given element X of G, denoted as e* or exp(tX), and characterized by the
equation

XN)P) = (d/d) f(g(1)~'P)limo
for all C* functions f on G, of which p is an arbitrary point.

LI1E-TROTTER FORMULA. In its simplest form, the Lie-Trotter formula is a
(noncommutative) generalization of Riemann integration, in which one forms
the limit of a product of values of a matrix-valued function instead of the limit
of a sum of values of a numerically-valued function. It states, e.g., that if A
and B are any two finite-dimensional square matrices, then e**# = lim, ...
(e e®")". The same formula applies more generally when A and B are oper-
ators in a Hilbert space, provided A and B are selfadjoint, and A + B is essen-
tially selfadjoint (e*+# being then defined as e¢ where C is the closure of A +
B). At a formal level, this formula underlies the path-integral approach of
Feynman and the Feynman-Kac formula; in this book the formula is used di-
rectly, rather than indirectly via path integrals.
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L,-spaces. For any measure space M, the space L,(M), where | = p < =,
is defined to consist of all measurable functions f such that f |} <. The L -
norm of f, usually denoted as ||f],, is defined as [ J |f{"]*. Examination of the
limiting behavior as p — « leads to the definition of L., (M) as the space of
all bounded measurable functions, with ||f||.. defined as the ‘‘essential’* supre-
mum of [ﬂ, or the supremum when null sets (i.e., sets of measure zero) are
disregarded. Strictly speaking, the vectors in L,(M) are not functions, but
equivalence classes of functions that agree except on a null set. The space
L,(M) forms a Hilbert space with the inner product {f, g) = ffg, and all the
L, spaces are Banach spaces. See also HOLDER'S INEQUALITY.

MAXIMAL ABELIAN ALGEBRA. A maximal abelian algebra A within the al-
gebra B of all bounded operators on a Hilbert space is just what its name
implies—one such that every operator in B that commutes with every operator
in A is in A. If M is a finite measure space, its multiplication algebra, defined
as all operators on L,(M) of the form f(x) — k(x)f(x), where & is a bounded
measurable function, is maximal abelian in this sense. Conversely, every
maximal abelian algebra in B that is selfadjoint is unitarily equivalent to a
direct sum of such multiplication algebras, or if the underlying Hilbert space
is separable, to one such algebra.

MEASURE SPACE. A measure space consists of a set R, a o-ring of subsets R
of R, and a function ¢ from R to [0, o] having the property that if the A, (j =
1, 2,-+) are disjoint sets in R of union A, then p(A) = 2, ©(A)). A finitely-
additive measure space is the same except that the last condition is assumed
only for finite unions, and so is not necessarily a measure space in the usual
sense here adopted. Gaussian measure in Hilbert space is only finitely-addi-
tive, but Wiener measure on Wiener space is countably additive. For brevity
we often denote the measure space (R, R, @) as (R, p) when R is given by the
context or is immaterial. A measure space is called finite in case R € R, and
o(R) < =; if, moreover, o(R) = 1, it is called a probability measure space.

MinkowsKi SPACE. This space will be denoted as M,, and its points de-
scribed by coordinates as (x,, X, .. ,X,), where x, denotes the time, and the x,
for j > 0 denote the space coordinates. For any vectors X and Y in M,,, X*Y
denotes x,y, — X;¥; — *** — X', and X? denotes X-X. The future (past) of the
origin O consists of all points X such that X2 > 0 and x, > 0 (x, < 0). The
future of any other point Y is defined as the vector sum of Y with the future of
0 (similarly for the past).

NET. This is a generalization of sequence, in which a directed system (q.v.)
is used to label the points, rather than the positive integers. The definition of
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convergent net is analogous to that of convergent sequences, and a set in a
topological space is closed if it contains the limits of all convergent nets of its
clements.

OPERATOR. This term will usually mean linear operator in a vector space.
Thus if T is a lincar operator in the space L, having the domain D, then D is a
lincar subspace, i.e., a subsct of L that is closed under addition, and under
multiplication by scalars. In addition, T has to have the property that T(ax +
y) = aT(x) + T(y) for all vectors x and y in D and all scalars a. In a complex
vector space, one must on occasion consider transformations T that satisfy the
preceding condition only for real scalars a; these are called real-linear, to
distinguish them from the transformations T that satisfy the equation for all
complex numbers a, which are then complex-linear. An operator (or function)
on a space will be understood to be defined on the entire space, whilc an
operator in a space will be understood to have a domain that may be a proper
subset of the entire space.

OPERATOR TOPOLOGY. For bounded operators on a Hilbert space H, there
arc three main topologies: the uniform, the strong operator, and the wecak op-
crator topologies. To describe these, it suffices to indicate comresponding
neighborhoods N of 0, since the neighborhoods of an arbitrary operator 8 are
obtained simply by vector addition of B to the neighborhoods of 0. For the
uniform topology, a neighborhood N of O consists of all operators B such that
[IBll < €, where € is an arbitrary positive number. For the strong operator to-
pology, N depends on an arbitrary finite set of vecters x,,...,x, in H and ar-
bitrary positive number €, and consists of all operators B such that ||Bx]| < €
for all j. For the weak operator topology, N depends also on an arbitrary set of
n vectors y,, ..., v, and consists of all operators B such that |(Bx,, y)| < € for
all §.

Other topologies occur in the literature, but only the foregoing threc arc
necded in this book, and principally the strong operator topology. The quali-
fication ‘‘operator’ is useful on occasion because, when it is omitted,
*‘strong’’ may appear to indicate the uniform topology by virtue of another
usage, and ‘*weak’' may be confused with the **w*-'’ topology on the space
of all bounded operators on H (as the dual of the space of trace-class opera-
tors).

In the space ol all selfadjoint operators in H, both bounded and unbounded,
the only topology used is an extension of the strong operator topology, which
is most conveniently given in terms of the convergence of a sequence. A se-
quence {A,} of selladjoint operators in H is said to converge to the sclfadjoint
operator A in H, in the strong operator topology, in case any of a number of
equivalent conditions holds, including the following: a) ¢4x — ¢* for all real
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t (in the strong operator topology as carlier defined); b) E(A) — E(A) at every
point A of continuity of the spectral resolution E(A) of A, where E(A) is the
spectral resolution of A,. For this to take place it is sufficicnt but not necessary
that A,x — Ax for all x in a dense subspace D of H on which A is essentially
selfadjoint.

ORTHOGONAL SPACE/GROUP. An orthogonal linear spacc is a topological
vector space L together with a continuous nondegenerate symmetric bilinear
form S on L. The orthogonal group, denoted O(L, S), is the subgroup of the
general linear group GL(L) (q.v.) consisting of transformations that leave S
invariant. A complex Hilbert space H determines a real orthogonal space by
taking S(x, y) = Re((x, y)), and taking L to be H with only real scalars, thus
doubling its dimension and creating a real Hilbert space H*. O(H*, S) will be
called the orthogonal group over H and denoted O(H). Transformations in
O(H) correspond to homogeneous canonical lincar transformations of the free
fermion field whose single-particle space is H.

POSITIVITY-PRESERVING OPERATOR. A classical theory of Perron and Fro-
benius treats matrices whosc entrics are nonncgative. Thus, if A is a square
matrix with positive entries, [A| is an eigenvalue and there cxists a corre-
sponding eigenvector all of whose components are nonncgative. The theory
has been extended to infinite-dimensional spaces by Krein, Andé. Gross, and
others. In particular, if T is a bounded operator on L,(M) for some probability
measure space M, that is positive in the sense that f(x) = 0 for all x implies
that (Tf)(X) = 0 for all x, then ||T|| will be an eigenvaluc with a nonnegative
eigenfunction, provided that T is a compact operator, or altcrnatively if 7 maps
L,(M) into L,(M) for some p > 2. The theory also gives conditions for the
eigenspace of |[T|| to be one-dimensional, analogues of which apply to the
unicity of ground states of quantum field Hamiltonians. This type of **posi-
tive'’ operator is not to be confused with the usual notion applicable to selfad-
joint operators in Hilbert spaces, i.c., positivity of the spectrum. A selfadjoint
operator may be positive in either sensc without being positive in the other.
but the context usually indicates the relevant scnse.

Pre-HILBERT sPACE. This is a spacc that is a Hilbert space cxcept that it is
not necessarily complete. Equivalently, it is a vector space with an inner prod-
uct {x,y) having the properties of being lincar in x for fixed y, hermitian:
(v, x) = {x, ), and such that (x, x) > 0 for all x # (). When complcted by an
analog to the Cantor process, it forms a full Hilbert space.

RANDOM VARIABLE. In modem mathcmatical usage, a random variable is a
mcasurable function on a probability mecasure space (or more exactly. an
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equivalence class of such functions, when functions that agree except on a set
of probability zero identified). Earlier (before 1933, when Kolmogorov's book
laying foundations for probability thcory was published) random variables
were treated in an informal semi-axiomatic way, which can now be made pre-
cise. Random variables form an associative algebra on which is given a par-
tially-defined positive normalized lincar functional E, the expectation or inte-
gral, and defined on the subalgebra B of all bounded clements. Starting from
B and E as restricted to B, a probability measure space on which the random
variables become measurable functions whose integrals correspond to the re-
spective expectations may be derived. The individual points of this measure
spacc are not well defined, having in gencral only a theoretical character, cor-
responding to their not being conceptually definable from the results of mea-
surements. Probability theory, the conventional theory of random variables,
can in part be extended to the context in which the underlying algebra of
bounded quantitics is noncommutative, provided the expectation functional £
is central: E(ab) = E(ba) for arbitrary ¢, b in B.

REGULAR (DIFFERENTIABLE, ANALYTIC, ETC.) VECTOR. In treating a onc-pa-
rameter unitary group U(f) on Hilbert space H, or its sclfadjoint gencrator A,
it is often necessary to develop subspaces of H consisting of vectors that arc
especially regular in relation to the given group or opcrator. A differentiable
vector x in H is one such that U(1)x is a differentiable function of 1, with values
in H; an analytic vector x is one such that U(r)x is a (rcal-) analytic function
of ¢ in some neighborhood of 1 = 0, with values in H. This means that the
series &, (itA)" x/n! is defined and convergent for sufficiently small 1. More
generally, if the latter series is convergent for a given operator A, whether
selfadjoint or not, x is called an analytic vector for A. An entire vector is onc
such that the foregoing series is convergent not only in a ncighborhood of t =
0, but for all values of 1. The spectral theorem shows that every selfadjoint
operator has a dense set of analytic vectors, and a converse is true: a hermitian
operator having a dense set of analytic vectors is essentially selfadjoint.

REPRESENTATION OF A GROUP. A continuous unitary representation of a to-
pological group G on a Hilbert spacc H is a mapping g — U(g) from G to
unitary opcrators on H that is strongly continuous, and a representation:
U(gg') = U(g)U(g') for arbitrary ¢, ¢’ in G and U(e) = 1, e being the unit of
G. Stone’s thcorem associates with any such representation of a Lic group a
corresponding infinitesimal representation dU of its Lie algebra G, defined by
the property that for arbitrary X in G, —idU(X) is the scifadjoint generator of
the onc-parameter unitary group U(¢*). The domains of the dU(X) vary with
X, but their common part D is densc in H, dU(X)|D is essentially selfadjoint,
and the closure of [dU(X), dU(Y)] acts on any w in D to give dU([X, Y))w for
arbitrary X, Y in G.
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RIESZ INTERPOLATION THEOREM. This is the original L, interpolation theo-
rem, from which many variants and extensions derive (proved for real spaces
by Riesz, and extended to the complex spaces by Thorin). It states the follow-
ing: if T is a linear operator defined on the set S of all simple functions on a
measure space M (i.e., measurable functions having only finitely many val-
ues) to the measurable functions on M, such that ||Tf] "'/ = ""'Lf""/ (=01,
where | < p,, go, pis ¢ < =, then |Tf]|, < my' m,*~{|f]|, for all fe S, where 0
=¢r=1,and

(P~ q ) =ups'.g") + (I -0 (pi'qrh).

SCALE OF SPACES. Subspaces M, of a topological vector spacc M that de-
pend on a real parameter s, and have an intrinsic topology, with the properties
that M, C M, if s < r—and that the inclusion injection of M, into M,. in their
intrinsic topologies, is continuous—form a scale of spaces. The paramecter
range may be discrete as well as continuous. The L (M) spaces for a finite
measure space M, with | < p < o provide a useful example. Another example
is that of the domains D(A"), where A is a strictly positive selfadjoint operator
in Hilbert space, with the intrinsic topology defined by the norm [jx|, = [lA"x|l,
where n may range over the positive integers, or all integers, etc., as required.

SCHWARZ REFLECTION PRINCIPLE. This treats the analytic continuation of a
complex analytic function, and in its simplest form states that if f(z) is contin-
uous on the closed upper half-plane {Im(z) = 0} and analytic in the interior,
with real values on the boundary, then f extends uniquely to an analytic func-
tion on the entire plane.

SELFADIOINT OPERATOR. This is a densely dcfined operator T in a Hilbert
space such that T* = T. Equivalently, it is an operator that is unitarily equiv-
alent to the operation of multiplication by a real measurable function, in an L.-
space. A densely defined operator T is said to be essentially selfudjoint in case
it has a unique selfadjoint extension. This is the case if and only if 7* = T**,
in which case T* or T** is the selfadjoint extension. See also HERMITIAN
OPERATOR.

SEPARABLE. A Hilbert space is separable if it has a countable dense subset.
or, equivalently, if it is at most countably dimensional. A mcasure space M is
separable if L.(M) is a separable Hilbert space. Although most of the results
in the book do not assume separability of the Hilbert space involved, some
peripheral results cited do assume separability in order to avoid the elaboration
that would otherwise be required. Inseparable spaces have no essential role in
physical quantum field theory, and the reader will lose little by assuming that
the Hilbert spaces involved are separable.
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SEPARATING VECTOR. A separating vector in a space L for a set S of opera-
tors on L is a vector z such that if Tand 7" are in S and Tz = T'z, then T =
T'. If S is a selfadjoint algebra of bounded operators on a Hilbert space, then
a given vector z is separating for S if and only if it is cyclic (g.v.) for the
commutor S’.

SEQUENTIAL TOPOLOGY. This is a topology that is defined by the specifica-
tion of convergent sequences. The closed sets are those containing the limits
of all convergent sequences of its elements. The resulting ensemble of closed
sets satisfies the usual axioms for a topological space, and a function on a
sequentially topologized space to another such space is continuous if and only
if it carries convergent sequences into convergent sequences.

O-RING. A o-ring of sets is a collection R of sets that is closed under the
difference operation and under finite and countable unions and intersections.
The Borel sets in R" form a o-ring.

SOBOLEV INEQUALITY. This states basically the following: let L, denote
the space of all functions on R" that are in L, together with their first r deriva-
tives, in the topology of convergence in L, for all derivatives up to and includ-
ing those of order r. Then—only ifp = 1,r=s=0,1 =g¢<®,andg-' =
p~' — (r— s)n~'—any function in L, is also contained in L, ,, and the inclu-
sion mapping is continuous. The inequality fails if g = o, but a variant holds,
which says that

Il = ¢ fll,.., if r > nip.

SPECTRAL THEORY. This is the infinite-dimensional generalization of the
theory of diagonalization of selfadjoint, unitary, and other normal matrices,
in finite-dimensional vector spaces. The diagonalization of commuting sets of
normal operators is also important, and similar to the finite-dimensional case.
The simplest way to describe the theory is to say that the only essential differ-
ence from the finite-dimensional case is the replacement of a measure space
consisting of a finite number of points (substantially a set of basis vectors in
the finite-dimensional vector space case) and corresponding sum by a Le-
besgue-type measure space and corresponding integral. This reflects in part
the phenomenon of the continuous spectrum.

A natural generalization of a diagonalized matrix is the operation on L,(M),
where M is a given measure space (q.v.), of multiplication by a given measur-
able function, say f(x) — k(x)f(x), where f(x) is arbitrary in L,(M) and k(x) is
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the given measurable function. This operator T, like a diagonal matrix, is nor-
mal, i.e., TT* = T*T, where T* is the adjoint of T. In one of its simplest
forms, the spectral theorem says simply that the converse is true—the most
general densely defined normal operator in a complex Hilbert space is unitarily
equivalent to a multiplication operator of the type indicated.

In the finite-dimensional case, the function k(x) is just the jth eigenvalue ),
(j = 1, 2,..., n-dimension of the space), and so is always bounded; but in the
infinite-dimensional cases, k(x) may be unbounded. When this happens, T
does not operate on the whole space, but its domain is restricted to consist of
all functions f(x) such that k(x)f(x) is again in L,(M). With the appropriate
definition of the adjoint for unbounded operators, the spectral theorem is valid
for both bounded and unbounded operators, provided they are densely defined
(i.e., defined on a dense subset of H; see ADIOINT).

The classic way of expressing the spectral resolution of a given selfadjoint
operator T is in the form of an increasing family E, of projections in H, A
ranging over the real numbers, such that T = [ME,, meaning more specifi-
cally that if x and y are any vectors in H, x being in the domain of T, then
(Tx, y) = JAd(E,x, y). In the case of the operation of multiplication by the real
function k(x), E, is just the operation of multiplication by the characteristic
function of the subset of M on which k(x) < A (within an inessential question
of normalization; one could equally use the subsets on which k(x) = A). In the
case of normal operators that are not selfadjoint, it is similar except that A
ranges over the complex numbers.

More generally, if B is a given Borel set of complex numbers, the spectral
projection E(B) for T is the operation of multiplication by the characteristic
function of the subset of M for which k(x) lies in B. This spectral resolution
function E(B) is a countably-additive function of B; i.e., if B,, B,,**is a se-
quence of disjoint Borel sets whose union is B, then E(B) is the sum of the
orthogonal projections E(B;). A set of normal operators are said to be simul-
taneously diagonalizable in case they are conjugate to multiplication operators
via transformation by one and the same unitary transformation. For this to be
the case it is necessary and sufficient that their spectral projections E(B) be
mutually commutative. If one or more of the operators is unbounded, it is by
no means sufficient that the operators commute on a dense subspace D in H,
i.e., ABx = BAx, where A and B are the two operators for all x in D. We say
the operators are strongly commutative when their spectral projections are mu-
tually commutative.

If B is a Borel function of a complex variable, and T is a normal operator
consisting of (or unitarily equivalent to) multiplication by &, then B(7) is de-
fined as the operation of multiplication by B(k(x)) (or the transform of this by
the corresponding unitary operator). All bounded Borel functions of a set of
strongly commutative normal operators commute with each other, and not just
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their spectral projections (the case in which f is the characteristic function of
a Borel set).

The main point of commutative spectral theory is that many issues are re-
duced to questions in measure theory, and are thereby often relatively straight-
forward to deal with.

STATE. A state of a C*-algebra A with identity / is a linear functional E on
A that is positive, in the sense that E(A*A) = O for arbitrary A in A, and
normalized, meaning that E(I) = 1. For example, if A is the algebra of all
bounded operators on a Hilbert space H, and if x is a unit vector in H, then
E(A) = (Ax, x) is a state of A.

The set of all states forms a convex set, i.e., if E and E’ are states, so is aE
+ bE', for arbitrary a, b such thata, b= 0anda + b = 1. A *‘pure’’ state
is an extreme point of this set, this being defined as a point that is not a non-
trivial convex combination of two other states. The preceding example is a
pure state, and all pure states are of this form in case H is finite-dimensional;
but when H is infinite-dimensional, there are others, contrary to heuristic folk-
lore. (These may in part be interpreted as arising from nonnormalizable vec-
tors representing eigenvectors for the continuous spectrum of a Hamiltonian.)
If D is a trace class nonnegative operator of unit trace in H, then E(A) =
tr(DA) is a state, ‘‘mixed’’ rather than pure unless D is a one-dimensional
projection. D is called the density operator (or density matrix) of the state.

In physics terminology, the above notion of state was originally called an
*‘expectation value form in a state,”’ or words to that effect. The term ‘‘state”
is sometimes used for the vector x above; but x is not uniquely determined by
E, and is now known as a ‘‘state vector.”” *‘State’’ as used here includes all
that is conceptually truly measurable for a state as the term is used in physical
literature, so only a metaphysical nuance is lost by shortening the term ‘‘ex-
pectation value form in a state’ in this way.

STATE-REPRESENTATION DUALITY. There is a mutual correspondence be-
tween states of a C*-algebra A and representations of A on Hilbert space, in
which pure states correspond to irreducible representations. Given a state E,
an inner product in A is defined by the equation (A, B) = E(B*A), leading to
a Hilbert space H, after completion and factoring by (i.e., essentially deletion
of) vectors of zero norm. For any element B in A, there is a corresponding
operator 0(B8) on H,, defined essentially by the equation o(B)A = BA. The
mapping B — o(B) is a *-representation in the sense that @ preserves the *,
and addition and multiplication. The subset o(A)! is dense in H,, so that the
vector in H, corresponding to / is cyclic (q.v.). The state E can be recovered
from o and this cyclic vector by the equation E(A) = (o(A)!, I). The state E
is pure (q.v.) if and only if the representation g is irreducible. The association
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of a x-representation on Hilbert space with a given state is exemplified by the
reconstruction of a quantum field from the vacuum expectation values of prod-
ucts of field operators (as in Wightman, 1964), and is also known as the GNS
construction.

STEIN INTERPOLATION THEOREM. This is an extension of the Riesz interpo-
lation theorem in which the operator as well as the L, space is varied. A sim-
plified form adequate for present purpose proceeds as follows. Hypotheses:
(1) M is a finite measure space; (2) z is a complex variable ranging over the
strip 0 =< Re(2) < I; (3) z— T, is a map from this strip to operators defined
on the class S of simple functions on M, having values that are measurable
functions on M; (4) For arbitrary simple functions f and g, (T.f, g) is an ana-
lytic function of z in the interior strip and bounded on the boundary; and (5)
For arbitrary fin S, [IT}.. ,fll,, < m||fll,, (j = 0, 1), where the m; are constants,
y is arbitrary in R, and 1 =< p,, qo, py, ¢, = ®. Conclusion: If (1/p, l/q) =
t (1/po, 1/go) + (1 — 1) (1/p,, 1/q,), where 0 <t = 1, then for all fin S,

IT.fNl = mom} =" fll,-

STOCHASTIC INDEPENDENCE. The random variables X in a set § are said to
be stochastically independent in case for any finite subcollection X, ..., X, the
probability of the joint event X, < a,, ..., X, < a, is the product of the individ-
ual probabilities that X; < a,, the a; being arbitrary real numbers. The concept
can be extended to noncommutative probability algebras, defined as under
RANDOM VARIABLE, with the additional constraint that E(XY) = E(YX) for ar-
bitrary random variables X and Y. In this case one requires that for arbitrary
bounded continuous functions f;, E(fi(X,)---f,(X,)) = E(fi(X))---E(f(X,)).
The canonical Q’s in either a boson or fermion free field are stochastically
independent in this sense, relative to the vacuum as expectation functional.

STONE’S THEOREM. If U(t) is a continuous one-parameter unitary group on
a Hilbert space H, then there exists a unique selfadjoint operator A in H such
that U(r) = e*. Here a one-parameter unitary group U(?) is defined as a uni-
tary operator-valued function of the real variable ¢ having the properties that
UGt + ') = U(U(¢') for arbitrary real ¢ and ¢', and U(0) = / (the identity
operator). Continuity is in the sense of the strong operator topology, or the
weak operator topology, which happen to be the same within the space of all
unitary operators.

The theorem also shows that A can be deduced from the group U(t) as fol-
lows:

Ax = lim (i)~' (U() — Dx
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for all vectors in the domain of A; and if the limit on the right exists, then x
will be in the domain of A. From the spectral theorem it follows also that for
a given vector x to be in the domain of A, it suffices that (ir)~' (U(t) — I)x be
a bounded function of t as t — 0.

STONE-VON NEUMANN THEOREM. Established in a beautiful paper by von
Neumann (1931), this theorem underlies the essential equivalence of the Hei-
senberg and Schrodinger formulations of quantum mechanics. In the mathe-
matical form given by von Neumann, it concerns two continuous unitary
representations U and V on a Hilbert space of the additive group of a real
n-dimensional vector space L, that satisfy the (Weyl) relations

U)V(y) = e“»V(y)U(x) (xand y arbitrary in L),

where (x, y) denotes the usual scalar product in L when identified with the
space R" of real n-tuples. The theorem states that there exists a set of mutually
orthogonal subspaces H, in H, of which H is the direct sum, each of which is
invariant under all U(x) and V(y), and irreducible under the set of all these
operators, and in addition is such that if U{x) and V/(y) denote the represen-
tations of R" obtained by restricting each U(x) and V(y) to H,, then there exists
a unitary transformation T, from H, onto L,(R") such that

U®) = TUWT ', Vo) = TV/0T;

attain the following form (which is essentially the Schrédinger representation
of the Heisenberg commutation relations): for an arbitrary function f(u) in
L,(R"), Uy(x) sends f(u) into e!*vf(u), while Vy(x) sends f(u) into f(u + y).
This conclusion is false (in general) if L is replaced by an infinite-dimensional
space.

STONE-WEIERSTRASS THEOREM FOR PROBABILITY SPACE. This gives a con-
dition for an algebra A of bounded measurable functions on a probability space
M to be dense in L, (M), for | < p < =. A must be measure-theoretically
separating, in the sense that if R is the o-ring of the measure space, for any
two sets S and S’ in R that differ by more than a null set, there exists a function
fin A such that ff # [i.f.

STRICTLY POSITIVE. A sclfadjoint operator T in a Hilbert space (or a function
f) is strictly positive if there is a positive constant € such that T = e/ (or f =
£).

SYMPLECTIC SPACE/GROUP. A (linear) symplectic space is a topological vec-
tor space L together with a nondegenerate antisymmetric bilinear form A on
L. The symplectic group Sp(L. A) is the subgroup of the general linear group
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(q.v.) GL(L) that leaves A invariant. A complex Hilbert space H determines a
rcal symplectic space by taking A(x,y) = Im((x, y)). and taking L to be H
with only real scalars, thus doubling its dimension and creating a real Hilbert
space H?. The symplectic group Sp(H?, A) is also called the symplectic group
over H, and denoted Sp(H). Transformations in Sp(H) comrespond to homo-
geneous canonical linear transformations of the free boson ficld whose single-
particle space is H.

TENsOR PRODUCT. The tensor (or in von Neumann's term, *‘direct’’) prod-
uct HOH' of two Hilbert spaces H and H' is the completion of their algebraic
tensor product (which consists of all finitc combinations of the u®u’ with u in
H and «' in H'), with respect to the inner product having the property that
(u®u', v®v') = (u, v) (u,v'), if v and v' are similarly arbitrary in Hand H'.
IfH = Ly(M) and H' = L,(M'), then there is a natural unitary equivalence of
H®H' and L, (M X M'). Tensor products of any finitc number of Hilbert
spaces may be defined in a similar way. If T} is a bounded linear operator on
H,, the algebraic tensor product T, X .-+ X T, is bounded on the algebraic
tensor product H®:---®H,, and the topological (or Hilbert space) tensor
product of the T; is defined as the unique continuous extension to the (Hilbert
space) tensor product of the H, of their algebraic tensor product, and denoted
as T\®---®T,.

ToPOLOGICAL VECTOR SPACE. This is a vector space L over the real or com-
plex numbers that has also a topology relative to which the usual linear oper-
ations are continuous (i.e., ax + y is a continuous function of the scalar a and
the arbitrary vectors x and y in L). This is also known as a linear topological
space. If it is locally convex, meaning that it has a complete system of neigh-
borhoods, each of which is convex, then for every vector x # 0 in L there
exists a functional fin the dual L* to L such that f(x) # 0.

TRACE-CLASS OPERATOR. The following conditions on an operator T on Hil-
bert space are all equivalent, and define the notion of trace-class operator: 1)
T = AB, where A and B are Hilbert-Schmidt (q.v.): 2) T is a lincar combina-
tion of selfadjoint operators, each of which has eigenfunctions forming an
orthogonal basis, and corresponding eigenvalues A, such that X |A | is finite:
and 3) The traces r(TS) are bounded as § varies over thc bounded operators
of finite rank of unit bound (the traces in question are definablc in finite-di-
mensional terms). The supremum over these over these S of ¢r(TS)| forms a
norm |IT||, relative to which the space of all trace-class operators forms a Ban-
ach space on which the trace is everywhere defined as lim, ({TP,) if{P,}isa
sequence of projections convergent to /.
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TypE. According to the theory of W*-algebras (g.v.), every such algebra is
a direct sum of three types of components, known as types I, II, 11I. All
bounded operators, all abelian algebras, and all algebras obtainable from these
by formation of commutors, and direct sums or products, form the type I al-
gebras. The basic type 1l algebras, known as type II, factors (factor = W*-
algebra A that has only scalars in common with its commutor), are distin-
guished by their possession of a unique continuous trace, or complex-valued
linear functional T that T(AB) = T(BA) and T(/) = 1. If P is a projection in
such an algebra, 7(P) has values in the range 10, 1], and all values in this
range occur. The universal free fermion field is closely connected with the
simplest type 1, factor (called ‘‘approximately finite’* by von Neumann).
Type 111 algebras have no numerically-valued trace, and are not involved here.

W*-ALGEBRA. This is an algebra of bounded operators on a Hilbert space
containing the identity operator /, closed in the weak operator topology. and
closed under the adjunction operation, originally called a *‘ring’’ by Murray
and von Neumann, and known also as a ‘‘von Neumann algebra.”" A key
property of W*-algebras is that any such algebra A is identical with its second
commutor, denoted A", i.e., the commutor of its commutor A’. The W*-al-
gebra W*(A) generated by a bounded selfadjoint operator A (i.e., the smallest
W*-algebra containing it) consists of all bounded Borel functions of A (if the
underlying Hilbert space is separable), whercas the C*-algebra C*(A) gener-
ated by A consists of all continuous functions of A. In particular, the spectral
projections of a bounded selfadjoint operator are contained W*(A), but are not
in general contained in C*(A). The same is true for a finite set of commuting
selfadjoint operators, and a generalized function of noncommuting bounded
operators can be defined as one that is in the W*-algebra they generate. For
unbounded operators, sec AFFILIATION.
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Index

absolute continuity, 25

adjoint, 258

adjunction, 19, 76, 258
affiliation, 103, 258

algebraic topology, 22
annihilation operator, 48, 71, 77
annihilator, 185

antidual, 262

antientire function, 67
anti-free-ficld, 166
antiholomorphic polynomial, 66
antiholomorphic spinor, 92
antimonomial, 68
antisymmetric product, S0
antisymmetrization, 48
autocovariance function, 47

Banach algebra, 258

Borel function, 259

Borel set, 259

boson ficld: covariant, 40; free, 3, 41, 60;
general, 147; regular, 66

Brownian motion, 23, 116, 206

C*-algebra, 259; graduated, 233

canonical commutation relations, 11

canonical pair, 9, 11

canonical system, 118

Cauchy data, 106

Cauchy problem. 259

causality, 233

characteristic function, 20

Clifford algebra, 76, 83, 259. holomorphic/
antiholomorphic element of, 89; mode-
finite. 150 trace on, 83

Clifford relations. 76

Clifford system, 76; complex, 78; dual, 82

closure, 260

C-number, 12

cocycle, 122, 140; esscotial. 140

commutor. 260

coherent state, 73

complex structure, 108, 260

complex wave representation, 60, 64, 71; of
fermion ficld, 89

complexification, 35, 10}

conditional expectation, 30

configuration space, 12

conjugation, 41, 261

covariance, 18, 23

creation operator, 48, 71, 77

creator, 185

degree, 175

differential, 262

Dirac equation, 162

Dirac spinors, 162

direct product, 126

direct sum, 262; of distributions, 124

directed system, 262

distribution, 17, 262; algebraically equiva-
lent, 26; bounded, 23; continuous, 23; de-
rivative of, 25; ergodic, 37 ergodically
quasi-invariant, 38; isunormal, 18, 266;
metrically cquivalent, 120; normal, 17; of
parumeter c, 18; quasi-invariant, 28; atrict,
17

dual couple, 9; multiplicative, 216

duul spuce, 4, 262

Duhamel's principle. 263

entire function, 67
ergodicity, 24, 37, 103
essential lincarity, 121
expectation, 17
extension, 263

Fatou's lemma, 263

fermion ficld, free, 78

ficld energy. 59

finite propagation velocity, 236
Fock-Cook represeniation, 60

form, 198

Fourier-Wiener transformation, 43

free boson representation, 41

functional integration representation, 60
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Index

gauge, 170

generating function, 34, 147

graduation, 161, 233

Grassman algebra, 82

grounded Hilbert space, 126

group, 264; conformal, 261; extended sym-
plectic, 39; general linear, 264; Heisen-
berg, 14; orthogonal, 271; Poincaré, 264,
symplectic, 39

Haag's theorem, 248

harmonic osciliator Hamiltonian, 42
harmonic representation, 140
Hausdorff-Young inequality, 264
Heisenberg pair, 10

Heisenberg relations, 5

Heisenberg system, 6

Hermite polynomials, 265

Holder’s ioequality, 266

holes, 163

integratioo algebra, 19
interacting ficld, 209, 238
irreducibility, 11, 266
isotropic subspace, 176

kernel, 197
Kleio-Gordon equation, 159, 191, 200, 254

Lagrangian subspace, 176
Lie algebra, 268
Lie-Trotter formula, 268
locality, 245

mass, 200

mass hyperboloid, 256
maximal abelian algebra, 269
mean, 23

measurable, 17

measure space, 269

Mehler kemnel, 42, 211
Minkowski space, 269
momcntum cutoff, 248
monomial, 177
multiplicative unitary transformation, 120
multiplier, 122, 140

net, 269
Newton-Wigner localization, 173
nonsingular transformation, 37

normal product, 189
n-particle subspace, 100
number operator, 58, 100

one-form, 123

operator: closed, 260; compact, 260; essen-
tially selfadjoint, 273; Hermitian, 265; Hil-
bert-Schmidt, 265; inverse compact, 232;
invertible, 266; positivity-preserving, 27,
232, 271; selfadjoint, 273; trace-class, 18,
279

operator topology, 270

operators, strongly commutative, 275

orthogonal space, 75

particle representation, 8, 58; of fermion
ficld, 80

polynomial, 175; complex-analytic, 65; com-
plex-antianalytic, 65; real-analytic, 65

positive energy, 254

predistribution, 17; equivalent, 17

pre-Hilbert space, 5, 271

probability measure space, 269

proper onc-parameter group, 234

pseudo-derivation, 90

pseudo-interacting field, 229

q-number, 12

quantization, 107

quantized nonlincar equation, 244
quasi-invariant measure, 9

random variable, 16, 21, 271

real part, 41

real wave representation, 60, 82; of fermion
field, 82

Rech-Schlieder theorem, 172

regular state, 147

renormalization, 174

renormalization map, 177

renormalized power system, 216

reproducing kernel, 68

Riesz interpolation theorem, 273

scale of spaces, 273

Schrodinger equation, 155
Schrodinger representation, S
Schrodinger system, S, 11
Schwarz reflection principle, 273
second quantization, 154
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semirepresentation, 39

separable space, 273

sequential topology, 274

single-particle energy, 59

single-particle space, 3

skew product, 98

Sobolev inequality, 274

spatial cutoff, 235

spectral function, 219

spectral theory, 274

speed, 161

spin representation, 140

stability, 107

state, 276; equilibrium, 40; invariant, 40

Stein interpolation theorem, 277

stochastic independence, 31

Stone's theorem, 277

Stone-von Neumann theorem, 278

Stone-Weierstrass theorem, 278

strict commutativity, 10

strict positivity, 278

strong operatinns, 121

symmetric product, 50

symmetrization, 48

symplectic group representation, 39

symplectic transformation, unitarily quantiz-
able, 140

symplectic vector space, 4

tachyons, 146, 169
tame function, 18
tame linear mapping, 177

tensor multiplication, 48; antisymmetrized,
81; symmetrized, 48

tensor: algebraic, 50; antisymmetric, 47, 50;
covariant, 47; finite rank, 49; pure, 49,
symmetric, 47, 48, 50

unitarizability, 107

unitarized action, 14

unitarizer, 28

unitary implementability, 118, 135

vacuum, normal, 185

vacuum vector, 41; physical, 209, 238

vector, analytic, 258; cyclic, 22, 261; differ-
entiable, 272; entire, 272; regular, 272;
separating, 274

W+.algebra, 28, 280

wave equation, 207

wave representation, 58

Weyl algebra: infinitesimal, 175, 185; mode-
finite, 144; space-finite, 144

Weyl pair, 9; normal, 35; simple, 218

Weyl relations, 5; nonlinear, 216; restricted, 9

Weyl system, 4; covariant, 39; normal, 35, 41

white noise, 206

Wick product, 186, 195

Wick’s theorem, 187-90

Wiener measure, 30, 134

Wiener space, 134

Wiener transformation, 44
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