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lecture by John Baez
notes by Alex Hoffnung

1 Poisson Manifolds

Let M be any n-dimensional manifold - the configuration space of some classical system, for example
a particle on M. Then the phase space is the cotangent bundle of M:

"M ={qe M,pcT; M}
Let’s see how this is a Poisson manifold:
Definition 1 A Poisson manifold X is a manifold with a bracket operation
{3 C%(X) x C(X) — CF(X)
making the commutative algebra
Co(X)={f: X = R: f smooth}
into a Poisson algebra.

Example: M = R"”
In this case R™ has coordinates z;: R™ — R, so for each point in ¢ € R" we get a basis of T,R",
namely:

0 0
Oz’ Ozy
(Picture of R? with coordinates 1, z2, and a tangent plane at ¢ with basis.)
These are tangent vectors: given f € C°°(R™), they act on it to give a number:

of
R
oz, (q) €
We also get a basis of Ty R", namely:
dxy,...,dx,.

(Picture of R? with coordinates 1, 22, and a cotangent space at q with basis.)
(Recall, given f € C°°(R™), we get (df), € T)g*R™ by:

(df)q(v) = v(f)(q),Vf € CF(R")

We can call this just “df” if we are feeling lazy.)

Note:
0 0
(di)( 8—% ) = 8—% T
= by

so dx; is the “dual basis” to %.
Using this standard basis for 7;R" we get an isomorphism

TR" = R"



dx; — (0,...,1,...,0)

with 1 in the n'* slot. So we get an isomorphism

T*R" {geR",pe T;R"}
{¢eR",peR"}

R"™ x R™

1l

1%

This lets is put coordinates on T*R", namey
¢, pi: T"R" - R,i=1,....n
This lets us make T*R" into a Poisson manifold:

" 9F 0G  OF 0G
{FﬂG}:Z

£~ 9p; 0q;  04; p;

(using your homework).
More generally, suppose M is any n-dimensional manifold. Given any ¢ € M we can find an open
set U 2 x and a chart:

¢:U — R"

This gives coordinates x; o @ on R™, which we just call x; for short. Copying what we did, we get

coordinates ¢;, p; on

T°U={qeUpeT,U}
and if ¢ € U, then TyU = TyM. How do we make T*M into a Poisson manifold? Given F,G €
C>(T*M), we define {F,G} on T*U C T*M by:

" 9F 0G  OF G
(F.6 =2 500~ Baom,

Now, alas, we need to check that the Poisson brackets are well-defined on all of T*M - i.e., inde-
pendent of the choice of chart. But, let’s not. It will be easier to define the Poisson brackets in a
coordinate-free way later. First we will develop some more geometry and start understanding what
Poisson brackets mean.

2 More Differential Geometry
Given manifolds M and N, a function : M — N is called smooth, or a map, if any of these hold:
1. Given any charts ¢: U — R™ with U C M, ¢:V — R" with V' C N, this composite
R wUCM-—-NDV —-R"

is smooth where defined. It’s enough to check this for one chart U containing each point ¢ € M
and one chart containing each point f(g) € N.

2. Given any smooth curve 7:R — M, f oy:R — N is a smooth curve in N.
3. Given any g € C*°(N), then go f € C>(M).

We can define a vector field on M in two equivalent ways:



1. A smooth map V: M — TM such that v(q) € T, M.
2. A derivation D:C>*°(M) — C*(M), i.e., a linear map:
D(af + Bg) = aDf + 8Dg, o, f € R
satisfying the product rule (or Leibniz law):
D(fg) = D(f)g + fDg.
Given a derivation D: C*°(M) — C*°(M) we get v: M — T'M by:
(v(9)f) = (Df)(q),q € M, f € C=(M)
and conversely. This is relevant to Poisson manifolds, since it means
{F, -} C=(X) = C=(X)

is a vector field for any Poisson manifold X and F € C°°(X). So in classical mechanics, observables
give vector fields on phase space!

(picture of X with Hamiltonian level curves for harmonic oscillator with a vector field given by
Poisson bracket and energy - time evolution! The vectors are tangent to the level curves due to
conservation of energy.)

For example, the observable “energy” gives a vector field describing time evolution: as time passes,
the state of the system ~(¢) € X moves in the direction of this vector field! Even better, it moves
along level curves of the energy function!



