
Classical Mechanics Homework
January 24, 2008

John Baez

homework by: Scot Childress

The Kepler Problem

(Background) Suppose we have a particle moving in a central force. Its position is a function of
time, say q : R → R3, satisfying Newton’s law:

mq̈ = f(|q|) q

|q|

Here m is its masses, and the force is described by some smooth function f : (0,∞) → R. Let’s write
the force in terms of a potential as follows:

f(r) = −dV

dr
.

Using conservation of angular momentum we can choose coordinates where the particle lies in
the xy plane at all times. Thus we may assume the z component of q(t) and q̈(t) vanish for all t. In
short, we have reduced the problem to a 2-dimensional problem!

Now let’s work in polar coordinates: the point q lies in the xy plane so write it in polar coordinates
as (r, θ). As usual, let’s write time derivatives with dots:

ṙ =
dr

dt
, θ̇ =

dθ

dt
.

1. Show that the energy E of the particle is given by

E =
1
2
m(r2θ̇2 + ṙ2) + V (r) (1)

and the angular momentum J is a vector with vanishing x and y components, and z component
given by

j = mr2θ̇. (2)

Recall that the energy of such a particle is given by

E =
1
2
mq̇(t)2 + V (|q(t)|). (3)

Noting that in polar coordinates

q̇ = (ṙ cos θ − rθ̇ sin θ, ṙ sin θ + rθ̇ cos θ), (4)

we see that

q̇(t)2 = ṙ2 cos2 θ − rṙθ̇ sin 2θ + r2θ̇2 sin θ + ṙ2 sin2 θ + rṙθ̇ sin 2θ + r2θ̇2 cos2 θ

which reduces nicely to q̇(t)2 = ṙ2 + r2θ̇2. Substitution of this last expression for q̇(t)2 into (3) and
noting that r = |q(t)| yields (1).

Now we will show that the angular momentum J is a vector with vanishing x and y components
with the z component given by (2). The angular momentum is
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J = mq × q̇

and if we use the expression for q̇ obtained in (4), we have

q × q̇ = (r cos θı̂ + r sin θ̂)× [(ṙ cos θ − rθ̇ sin θ)̂ı + (ṙ sin θ + rθ̇ cos θ)̂]

= [r2θ̇ cos2 θ + rṙ cos θ sin θ − r sin θ(ṙ cos θ − rθ̇ sin θ)]k̂

= r2θ̇k̂,

so that J = mr2θ̇k̂.

2. We use equation (2) to solve for θ̇ in terms of r:

θ̇ =
j

mr2
(5)

Combining this and equation (1) we express E in terms of r:

E =
1
2
mṙ2 + Veff(r) (6)

where

Veff(r) = V (r) +
j2

2mr2
.

The only thing to note here is that θ̇2 = j2/m2r4.

3. We solve (6) for ṙ to obtain

ṙ =

√
2
m

(E − Veff(r)). (7)

It should be noted that in our use of the symbol for the positive square root we are not asserting
that ṙ is positive! It is entirely possible that the above root is negative! This, as we will discuss
below (in # 5) will not effect the form of our solution for r in terms of θ.

4. Using (5) and (7) show that

dθ

dr
=

θ̇√
2
m (E − Veff(r))

=
j/mr2√

2
m (E − Veff(r))

.

By the chain rule, we have that

θ̇ =
dθ

dr
ṙ,

which when combined with (7) (and subsequently (5)) gives:

dθ

dr
=

θ̇√
2
m (E − Veff(r))

=
j/mr2√

2
m (E − Veff(r))

.

Upon integration we arrive at

θ = θ0 +
∫

(j/mr2)dr√
2
m (E − Veff(r))

. (8)
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Now let’s specialize to the case of gravity, where f(r) = −k/r2 and thus V (r) = −k/r
for some constant k.

5. Sketch a graph of the effective potential Veff(r) in this case, and say what a particle moving in
this potential would do, depending on its energy E.

Figure I shows a sketch of Veff in the case that |j| > m (this is the case where V ′
eff(r) < 0 for

r < j2/2mk) and II shows Veff where |j| < m (where V ′
eff(r) > 0 for r < j2/2mk.) In both sketches,

the zero is at r = j2/2mk and the r-axis is a horizontal asymptote as r →∞.
Let us briefly discuss the behavior of a particle with energy E < 0 with |j| > m. Such a particle

is shown in III. As was discussed in the example in class, the particles radius r would oscillate
within the classically allowed region (the r values lying between the intersection points of E and
Veff(r)). The particle would be moving fastest at the minimum value of Veff and would change from
moving away from the origin to moving towards it (or vice a versa) at the intersection points.

6. Carry out the integration in (8).
We must compute ∫

(j/mr2)dr√
2
m (E + k/r − j2/2mr2)

.
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Too much has been made of this bugaboo! Let’s put this “beast” to rest by an elementary trigono-
metric substitution:

j

m

(
1
r
− mk

j2

)
=

√
2E

m
+

k2

j2
cos u.

(The sign of the radical here is chosen to match the sign of the radical in # 3) This substitution
comes from completing the square under the radical—a simple and computationally economical
process—and recalling the pythagorean identity for sine and cosine. All showboating aside, we see
that

(j/mr2)dr = sinu

√
2E

m
+

k2

j2
du,

and upon substitution, the integral becomes∫
udu = u

(the constant of integration already being accounted for in θ0, and any sign changes from radi-
cals canceling). Reversing the trignometric substitution we see that u and hence the sought after
antiderivative is

arccos
j

mr −
k
j√

2E
m + k2

j2

.

Whence,

θ = θ0 + arccos
j

mr −
k
j√

2E
m + k2

j2

. (9)

7. Reduce the clutter in (9) by defining

p = j2/km, e =

√
1 +

2Ej2

mk2
.

Note that √
2E

m
+

k2

j2
=

k

j
e,

so that

j
mr −

k
j√

2E
m + k2

j2

=
j

k

j
mr −

k
j

e
=

p/r − 1
e

,

from whence it follows that

θ = θ0 + arccos
(

p/r − 1
e

)
.

Solving for r yields:

r =
p

1 + e cos(θ − θ0)
. (10)
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We should note that if the sign of the radical for ṙ

8. Show that equation (10) describes an ellipse, parabola, or hyperbola in polar coordinates, depending
on the value of the parameter e, which we call the eccentricity .

Begin by making a shift (a rotation) of θ0 in θ. We will call the new coordinates that result from
this shift r′ and θ′. We have that

r′ =
p

1 + e cos θ′

by (10), or equivalently

r′ + er′ cos θ′ = p.

Making the standard change to cartesian coordinates, the above reads√
x2 + y2 + ex = p.

Now a little algebra yields

x2 + y2 = p2 − 2ex + e2x2,

or put a little differently,

(1− e2)x2 + 2ex + y2 = p2; (11)

which we immediately recognize as the equation of a conic.
The particular conic that (11) describes will be determined by the value of e. If e = 0, for

instance, then (11) reduces to

x2 + y2 = p2,

a circle centered at the origin with radius p. If e = 1, then (11) reduces to

2(x− p2/2) = y2,

a parabola with vertex (in the original polar coordinates) (p2/2, θ0) opening towards the origin.
Let’s exhaust all of the cases. If e 6= 0 or 1, then we may rewrite (11) as(

x + ep
1−e2

)2

p2 1+e2

1−e2

+
y2

p2(1 + e2)
= 1. (12)

We see that in this case (12) represents either a hyperbola ( e > 1) with vertices (in rotated cartesian
coordinates) (

−ep

1− e2
,±p(1− e2)1/2

)
opening in the y direction or an ellipse (0 < e < 1) with center (again in rotated cartesian coordi-
nates) (

−ep

1− e2
, 0

)
.

9. How are the three kinds of orbits related to the energy E?
Recall that e is given by
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e =

√
1 +

2Ej2

mk2
,

so that

E =
mk2

2j2
(e2 − 1).

Using this, we compile the following chart:

Orbit(type) Energy
Circular E = −mk2/2j2

Parabolic E = 0
Hyperbolic E > 0

Elliptic −mk2/2j2 < E < 0

6


