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Angular Momentum and Rotations

1. Let A∗ be skew-adjoint. Show that etA is orthogonal.

Let’s take a broader view and work in the setting of Hilbert Spaces and bounded linear operators.
Our first task is to show that the adjoint operator is continuous. To see this, let A be a bounded
linear operator. Then

‖Ax‖2 = (Ax,Ax) = (x,A∗Ax) ≤ ‖A∗A‖ ≤ ‖A∗‖‖A‖,

where the second to last inequality follows by Cauchy-Schwartz (x is any unit vector). Then it
follows (after taking a supremum) that ‖A‖ ≤ ‖A∗‖. Reversing the roles of A and A∗ and using the
fact that (A∗)∗ = A gives the reverse inequality. Hence, we see that for any bounded linear operator,
‖A‖ = ‖A∗‖. Now let An → A be any convergent sequence of operators. We have that

‖A∗n −A∗‖ = ‖(A−An)∗‖ = ‖An −A‖

and so A∗n → A∗; the adjoint is therefore a continuous map on the space of bounded linear operators.
Now, the exponential is defined as a convergent infinite series of operators, so we have by conti-

nuity: (
etA
)∗

= e(tA)∗ = etA∗
.

If then A∗ = −A we have that (
etA
)∗
etA = e−tAetA = e0A = I,

and so, in this case, exponential of A is orthogonal.

2. Let A ∈ so(n) and φ defined by:

φ(t, q, p) =
(
etAq, etAp

)
.

Show that φ is a flow.

We begin by showing that φ0 is the identity:

φ0(q, p) =
(
e0Aq, e0Ap

)
= (Iq, Ip) = (q, p).

(The fact that the exponential of the zero operator is the identity follows directly from the power
series definition of the exponential.) Now we show the additive property of the flow:

φt+s(q, p) =
(
e(t+s)Aq, e(t+s)Ap

)
=
(
etA

(
esAq

)
, etA

(
esAp

))
= φt(φs(q, p)).

Finally, to see that φ is smooth, we note that the map f : R× Rn2 → Rn2
given by

f(t, A) = etA.

is smooth: the components of the matrix etA are simply uniformly convergent—because the series
defining the exponential is norm convergent—power series in t and the components of A, and hence
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the individual component functions of f are smooth. Thus f is smooth, and therefore its restriction
to the smooth submanifold R×so(n) of R×Rn2

must be smooth. Whence, φ, whose two component
functions are both given by this restriction of f , is smooth as a map

φ : R× so(n)→ so(n).

(The fact that the range is given as so(n), as opposed to Rn2
, follows from exercise 1.)

3. For a skew adjoint matrix A, show that the observable

F (q, p) =
1
2

∑
aij(qipj − qjpi)

generates the flow from the previous exercise.

First note that from the skew-adjointness of A we have

∂qk
F =

∑
i

akipi = (Ap)k and ∂pk
F = −

∑
i

akiqi = −(Aq)k,

from which it follows that the vector field generated by F is

{F, ·} =
∑

k

(Ap)k∂pk
+ (Aq)k∂qk

,

and so the flow φt = (ψ(t), ϕ(t)) is determined by the following two systems of ODE’s:{
ψ′(t) = Aψ(t)
ψ(0) = p

and
{
ϕ′(t) = Aϕ(t)
ϕ(0) = q.

But the solutions to these systems come easily as:

ψ(t) = etAp and ϕ(t) = etAq.

This yields the desired flow.

4. Consider the observable

F (q, p) = q1p2 − q2p1.

Determine the flow.

In light of the previous exercise, the skew-adjoint matrix associated with this observable is

A =
(

0 1
−1 0

)
.

Whence the flow is given by:

φt(q, p) =
(
etAq, etAp

)
.

Now, notice that

Ax = −ix

where on the right the vector x is treated as the complex number x1+ix2, so that we have (continuing
to play loose with the identification between R2 and C):

etAx = e−itx = Rtx
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where Rt denotes clockwise rotation through an angle of t radians in R2. Thus we have that

φt(q, p) = (Rtq,Rtp)

and the flow is simultaneous clockwise rotation in the q and p planes.
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