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1 Symmetries and Conserved Quantities — the n-Body Prob-
lem
Today we will begin our quest to see where symmetries come from. For this, let us talk about

symmetries and conserved quantities in the n-body problem.
Consider the problem of n particles in R? interacting via central forces. The bodies have positions

¢;:R — R3
satsifying Newton’s 2" law:
Fi(t) = migi(t)
where m; > 0 and

B = 3 filla® - g0 A0 =0

2 00— 050
where fi;: (0,00) — R satisfying Newton’s 374 law:
Jij = Jii

This problem has various symmetries and conserved quantities. The amazing fact about nature
is that conserved quantities come from the symmetries! We already know a bunch of conserved
quantities. Here is a little chart illustrating it:

Conserved quantities Symmetries
Energy Ee€R ?
Angular momentum J € R? ?
Momentum p € R? ?

What are some symmetries?

1. Time translation symmetry:
We can change our mind about when is “ty” without causing any problems. In other words, if
qi(t), (i =1,...,n) form a solution of F;(t) = m;g;(t), so do ¢;(t + s) for s € R. Proof: let

@i(t) = a(t+s)
and show ¢; solves F;(t) = m;G;(t):
J2
migi(t) = mi@‘]i(t +5)
migi(t + s)
= filt+s) (since q; satisfy Newton's 2" law.)
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2. Time reversal symmetry:
ai(t) = qi(—t)
Again: ¢; satisfying Newton’s 2"? law implies §; also satisfies Newton’s 2"¢ law.

3. Spatial rotation symmetry:
@i(t) = Rqi(t)
where R:R? — R? is a rotation. Again: ¢; satisfying Newton’s 2"¢ law implies §; also does.
Then JB breaks the table because he’s not strong enough to move the Earth.

4. Spatial translation symmetry:
Gi(t) = qi(t) + k, keR?
Again, same thing. 3) and 4) are isometries of R3, that is, functions 7: R3 — R? such that
|Te —Tyl| = [lz—yll, Va,yeR’.
Theorem 1 Every isometry T:R3 —|R? is the composite of:

1. a rotation

2. a translation
and possibly

3. parity (total spacial inversion):

i —z, (ze€R3)
Let’s show that if T:R3 — R? is an isometry and
Gi(t) = Tqi(t)

then ¢; satisfies Newton’s 2" law implies ¢; does.

- d?
mq;(t) = mﬁTqi (t)

d
= ddtTq;(t
m— (1)

Now use the theorem:
Tz = Sz+k zeR3

where k € R? and S is an orthogonal linear transformation (i.e. 3 x 3 matrix with SST =1, or a

linear transformation with ||Sz|| = ||z||,Vz € R3).
Then p
—Tq;(t) = Sq;(t
5 Tai(t) Gi(t)
and
& Tq;(t S (t
ﬁ Qz( ) - Qz( )



SO

migi(t) = miSq(t)
i(t) — q;(t)
= 5) [flla®) - )II)—
; llai(£) — ¢; (®)]]
Tqi(t) —Tq;(t)
= F(ITqi(t) = Tq;(t)])
; T (t) = T (1)
using Tx = Sx + k and that T is an isometry.
There is also a fifth symmetry, Galilean symmetry
Gt) = q(t)+tv, veR?
If ¢; is a solution of Newton’s 2"¢ law, then so is §;.
mgi(t) = mdgi(t)
() — q;(t)
= > fillla®) = ;O At
oy [lai (t) — q; (@)]]
i ai(t) — g;(t)
= > fillla(t) = GO
2 T — G0
Conserved quantities Symmetries
Energy FE €R Time translation symmetry (a 1d group, R)
Angular momentum J € R3 Rotation symmetry (a 3d group, SO(3))
Momentum p € R3 Translation symmetry (a 3d group, R?)
? Galilean symmetry (a 3d group, R?)




