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1 The 2-Body Problem

The goal of this problem is to understand a pair of particles interacting via a central force such as
gravity. We’ll reduce it to problem you've already studied — the case of a single particle in a central
force.

Suppose we have a system of two particles interacting by a central force. Their positions are
functions of time, say g1, ¢2: R — R?, satisfying Newton’s law:
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Here mj, mo are their masses, and the force is described by some smooth function f:(0,00) — R.
Let’s write the force in terms of a potential as follows:

fy=-2.

Using conservation of momentum and symmetry under translations and Galilei boosts we can
work in coordinates where
(1) miqi(t) + maga(t) =0

for all times ¢. This coordinate system is called the center-of-mass frame.
We could use equation (1) to solve for g2 in terms of ¢1, or vice versa, but we can also use it to
express both ¢; and g2 in terms of the relative position

(2) q(t) = @ (t) — q2(t).

This is more symmetrical, so this is what we will do. Henceforth we only need to talk about ¢. Thus
we have reduced the problem to a 1-body problem!

Now here’s where you come in:

1. Show that ¢(t) satisfies the equation
q

mij = f(lq\)m

where m is the so-called reduced mass

mimsa

mi + mo

Note that this looks exactly like Newton’s second law for a single particle!



Solution to 1:

From (2) we can immediately see that § = ¢1 — ¢o. We can re-write §; and o using
their respective equations of motion. This leaves us with:

a1 — Q2 Q2 —q
mi g — g2 mi g2 — 1
Subtracting these two equations we get an expression for ¢ as follows:
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g = fllo—q2l) and G2 = f(le2—q1])

Now since |q1 — ¢2| = |¢2 —¢q1] the above expression can be written as:
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Combining ¢; terms of equal 7 we get:
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The coefficients in front of ¢; and ¢o are just the inverse of the reduced mass.

1 - mi + meo
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Thus we have shown that:
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2. Recall that the total energy E of the 2-particle system is the sum of the kinetic energies of
the particles plus the potential energy. Express E in terms of ¢ and the reduced mass. Show that

1.
E=gm 141> + V(al)

Note that this looks exactly like the energy of a single particle!

Solution to 2:

The total energy E for the two particle system is given by:
I L.
(3) E = 5m1Q12+§m2Q22+V(|Q1 — q2l)

From (1) and (2) we express ¢; and ¢2 in terms of ¢, the mass m; and the mass mg by
noting the following:
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Substituting the right most equalities of (4a) and (4b) for their respective values
in (3) and noting that |¢1 — g2 =|q| we get:

mq m2 ) mom? )
(5) E = 2 L 07+ V(Ja))-

1 1
2 (mi+m)? T2 (ma+ma)?
Finally, summing the two kinetic terms explicitly gives the desired result.
T 9
E=gmldl”+ V()
Where as before m is the reduced mass of the system.
3. Let J be the total angular momentum of the 2-particle system. Show that
J=mq xq

Note that this looks exactly like the angular momentum of a single particle!

Solution to 3:

Solving for the positions ¢; and g2, gives identical equations to (4a) and (4b) only
without time derivatives. We summarize the results below:
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The total angular momentum, J, is the sum of the angular momentum of each particle.
We give the full expression below.

(7) J = Ji+Ja = miq X q1+maqe X qga
Again, inserting (6a) and (6b) into (7) in favor of ¢ we get:

J = miq X ¢ +maq X g2
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J = mgxgqg
This proves the claim in question 3.

At this point we’re back to a problem you’ve already solved: a single particle in a central force.
The only difference is that now ¢ stands for the relative position and m stands for the reduced mass!

So, we instantly conclude that two bodies orbiting each other due to the force of gravity will
both have an orbit that’s either an ellipse, or a parabola, or a hyperbola... when viewed in the
center-of-mass frame.



2 Poisson brackets

Let R?" be the phase space of a particle in R”, with coordinates ¢;,p; (1 <i < n). Let C>®(R?*")
be the set of smooth real-valued functions on R?", which becomes an commutative algebra using
pointwise addition and multiplication of functions.

We define the Poisson bracket of functions F, G € C°°(R?") by:

OF 0G  0G OF
the} = Z dpi dq;  Op; Oq;

4. Show that Poisson brackets make the vector space C*°(R*") into a Lie algebra. In other
words, check the antisymmetry of the bracket:

the bilinearity of the bracket:
{F.aG +BH} = o F,G} + B{F, H}

{aF+pG,H}=co{F,H} + p{G,H}

and Jacobi identity:
{F,{G,H}} = {{F,G},H}+{G,{F,H}}

for all F,G, H € C*(R?") and «, 3 € R.

(Note the Jacobi identity resembles the product rule d(GH) = (dG)H + GdH , with bracketing by
F playing the role of d. This is no accident!)

Solution to 4:

Since,

OF 0G 0G OF
{”}Z%% s 0y

we can calculate the bracket when F' and (G are interchanged. We get:

0G OF OF 0G
“”}Z%% 01 0

But then it becomes clear that:

9G OF OF 0G "8G aF IF 0G AF 0G  0G OF
LGPy = - [Z } > - fZ _ (F.G)

Op: 0g;  Opi Da; Ip; 00, Op: 04, Opi 0q;  Op; Dg;
Proving the antisymmetry of the bracket, namely that:

(F,G} = —{G, F}.



Next, we investigate the bilinearity, writing {F, oG + SH} explicitly gives:

—~ IF 9(aG+pBH)

(G + BH)OF
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For comlpeteness we must now check, {aF + G, H}, as well.
" OaF+BG)0H OHI(aF +3G)
oF + 3G, HY = - Y - - 77
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; i 0 0, 00 Opi 0q;  Dq; Dg;

Thus the bracket fulfills the proptery of bilinearity.

cobi Identity holds.

Oé{F, H}+3{G, H}}

0F 0 G H 0{G, H} OF
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dq;

Lastly, we show that the Ja-

oF
0q;

|



OF 0G 9°H
Op; Op; 0q;0q;
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0’F 0G OH
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0’F 0G OH

0?F 0G OH

94:0q; Op; Op;

OF OH 0°G
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= {{F7 G}7 H}+{G7 {Fv H}}

This completes

the proof of the algebraic properties.

5. Show that Poisson brackets and ordinary multiplication of functions make the vector space
C>(R?") into a Poisson algebra. This is a Lie algebra that is also a commutative algebra, with
the bracket {F, G} and the product F'G related by the Leibniz identity:

(F,GHY = {F,GYH + G{F, H}.



(Again this identity resembles the product rule!)

Solution to 5:

Expanding the bracket of a product below leads to:

OF 9(GH)  9(GH) OF

(Gl = Zapl dq; opi Oy
 ROP (G, | OH][9G, | OH]OF
- & 9pi | 0a; dq; op; Ipi | 0gq;
- ZaFaG 8F OH G, OF 0HOF
B op; Oq; dq;  Op; g Op; g

S~ 006, @_F LGP0I _ o OF
~ Opi0q;  Opi Oq; Opi 9q;  Opi Og;

OF G 9GOF| . z": OF OH  OH OF
< |0p; 0g;  Opi Oq; Opi 0¢;  Opi 9g;i
Arriving at:

{F.GH} = {F,G}H + G{F, H},

quod erat demonstrandum.



