Classical Mechanics, Lecture 7 January 31, 2008 lecture by John Baez notes by Alex Hoffnung

1 The Poisson Bracket

If we have one particle in \mathbb{R}^n , we call \mathbb{R}^n the **configuration space** - the space of possible positions of the whole system. If we have *n* particles in \mathbb{R}^3 the configuration space is \mathbb{R}^{3n} , since a point in here is an *n*-tuple (q_1, \ldots, q_n) where $q_i \in \mathbb{R}^3$ is the position of the *i*th particle.

picture of a pendulum swinging around a pivot

For a pendulum that can swing all the way around in a plane, the configuration space is S^1 - the circle. For 42 pendula, the configuration space is

$$S^1 \times \dots \times S^1 = T^{42}$$

(the 42-dimensional torus). The configuration space of a rigid body in \mathbb{R}^3 with center of mass at $0 \in \mathbb{R}^3$ is

$$SO(3) = \{3 \times 3 \text{ rotation matrices}\}\$$

= $\{R: \mathbb{R}^3 \to \mathbb{R}^3 \text{ such that } RR^T = 1, \det R = 1\}$

a 3-dim manifold. The configuration space of a rigid body in \mathbb{R}^3 is SO(3) × \mathbb{R}^3 , where a point in \mathbb{R}^3 specifies the center of mass.

But Hamiltonian mechanics focuses not on the configuration space but on the **phase space** or **state space**, where a point specifies the position and momentum of the system. For a single particle in \mathbb{R}^n , the phase space is:

$$\mathbb{R}^{2n} \cong \mathbb{R}^n \times \mathbb{R}^n \in (q, p)$$

where $q \in \mathbb{R}^n$ is the position and $p \in \mathbb{R}^n$ is the momentum. For n particles in \mathbb{R}^3 , the phase space is

$$\mathbb{R}^{6n} \cong \mathbb{R}^{3n} \times \mathbb{R}^{3n}.$$

For a rigid body in \mathbb{R}^3 with center of mass at the origin, the phase space is $SO(3) \times \mathbb{R}^3$ where $q \in SO(3)$ is the position and $p \in \mathbb{R}^3$ is actually the **angular momentum**, usually called J. Actually a better description is $T^*SO(3)$ - the cotangent bundle of SO(3).

In our example of a particle in \mathbb{R}^n , we said an **observable** is a smooth function

$$F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

by

$$(q,p) \mapsto F(q,p)$$

from the phase space to \mathbb{R} , sending each point of phase space (or **state** of our system) to the value of the observables.

If X is any manifold, thought of as a phase space, let

$$C^{\infty}(X) = \{ \text{smooth functions } F \colon X \to \mathbb{R} \}$$

be the set of observables. This is a commutative algebra.

Definition 1 A commutative algebra is a (real) vector space A equipped with a product satisfying:

1. bilinearity:

$$(\alpha F + \beta G)H = \alpha FH + \beta GH, \quad \forall \alpha, \beta \in \mathbb{R}$$
$$F(\alpha G + \beta H) = \alpha FG + \beta FH, \quad F, G, H \in A$$

2. commutativity:

$$FG = GF$$

3. associativity:

$$(FG)H = F(GH)$$

 $C^{\infty}(X)$ becomes a commutative algebra with the "obvious" addition, scalar multiplication, and multiplication:

$$(\alpha F)(x) = \alpha F(x), \quad x \in X$$
$$(F+G)(x) = F(x) + G(x)$$
$$(FG)(x) = F(x)G(x)$$

But, in our example $X = \mathbb{R}^{2n}$, there's another operation, the Poisson bracket:

$$\{F,G\} = \sum_{i=1}^{n} \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} - \frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i}$$

This makes $C^{\infty}(X)$ into a 'Lie algebra':

Definition 2 A Lie algebra is a (real) vector space A equipped with a "Lie bracket" $\{\cdot, \cdot\}$

1. bilinearity:

$$\begin{split} \{\alpha F + \beta G, H\} &= \alpha \{F, H\} + \beta \{G, H\} \\ \{F, \alpha G + \beta H\} &= \alpha \{F, G\} + \beta \{G, H\} \end{split}$$

2. antisymmetry:

$$\{F,G\} = -\{G,F\}$$

3. Jacobi identity:

$$\{F, \{G, H\}\} = \{\{F, G\}, H\} + \{G, \{F, H\}\}$$

(Rule 3 looks like the product rule: dGH = (dG)H + g(dH).)

In fact for all classical mechanics problems, the algebra of observables $C^{\infty}(X)$ is always both a commutative algebra and a Lie algebra, but even better, they fit together to form a **Poisson algebra**.

Definition 3 A **Poisson algebra** is a vector space A with a product making it into a commutative algebra and a bracket $\{\cdot, \cdot\}$ making it into a Lie algebra such that

$$\{F, GH\} = \{F, G\}H + G\{F, H\}$$

We saw that for a particle in \mathbb{R}^n , with energy given by:

$$H(q,p) = \frac{p^2}{2m} + V(q)$$

where $V: \mathbb{R}^n \to \mathbb{R}$, Newton's 2^{nd} law can be rewritten as Hamilton's equations:

$$\frac{d}{dt}q_i(t) = \frac{\partial H}{\partial p_i}(q(t), p(t))$$
$$\frac{d}{dt}p_i(t) = -\frac{\partial H}{\partial q_i}(q(t), p(t))$$

If $H \in C^{\infty}(\mathbb{R}^{2n})$ is nice, these have a unique smooth solution for any choice of initial q(0) = q and p(0) = p. Then we get a function

$$\phi: \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$

 $\mathbf{b}\mathbf{y}$

$$(t,q,p)\mapsto (q(t),p(t))$$

which describes time evolution. Often we write

$$\phi(t,q,p) = \phi_t(q,p)$$

where

$$\phi_t \colon \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$

Then we can say how any observable changes with time: given $F \in C^{\infty}(\mathbb{R}^{2n})$ we get

$$F_t(q,p) = F\phi_t(q,p)$$

and Hamilton's equations say:

$$\frac{d}{dt}F_t = \sum_{i=1}^n \frac{\partial F}{\partial q_i} \frac{dq_i}{dt} + \frac{\partial F}{\partial p_i} \frac{dp_i}{dt}$$
$$= \sum_{i=1}^n \frac{\partial H}{\partial p_i} \frac{\partial F}{\partial q_i} - \frac{\partial H}{\partial q_i} \frac{\partial F}{\partial p_i}$$
$$= \{H, F\}_t$$

This is why the Poisson algebra is important.