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1 How Hamiltonians Generate Time Evolution

We have seen how any observable H on a Poisson manifold X gives rise a vector field vH which, if in-
tegrable, generates a flow φ. When H has the physical meaning of ‘energy’, we call it a Hamiltonian
and call this flow time evolution. Let’s see how this works in some examples we’ve already studied.

Example: The simple harmonic oscillator.
Here the configuration space is R and the phase space is X = T ∗R ∼= R × R 3 (q, p). We have
Newton’s second law

m
d2

dt2
q(t) = −kq(t)

Let us set m = k = 1 to simplify the math a bit:

d2q

dt2
= −q

Since p = mq̇, with m = 1 this equation gives Hamilton’s equations

dq

dt
= p

dp

dt
= −q

with solution:
q(t) = A cos t+B sin t

p(t) = −A sin t+B cos t

where A = q(0) and B = p(0). So we get a flow:

φ:R× R2 → R2

defined by
(t, q(0), p(0)) 7→ (q(t), p(t))

describing the time evolution of a point (q, p) in the phase space R2. This flow is rotation clockwise
by an angle t over time t.

picture of R2 with flow lines and rotated point.

Now let’s obtain this flow using the Poisson approach. So, we will remember the Hamiltonian
for the harmonic oscillator and work out the vector field vH generated by that, and see that it does
indeed generate this flow.

The energy of the harmonic oscillator is:

E =
1

2
mq̇2 +

k

2
q2

or with m = k = 1

E =
1

2
(q2 + q̇2)
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so the Hamiltonian H :R2 → R is

H(q, p) =
1

2
(q2 + p2)

(Note: flow moves along level sets of H)

Our prescription says: see what vector field H generates and then see what flow that vector field
generates. H generates the vector field

vH = {H, ·}

=
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

(or
(
∂H
∂p ,−∂H∂q

)
in the old-fashioned notation for vector fields on R2.)

With our H this is:

vh = p
∂

∂q
− q ∂

∂p

picture of this vector field

If
φ:R× R2 → R2

is the flow generated by vH , then by definition

d

dt
φt(q, p) = vH(φt(q, p))

Notation: φt(q, p) := φ(t, q, p). For short, let’s write

φt(q, p) = (q(t), p(t)) ∈ R2.

So, our equation becomes:

(q̇(t), ṗ(t)) = vH(q(t), p(t))

= (p(t),−q(t))

and this is Hamilton’s equations:
q̇(t) = p(t)

ṗ(t) = −q(t)
so we must have:

(q(t), p(t)) = (cos(t)q + sin(t)p,− sin(t)q + cos(t)p)

which is the flow we had before.

Example: A particle in a potential in Rn.
Now our configuration space is Rn and so the phase space is

X = T ∗Rn ∼= Rn × Rn 3 (q, p)

The potential energy is V (q) where V ∈ C∞(Rn). The kinetic energy is 1
2mv

2 = p2

2m since p = mv.
So the Hamiltonian is

H(q, p) =
p2

2m
+ V (q).
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This generates the vector field

vH = {H, ·}

=
n∑

i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

=

n∑

i=1

pi
m

∂

∂qi
− ∂V

∂qi

∂

∂pi

or in old-fashioned notation for vector fields on R2n:
(
p1

m
,
p2

m
, . . . ,

pn
m
,− ∂V

∂q1
, . . . ,− ∂V

∂qn

)

The flow generated by this:
φt(q, p) = (q(t), p(t))

satisfies:
d

dt
(q(t), p(t)) =

(
p(t)

m
,−∇V (q(t))

)

which we have seen before:

m
d

dt
q(t) = p(t)

d

dt
p(t) = −∇V (q(t))

2 The Galilei Group

In our homework we have seen how the Galilei group acts on the phase space of a point particle in
Rn. Let us see how some of the symmetries come from observables.

Example: How momentum generates spatial translations.
Consider a particle in Rn, so X = T ∗Rn ∼= Rn × Rn. Consider the flow “spatial translation by an
amount s ∈ R in the u ∈ Rn direction”. Call this flow φ:R×X → X ; it is given by

φs(q, p) = (q + su, p)

The vector field generating this flow, say v, has:

v(q, p) =
d

ds
φs(q, p)

∣∣∣∣
s=0

=
d

ds
(q + su, p)

∣∣∣∣
s=0

= (u, 0)

Next, let’s find an observable F ∈ C∞(X) that generates this v:

vF = v

Note:

v =

n∑

i=1

ui
∂

∂qi
+ 0

∂

∂pi

=

n∑

i=1

ui
∂

∂qi
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whereas

vF = {F, ·}

=

n∑

i=1

∂F

∂pi

∂

∂qi
− ∂F

∂qi

∂

∂pi

so
∂F

∂qi
= 0 and

∂F

∂pi
= ui

So
F (q, p) = p · u+ c

for any c ∈ R, which we’ll take to be 0, so we say “spatial translations in the u dirction are generated
by F”, where F is “momentum in the u direction”.

Example: What observable generates Galilei boosts by an amount s in the u direction (where
u ∈ Rn)?
Here the flow is:

φs(q, p) = (q, p+msu)

i.e., φs does not change the position but it adds su to the velocity! This is generated by:

v =
d

ds
φs(q, p)

∣∣∣∣
s=0

= (0,mu)

=
∑

mui
∂

∂pi

and this equals

vF =
∑ ∂F

∂pi

∂

∂qi
− ∂F

∂qi

∂

∂pi

for
F = −mu · q.

So, there’s a nice pattern:
for a single particle in Rn:
Galilei boosts in the direction u ∈ Rn are generated by −mq · u.
Translations in the direction u ∈ Rn are generated by p · u.

For a bunch of particles in Rn, this generalizes:
Galilei boosts in the direction u ∈ Rn are generated by −∑miqi · u, i.e. −u · (total mass ×
center of mass).
Translations in the direction u ∈ Rn are generated by p · u, where p =

∑
pi is the total momentum

(sum over particles: pi ∈ Rn is the momentum of the ith particle).
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