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John Baez

The Kepler Problem

The goal of this problem is to see why particles moving in an inverse square force law — for example,
gravity! — move along nice curves like ellipses, parabolas and hyperbolas. This is called the Kepler
problem since it was Kepler who discovered that the orbits of planets were elliptical, and explaining
this was the first major triumph of Newtonian mechanics. However, let’s start quite generally by
studying an arbitrary central force, and specialize to the 1/r2 force law of gravity only when that
becomes necessary.

Suppose we have a particle moving in a central force. Its position is a function of time, say
q:R→ R3, satisfying Newton’s law:

mq̈ = f(|q|) q|q|
Here m is its masses, and the force is described by some smooth function f : (0,∞)→ R. Let’s write
the force in terms of a potential as follows:

f(r) = −dV
dr
.

Using conservation of angular momentum we can choose coordinates where the particle lies in
the xy plane at all times. Thus we may assume the z component of q(t) and In short, we have
reduced the problem to a 2-dimensional problem!

Now let’s work in polar coordinates: the point q lies in the xy plane so write it in polar coordinates
as (r, θ). As usual, let’s write time derivatives with dots:

ṙ =
dr

dt
, θ̇ =

dθ

dt
.

Now here’s where you come in!

1. Show that the energy E of the particle is given by

E =
1

2
m(r2θ̇2 + ṙ2) + V (r) (1)

and the angular momentum J is a vector with vanishing x and y components, and z component
given by

j = mr2θ̇. (2)

2. We can use equation (2) to solve for θ̇ in terms of r:

θ̇ =
j

mr2
(3)

Use this and equation (1) to express E in terms of r:

E =
1

2
mṙ2 + Veff(r)

where

Veff(r) = V (r) +
j2

2mr2
.
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Thus the energy looks just like the energy of a particle of mass m in a potential Veff on the half-line
{0 < r <∞}. We have reduced the problem to a 1-dimensional problem! Veff is called the effective
potential. Note that the second term creates the effect of a repulsive force equal to j2/mr3, called
the centrifugal force.

3. Show that

ṙ =

√
2

m
(E − Veff(r)). (4)

We could solve this differential equation to find r as a function of t, but it’s nicer to find r as a
function of θ, since this allows us to see the shape of the particles’ orbits. In fact it turns out to be
easier to first find θ as a function of r and then solve for r in terms of θ — so that’s what we’ll do.

4. Using equations (3) and (4) show that

dθ

dr
=

j/mr2

√
2
m (E − Veff (r))

.

Conclude that

θ = θ0 +

∫
(j/mr2) dr√
2
m (E − Veff(r))

(5)

Now let’s specialize to the case of gravity, where f(r) = −k/r2 and thus V (r) = −k/r
for some constant k.

5. Sketch a graph of the effective potential Veff(r) in this case, and say what a particle moving
in this potential would do, depending on its energy E.

6. Show using equation (5) that

θ = θ0 + arccos

j
mr − k

j√
2E
m + k2

j2

.

This is the only part of this homework where you really need to sweat. However, some ways to do
it are easier than others, so think a bit before you plunge into an enormous masochistic calculation
— if you do it intelligently, you will only need a medium-sized masochistic calculation! For example,
you may want to derive a general formula for

∫
dx√

ax2 + bx+ c

and then use it to do the integral in equation (5).

7. Reduce the clutter a bit more by defining

p = j2/km, e =

√
1 +

2Ej2

mk2
.

Show that in terms of these variables we have

θ = θ0 + arccos

(
p/r − 1

e

)
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and thus
r =

p

1 + e cos(θ − θ0)
. (6)

Note that when θ = θ0 the denominator is maximized, so r is minimized. We call this point the
perihelion of the orbit, since in Newton’s original application to the earth going around this sun,
this is the point on the earth’s orbit where its distance to the sun is minimized.

8. Show that equation (6) describes an ellipse, parabola or hyperbola in polar coordinates,
depending on the value of the parameter e, which we call the eccentricity. To do this, first simplify
things by rotating the coordinate system so that θ0 = 0. Then express the variables r, θ in terms of
x, y and show that equation (6) becomes the equation

(1− e2)x2 + 2epx+ y2 = p2.

Show that for e = 0 this describes a circle of radius p. Show also that for 0 < e < 1 it describes
an ellipse, for e = 1 it describes a parabola, and for e > 1 it describes a hyperbola. Newton used
the elliptic case to predict when the comet discovered by Edmund Halley would return! However,
he didn’t give Halley much credit for obtaining the necessary data.

9. How are the three kinds of orbits — ellipse, parabola or hyperbola — related to the energy
E?
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