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1 Poisson Manifolds

Let M be any n-dimensional manifold - the configuration space of some classical system, for example
a particle on M . Then the phase space is the cotangent bundle of M :

T ∗M = {q ∈M,p ∈ T ∗qM}

Let’s see how this is a Poisson manifold:

Definition 1 A Poisson manifold X is a manifold with a bracket operation

{·, ·}:C∞(X)× C∞(X)→ C∞(X)

making the commutative algebra

C∞(X) = {f :X → R : f smooth}

into a Poisson algebra.

Example: M = Rn
In this case Rn has coordinates xi:Rn → R, so for each point in q ∈ Rn we get a basis of TqRn,
namely:

∂

∂x1
, . . . ,

∂

∂xn
.

(Picture of R2 with coordinates x1, x2, and a tangent plane at q with basis.)
These are tangent vectors: given f ∈ C∞(Rn), they act on it to give a number:

∂f

∂xi
(q) ∈ R

We also get a basis of T ∗q Rn, namely:

dx1, . . . , dxn.

(Picture of R2 with coordinates x1, x2, and a cotangent space at q with basis.)
(Recall, given f ∈ C∞(Rn), we get (df)q ∈ T )q∗Rn by:

(df)q(v) = v(f)(q), ∀f ∈ C∞(Rn)

We can call this just “df” if we are feeling lazy.)
Note:

(dxi)(
∂

∂xj
) =

∂

∂xj
xi

= δij

so dxi is the “dual basis” to ∂
∂xi

.
Using this standard basis for T ∗q Rn we get an isomorphism

T ∗q Rn ∼= Rn
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dxi 7→ (0, . . . , 1, . . . , 0)

with 1 in the nth slot. So we get an isomorphism

T ∗Rn = {q ∈ Rn, p ∈ T ∗q Rn}
∼= {q ∈ Rn, p ∈ Rn}
∼= Rn × Rn

This lets is put coordinates on T ∗Rn, namey

qi, pi:T
∗Rn → R, i = 1, . . . , n

This lets us make T ∗Rn into a Poisson manifold:

{F,G} =

n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

(using your homework).
More generally, suppose M is any n-dimensional manifold. Given any q ∈ M we can find an open
set U 3 x and a chart:

φ:U → Rn

This gives coordinates xi ◦ φ on Rn, which we just call xi for short. Copying what we did, we get
coordinates qi, pi on

T ∗U = {q ∈ U, p ∈ T ∗q U}
and if q ∈ U , then T ∗q U = T ∗qM . How do we make T ∗M into a Poisson manifold? Given F,G ∈
C∞(T ∗M), we define {F,G} on T ∗U ⊆ T ∗M by:

{F,G} =
n∑

i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi
.

Now, alas, we need to check that the Poisson brackets are well-defined on all of T ∗M - i.e., inde-
pendent of the choice of chart. But, let’s not. It will be easier to define the Poisson brackets in a
coordinate-free way later. First we will develop some more geometry and start understanding what
Poisson brackets mean.

2 More Differential Geometry

Given manifolds M and N , a function :M → N is called smooth, or a map, if any of these hold:

1. Given any charts φ:U → Rm with U ⊆M , ψ:V → Rn with V ⊆ N , this composite

Rm → U ⊆M → N ⊇ V → Rn

is smooth where defined. It’s enough to check this for one chart U containing each point q ∈M
and one chart containing each point f(q) ∈ N .

2. Given any smooth curve γ:R→M, f ◦ γ:R→ N is a smooth curve in N .

3. Given any g ∈ C∞(N), then g ◦ f ∈ C∞(M).

We can define a vector field on M in two equivalent ways:
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1. A smooth map V :M → TM such that v(q) ∈ TqM .

2. A derivation D:C∞(M)→ C∞(M), i.e., a linear map:

D(αf + βg) = αDf + βDg, α, β ∈ R

satisfying the product rule (or Leibniz law):

D(fg) = D(f)g + fDg.

Given a derivation D:C∞(M)→ C∞(M) we get v:M → TM by:

(v(q)f) = (Df)(q), q ∈M, f ∈ C∞(M)

and conversely. This is relevant to Poisson manifolds, since it means

{F,−}:C∞(X)→ C∞(X)

is a vector field for any Poisson manifold X and F ∈ C∞(X). So in classical mechanics, observables
give vector fields on phase space!

(picture of X with Hamiltonian level curves for harmonic oscillator with a vector field given by
Poisson bracket and energy - time evolution! The vectors are tangent to the level curves due to
conservation of energy.)
For example, the observable “energy” gives a vector field describing time evolution: as time passes,
the state of the system γ(t) ∈ X moves in the direction of this vector field! Even better, it moves
along level curves of the energy function!
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