Classical Mechanics Homework January 29, 2∞8 John Baez homework by C. Pro

Conservation of Energy in the *n*-body Problem

Suppose we have n particles $q_i: \mathbb{R} \to \mathbb{R}^3$ with the force on q_i due to q_j written as F_{ij} . Newton's 3rd law says:

$$F_{ij} = -F_{ji}$$

Suppose further our forces are central, that is, only dependent on the distance from q_i to q_j . Then F_{ij} $(i \neq j)$ can be written as

$$F_{ij}(t) = f_{ij}(||q_i(t) - q_j(t)||) \frac{q_i(t) - q_j(t)}{||q_i(t) - q_j(t)||}$$

for some $f_{ij}: (0, \infty) \to \mathbb{R}$. For convenience, set $F_{ii} = 0$. We can define potentials $V_{ij}: (0, \infty) \to \mathbb{R}$ such that

$$\frac{d}{dx}V_{ij}(x) = -f_{ij}(x)$$

and then the total potential for q_i is defined as

$$V_i(t) = \sum_{j=1}^n V_{ij}(||q_i(t) - q_j(t)||).$$

Again for convenience, set $V_{ii} = 0$. Since $V_{ij} = V_{ji}$, we are lead to the definition of the total potential as

$$V(t) = \frac{1}{2} \sum_{j=1}^{n} V_j(t)$$

Similarly, the total kinetic is defined as

$$T(t) = \frac{1}{2} \sum_{j=1}^{n} m_i \dot{q}_i(t)^2$$

and thus, the total energy is defined as

$$E(t) = V(t) + T(t).$$

Note the total force on the i^{th} particle is:

$$F_i(t) = \sum_{j=1}^n F_{ij}(t).$$

Show that if Newton's 2nd law $(F_i(t) = m_i \ddot{q}_i(t))$ holds, then energy is conserved:

$$\frac{d}{dt}E = 0.$$

Solution: First note from the chain rule and our definition of V_{ij} , we have

$$\begin{aligned} \frac{d}{dt} V_{ij}(||x(t)||) &= \frac{d}{d||x(t)||} V_{ij}(||x(t)||) \frac{d||x(t)||}{dt} \\ &= -f_{ij}(||x(t)||) \frac{x(t)}{||x(t)||} \dot{x}(t). \end{aligned}$$

Therefore, from the above and Newton's $3^{\rm rd}$ law, we have

$$\begin{aligned} \frac{d}{dt}V_i(t) &= \frac{1}{2}\sum_{j=1}^n \frac{d}{dt}V_{ij}(||q_i(t) - q_j(t)||) \\ &= \frac{1}{2}\sum_{j=1}^n -f_{ij}(||q_i(t) - q_j(t)||)\frac{q_i(t) - q_j(t)}{||q_i(t) - q_j(t)||}(\dot{q}_i(t) - \dot{q}_j(t)) \\ &= \frac{1}{2}\sum_{j=1}^n -F_{ij}(||q_i(t) - q_j(t)||)(\dot{q}_i(t) - \dot{q}_j(t)) \\ &= \frac{1}{2}\sum_{j=1}^n -F_{ij}(||q_i(t) - q_j(t)||)\dot{q}_i(t) + \frac{1}{2}\sum_{j=1}^n F_{ij}(||q_i(t) - q_j(t)||)\dot{q}_j(t) \\ &= \frac{1}{2}\sum_{j=1}^n -F_{ij}(||q_i(t) - q_j(t)||)\dot{q}_i(t) + \frac{1}{2}\sum_{j=1}^n -F_{ji}(||q_i(t) - q_j(t)||)(\dot{q}_j(t) + \frac{1}{2}\sum_{j=1}^n -F_{ji}(||q_j(t) - q_j(t)||)(\dot{q}_j(t) + \frac{1}{2}\sum_{j=1}^n -F_{ji}(||q_i(t) - q_j(t)||)(\dot{q}_j(t) + \frac{1}{2}\sum_{j=1}^n -F_{ji}(||q_j(t) - q_j($$

and so

$$\begin{split} \frac{d}{dt}V(t) &= \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}-F_{ij}(||q_{i}(t)-q_{j}(t)||)\dot{q}_{i}(t) + \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}-F_{ji}(||q_{i}(t)-q_{j}(t)||)\dot{q}_{j}(t) \\ &= \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}-F_{ij}(||q_{i}(t)-q_{j}(t)||)\dot{q}_{i}(t) + \frac{1}{2}\sum_{j=1}^{n}\sum_{i=1}^{n}-F_{ji}(||q_{i}(t)-q_{j}(t)||)\dot{q}_{j}(t) \\ &= \frac{1}{2}\sum_{i=1}^{n}\left(\sum_{j=1}^{n}-F_{ij}(||q_{i}(t)-q_{j}(t)||)\right)\dot{q}_{i}(t) + \frac{1}{2}\sum_{j=1}^{n}\left(\sum_{i=1}^{n}-F_{ji}(||q_{i}(t)-q_{j}(t)||)\right)\dot{q}_{j}(t) \\ &= \frac{1}{2}\sum_{i=1}^{n}-F_{i}(t)\dot{q}_{i}(t) + \frac{1}{2}\sum_{j=1}^{n}-F_{j}(t)\dot{q}_{j}(t) \\ &= \sum_{i=1}^{n}-F_{i}(t)\dot{q}_{i}(t). \end{split}$$

Therefore, by Newton's 2^{nd} law

$$\frac{d}{dt}V(t) = \sum_{i=1}^{n} -m_i \dot{q}_i(t) \ddot{q}_i(t)$$
$$= -\frac{d}{dt}T(t),$$

and thus

$$\frac{d}{dt}E = 0.$$

Conservation of Angular Momentum in the *n*-body Problem

Let $p_i(t) = m_i \dot{q}(t)$ be the momentum of the i^{th} particle. We've shown that Newton's 2nd law gives us conservation of momentum. The angular momentum of the i^{th} particle is

$$J_i(t) = q_i(t) \times p_i(t).$$

The total angular momentum is:

$$J(t) = \sum_{i=1}^{n} J_i(t).$$

Show that Newton's 2^{nd} gives us conservation of angular momentum:

$$\frac{d}{dt}J(t) = 0.$$

Solution: We have

$$\begin{aligned} \frac{d}{dt}J(t) &= \sum_{i=1}^{n} \frac{d}{dt}q_{i}(t) \times p_{i}(t) \\ &= \sum_{i=1}^{n} \dot{q}_{i}(t) \times p_{i}(t) + q_{i}(t) \times \dot{p}_{i}(t) \\ &= \sum_{i=1}^{n} q_{i}(t) \times F_{i}(t) \\ &= \sum_{i=1}^{n} q_{i}(t) \times \left(\sum_{j=1}^{n} F_{ij}(||q_{i}(t) - q_{j}(t)||)\right) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} q_{i}(t) \times F_{ij}(||q_{i}(t) - q_{j}(t)||) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(q_{i}(t) \times \frac{f_{ij}(||q_{i}(t) - q_{j}(t)||)}{||q_{i}(t) - q_{j}(t)||}q_{i}(t) - q_{i}(t) \times \frac{f_{ij}(||q_{i}(t) - q_{j}(t)||)}{||q_{i}(t) - q_{j}(t)||}q_{j}(t) \right) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} -q_{i}(t) \times \frac{f_{ij}(||q_{i}(t) - q_{j}(t)||)}{||q_{i}(t) - q_{j}(t)||}q_{j}(t) \\ &= 0 \end{aligned}$$

where the last equality follows from the identity:

$$-q_i(t) \times \frac{f_{ij}(||q_i(t) - q_j(t)||)}{||q_i(t) - q_j(t)||} q_j(t) = q_j(t) \times \frac{f_{ji}(||q_i(t) - q_j(t)||)}{||q_i(t) - q_j(t)||} q_i(t).$$