Classical Mechanics, Lecture 4
January 29, 2008
John Baez

Homework by Michael Maroun

Conservation of Energy in the n-Body Problem

Show that if Newton’s 24 law (F;(t) = m; §;(t)) holds then energy is conserved:
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Solution:

Below are the three equations for the total potential energy, the total kinetic energy, and the total
energy of the system respectively:
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We can differentiate E(t) with respect to time explicitly.
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Because the potential V;(| ¢;(t) — ¢;(t) |) depends only on | ¢;(t) — ¢;(t) | we get:
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Newton’s 2"¢ law here reads:
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Since within the classical regime Newton’s 2" law always holds, when we say “Show that if Newton’s
274 law holds...”, we mean given that the symmetric inter-particle interaction potential is derivable
from a conservative force, i.e.
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implies that indeed the total energy of the system is conserved. Hence substituting equations (2)
and (3) into (1) gives:
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Now substituting (4) into (5), we find the desired result:
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We could have just as well arrived at the same valid conclusion by omitting (4) and noting that

86‘27 = — aaq” because the quantity ¢;(¢) — ¢;(t) is anti-symmetric on interchange of ¢ and j. This
is why fi; = fj but Fi; = — Fj;. This is of course what makes (4) true when the assumption of

the existence of a conservative force interaction connected to a potential with the precise argument
dependence of | ¢;(t) — ¢;(t) | is made.

Conservation of Angular Momentum in the n-Body Problem:
Show that £ .J(t) = 0 using Newton’s 2" law and
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where fij = fji'

Solution:

We start with the following:
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Differentiating the above equation gives:
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[q:(t) x Fi(t)] (since: axa =0)
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But because f;; = f;; and the quantity [g;(t) x ¢;(¢)] is anti-symmetric, i.e. [g;(¢) X g;(t)] =
—[g;(t) x ¢(t)], the sum in (6) vanishes identically. Thus we have shown that,
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as was desired.



