
The Kepler Problem

Math 241 Homework

John Baez

The goal of this problem is to see why two particles interacting via gravity move along nice curves
like ellipses, parabolas and hyperbolas. This is called the Kepler problem since it was Kepler who
discovered that the orbits of planets were elliptical, and explaining this was the first major triumph
of Newtonian mechanics. However, let’s start quite generally by studying an arbitrary central force,
and specialize to the 1/r2 force law of gravity only when that becomes necessary.

Suppose we have a system of two particles interacting by a central force. Their positions are
functions of time, say q1,q2:R→ R3, satisfying Newton’s law:

m1q̈1 = f(|q1 − q2|)
q1 − q2

|q1 − q2|

m2q̈2 = f(|q2 − q1|)
q2 − q1

|q2 − q1|
.

Here m1,m2 are their masses, and the force is described by some smooth function f : (0,∞) → R.
Let’s write the force in terms of a potential as follows:

f(r) = −dV
dr
.

Using conservation of momentum and symmetry under translations and Galilei boosts we can
work in the center-of-mass frame. This means we can assume

m1q1(t) +m2q2(t) = 0 (1)

for all times t. Using conservation of angular momentum and symmetry under rotations we can
assume both particles lie in the xy plane at all times. Thus we may assume the z component of
q1(t) and q2(t) equal zero at all times. In short, we have reduced the problem to a 2-dimensional
problem!

We could use equation (1) to solve for q2 in terms of q1, or vice versa, but we can also use it to
express both q1 and q2 in terms of the relative position

q(t) = q1(t)− q2(t).

This is more symmetrical so this is what we will do. Henceforth we only need to talk about q. Thus
we have reduced the problem to a 1-body problem!

Now here’s where you come in:

1. Show that q(t) satisfies the equation

mq̈ = f(|q|) q

|q|

where m is the so-called reduced mass

m =
m1m2

m1 +m2
.
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2. Recall that the total energy E of the 2-particle system is the sum of the kinetic energies of
the particles plus the potential energy. Express E in terms of q and the reduced mass. Show that

E =
1

2
m |q̇|2 + V (|q|) (2)

3. Let J be the total angular momentum of the 2-particle system. Show that

J = mq× q̇ (3)

Show that the x and y components of J are zero. Let’s call the z component j.

Now let’s work in polar coordinates: the point q lies in the xy plane so write it in polar coordinates
as (r, θ). As usual, let’s write time derivatives with dots:

ṙ =
dr

dt
, θ̇ =

dθ

dt
.

4. Use equations (2) and (3) to show that

E =
1

2
m(r2θ̇2 + ṙ2) + V (r) (4)

and
j = mr2θ̇ (5)

5. We can use equation (5) to solve for θ̇ in terms of r:

θ̇ =
j

mr2
(6)

Use this and equation (4) to express E in terms of r:

E =
1

2
mṙ2 + U(r)

where

U(r) = V (r) +
j2

2mr2

Thus the energy looks just like the energy of a particle of mass m in a potential U on the half-line
{0 < r <∞}. We have reduced the problem to a 1-dimensional problem! U is called the effective
potential. Note that the second term creates the effect of a repulsive force equal to j2/mr3, called
the centrifugal force.

6. Show that

ṙ =

√
2

m
(E − U(r)). (7)

We could solve this differential equation to find r as a function of t, but it’s nicer to find r as a
function of θ, since this allows us to see the shape of the particles’ orbits. In fact it turns out to be
easier to first find θ as a function of r and then solve for r in terms of θ — so that’s what we’ll do.

7. Using equations (6) and (7) show that

dθ

dr
=
θ̇

ṙ
=

j/mr2

√
2
m (E − U(r))
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Conclude that

θ = θ0 +

∫
(j/mr2) dr√
2
m (E − U(r))

(8)

Now let’s specialize to the case of gravity, where V (r) = −Gm1m2/r.

8. To reduce the clutter a little bit, write

V (r) = −k/r.
Sketch a graph of the effective potential U(r) in this case, and say what a particle moving in this
potential would do, depending on its energy E.

9. Show using equation (8) that

θ = θ0 + arccos

j
mr − k

j√
2E
m + k2

j2

.

This is the only part of this homework where you really need to sweat. However, some ways to do
it are easier than others, so think a bit before you plunge into an enormous masochistic calculation
— if you do it intelligently, you will only need a medium-sized masochistic calculation! For example,
you may want to derive a general formula for

∫
dx√

ax2 + bx+ c

and then use it to do the integral in equation (8).

10. Reduce the clutter a bit more by defining

p = j2/km, e =

√
1 +

2Ej2

mk2
.

Show that in terms of these variables we have

θ = θ0 + arccos

(
p/r − 1

e

)

and thus
r =

p

1 + e cos(θ − θ0)
. (9)

Note that when θ = θ0 the denominator is maximized, so r is minimized. We call this point the
perihelion of the orbit, since in Newton’s original application to the earth going around this sun,
this is the point on the earth’s orbit where its distance to the sun is minimized.

11. Show that equation (9) describes an ellipse, parabola or hyperbola in polar coordinates,
depending on the value of the parameter e, which we call the eccentricity. To do this, first simplify
things by rotating the coordinate system so that θ0 = 0. Then express the variables r, θ in terms of
x, y and show that equation (9) becomes the equation

(1− e2)x2 + 2epx+ y2 = p2.

Show that for e = 0 this describes a circle of radius p. Show also that for 0 < e < 1 it describes an
ellipse, for e = 1 it describes a parabola, and for e > 1 it describes a hyperbola. Newton used the
elliptic case to predict when the comet discovered by Edmund Halley would return! However, he
didn’t give Halley much credit for obtaining the necessary data — so they wound up bitter enemies.
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