
Classical Mechanics Homework
February 5, 2∞8

John Baez homework by C.Pro

1 The 2-Body Problem

The goal of this problem is to understand a pair of particles interacting via a central force such as
gravity. We’ll reduce it to problem you’ve already studied — the case of a single particle in a central
force.

Suppose we have a system of two particles interacting by a central force. Their positions are
functions of time, say q1, q2: R → R3, satisfying Newton’s law:

m1q̈1 = f(|q1 − q2|)
q1 − q2

|q1 − q2|

m2q̈2 = f(|q2 − q1|)
q2 − q1

|q2 − q1|
.

Here m1,m2 are their masses, and the force is described by some smooth function f : (0,∞) → R.
Let’s write the force in terms of a potential as follows:

f(r) = −dV

dr
.

Using conservation of momentum and symmetry under translations and Galilei boosts we can
work in coordinates where

m1q1(t) + m2q2(t) = 0 (1)

for all times t. This coordinate system is called the center-of-mass frame.
We could use equation (1) to solve for q2 in terms of q1, or vice versa, but we can also use it to

express both q1 and q2 in terms of the relative position

q(t) = q1(t)− q2(t).

This is more symmetrical, so this is what we will do. Henceforth we only need to talk about q. Thus
we have reduced the problem to a 1-body problem!

1. Now by taking the second time derivative of the relative postion and using equation (1) to
solve for q̇1 in terms of q̇2, we have

q̈ = q̈1 − q̈2

=
(

1 +
m1

m2

)
q̈1

=
(

m1 + m2

m1m2

)
m1q̈1

=
(

m1 + m2

m1m2

)
f(|q1 − q2|)

q1 − q2

|q1 − q2|

where the last equality follows from Newton’s 2nd law. But note that this says:

mq̈ = f(|q|) q

|q|

1



where m is the so-called reduced mass

m =
m1m2

m1 + m2
,

and this looks exactly like Newton’s second law for a single particle!

2. We also have a similar single particle property involving the total energy. Indeed, by squaring
both sides of equation (1) then adding m1m2(q̇2

1 − q̇2
2) to both sides, we have

m2
1q̇

2
1 + m2

2q̇
2
2 + 2m1m2q̇1q̇2 + m1m2(q̇2

1 − q̇2
2) = m1m2(q̇2

1 − q̇2
2),

or equivalently,
m1(m1 + m2)q̇2

1 + m2(m1 + m2)q̇2
2 = m1m2(q̇1 − q̇2)2.

Now note the left side is 2(m1 +m2) times the total kinetic energy, thus we have a new way to write
this total kinetic energy in terms of the reduced mass and relative postion, that is

1
2
m1q̇

2
1 +

1
2
m2q̇

2
2 =

1
2
m|q̇|2.

Therefore, the total energy can be written as

E =
1
2
m |q̇|2 + V (|q|)

and this looks exactly like the energy of a single particle!

3. It should be no suprise that we’ll obtain a similar suprise for the total angular momentum J
of these two bodies. Indeed,

J = m1q1 × q̇1 + m2q2 × q̇2

= m

(
1 +

m1

m2

)
q1 × q̇1 + m

(
1 +

m2

m1

)
q1 × q̇2

= mq1 × q̇1 + q1 ×
m1

m2
q̇1 + mq2 × q̇2 + q2 ×

m2

m1
q̇2

= mq1 × (q̇1 − q̇2)−mq2 × (q̇1 − q̇2)
= mq × q̇

and this looks exactly like the angular momentum of a single particle!

At this point we’re back to a problem we’ve already solved: a single particle in a central force.
The only difference is that now q stands for the relative position and m stands for the reduced mass!

So, we instantly conclude that two bodies orbiting each other due to the force of gravity will
both have an orbit that’s either an ellipse, or a parabola, or a hyperbola... when viewed in the
center-of-mass frame.
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2 Poisson brackets

Let R2n be the phase space of a particle in Rn, with coordinates qi, pi (1 ≤ i ≤ n). Let C∞(R2n)
be the set of smooth real-valued functions on R2n, which becomes an commutative algebra using
pointwise addition and multiplication of functions.

We define the Poisson bracket of functions F,G ∈ C∞(R2n) by:

{F,G} =
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
.

4. The Poisson brackets make the vector space C∞(R2n) into a Lie algebra.
Proof: Antisymmetry of the bracket is immediate from the definition and bilinearity follows from
the linearity of the differential operator. However, some work is required to show the Jacobi identity.
We first assume that in which we are asked to prove in question 5, namely that the Poisson bracket
and the multiplication in the commutative algebra C∞(R2n) are related through the Leibniz identity.
Let A,B,C ∈ C∞(R2n), for completeness we note:

∂

∂x
{A,B} =

n∑
i=1

(
∂2A

∂x∂pi

∂B

∂qi
+

∂A

∂qi

∂2B

∂x∂pi

)
−
(

∂2A

∂x∂qi

∂B

∂pi
+

∂A

∂pi

∂2B

∂x∂qi

)
and

{{A,B}, C} =
n∑

i=1

∂{A,B}
∂pi

∂C

∂qi
− ∂{A,B}

∂qi

∂C

∂qi
.

We now see that a permutation in the letters G and H in the expression {{F,G},H} fixes all terms
that contain a factor of F under a second order differential operator. Therefore, in the expression
{{F,G},H} − {{F,H}, G}, these terms are killed and thus can be written in the following form:

n∑
i=1

({
F,

∂G

∂pi

}
∂H

∂qi
−
{

F,
∂G

∂qi

}
∂H

∂pi

)
−
({

F,
∂H

∂pi

}
∂G

∂qi
−
{

F,
∂H

∂qi

}
∂G

∂pi

)
.

However, the Leibinz identity says this can be reduced further to

n∑
i=1

({
F,

∂G

∂pi

∂H

∂qi

}
−
{

F,
∂G

∂qi

∂H

∂pi

})
.

Now anitsymmetry and bilinearity give us the following:

{{F,G},H}+ {G, {F,H}} = {{F,G},H} − {{F,H}, G}

=

{
F,

n∑
i=1

∂G

∂pi

∂H

∂qi
− ∂G

∂qi

∂H

∂pi

}
= {F, {G, H}}

and this is the Jacobi identity. To complete the proof we are left to independently verify the Leibniz
identity. But since no one is actually reading this, it will suffice to sit in my chair and shout out
loud the word refrigerator as I type it.

(Note the Jacobi identity resembles the product rule d(GH) = (dG)H + GdH, with bracketing by
F playing the role of d. This is no accident!)
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5. The Poisson brackets and ordinary multiplication of functions make the vector space C∞(R2n)
into a Poisson algebra.
Proof: We need only to verify the Leibniz identity:

{F,GH} = {F,G}H + G{F,H}.

Indeed,

{F,GH} =
n∑

i=1

∂F

∂pi

∂GH

∂qi
− ∂F

∂qi

∂GH

∂pi

=
n∑

i=1

∂F

∂pi

(
∂G

∂qi
H + G

∂H

∂qi

)
− ∂F

∂qi

(
∂G

∂pi
H + G

∂H

∂pi

)

=

(
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

)
H + G

(
n∑

i=1

∂F

∂pi

∂H

∂qi
− ∂F

∂qi

∂H

∂pi

)
= {F,G}H + G{F,H}.

(Again this identity resembles the product rule!)
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