
Classical Mechanics Homework
January 24, 2∞8

John Baez homework by C. Pro

The Kepler Problem.

Suppose we have a particle moving in a central force. Its position is a function of time, say q: R → R3,
satisfying Newton’s law:

mq̈ = f(|q|) q

|q|
Here m is its masses, and the force is described by some smooth function f : (0,∞) → R. Let’s write
the force in terms of a potential as follows:

f(r) = −dV

dr
.

Using conservation of angular momentum we can choose coordinates where the particle lies in
the xy plane at all times. Thus we may assume the z component of q(t) and q̇(t) vanish for all t. In
short, we have reduced the problem to a 2-dimensional problem!

Now let’s work in polar coordinates: the point q lies in the xy plane so write it in polar coordinates
as (r, θ). As usual, let’s write time derivatives with dots:

ṙ =
dr

dt
, θ̇ =

dθ

dt
.

1. For the moment, view R2 as C and write q = reiθ where q, r and θ depend on time t. In this
guise,

q̇ = (ṙ + iθ̇r)eiθ

and as a vector dot product,

q̇2 = |q̇|2 = |ṙ + iθ̇r|2 = ṙ2 + θ̇2r2.

Therefore, the energy E of the particle is given by

E =
m

2
q̇2 + V (r)

=
m

2
(ṙ2 + θ̇2r2) + V (r). (1)

Let J = q(t) × p(t), where p is the momentum of q, be the angular momentum of q. Angular
momentum in a central force is constant, and thus we are allowed to view q and p = mq̇ as points in
C. As a vector cross product, J is therefore directed perpendicular to C so has z component equal
to its magnitude

j = Im (q̄p)
= Im (q̄mq̇)
= Im (rmṙ + imr2θ̇)
= mr2θ̇. (2)

2. Using equation (2), we have

θ̇ =
j

mr2
(3)
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so that by (1)

E =
m

2
(ṙ2 +

(
j

mr2

)2

r2) + V (r).

=
m

2
ṙ2 +

j2

2mr2
+ V (r)

=
m

2
ṙ2 + Veff(r)

where

Veff =
j2

2mr2
+ V (r).

Thus the energy looks just like the energy of a particle of mass m in a potential Veff on the
half-line {0 < r < ∞}. We have reduced the problem to a 1-dimensional problem! Veff is called the
effective potential. Note that the first term creates the effect of a repulsive force equal to j2/mr3,
called the centrifugal force.

3. From this new description of energy, we have

ṙ = ±
√

2
m

(E − Veff(r)) (4)

so that from (3)
dθ

dr
=

θ̇

ṙ
= ± j2/mr2√

2
m (E − Veff(r))

.

We now have θ as a function of r since

θ(r) = θ(r0) +
∫ r

r0

dθ

dr
(s)ds

= θ(r0)±
∫ r

r0

j2/ms2√
2
m (E − Veff(s))

ds (5)

for any r0 in (0,∞).

Now let us specialize to the case of gravity, where f(r) = −k/r2 and thus V (r) = −k/r for some
constant k.

5. First let’s examine the graph of the effective potential:

Veff(r) =
j2

2mr2
− k

m
.

For a given total energy E of q, we have from equation (4) the classically allowed values for r
(i.e., {r |Veff(r) ≤ E}). In this case, we see from the following figure, a set of values for E which
will yield a unique behavior for r as a function of t. In addition, equation (4) gives us the analogy
between ṙ with respect to r and that of the velocity of a skateboarder with respect to her position
on the ramp (r, Veff(r)) under a roof of height E.

Suppose the total energy of q is E1 and is equal to the minimum value of the effective potential.
In this case there is only one classically allowed value:

r =
j2

mk
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E3

j2

mk

Veff

E2

−mk2

2j2 E1

r

Figure 1: Gravitational effective potential

and the only interesting thing here is to ask about the mood of the skateboarder.
Suppose now that the total energy is E2 such that

−mk2

2j2
< E2 < 0.

We see the radius accelerate down the ramp away from the attracting body, then decelerate up the
ramp, touch the roof and return with the same speed pattern to do it again.

If the total energy E3 is such that E3 ≥ 0 we have enough energy to escape the pull of the
attracting body and the distance from this object becomes unbounded. It should be noted, when
E3 = 0 we have the minimum value of energy to escape this pull

6. Now, to find θ as a function of r, by equation (5) we must find the following antiderivative:∫
j/r2√

−j2( 1
r2 ) + 2km( 1

r ) + 2mE
dr.

Use the substitution x = j/r to transform the above into∫
−dx√

ax2 + bx + c

where a = −1, b = 2km/j and c = 2mE.

To solve this problem, first set α to satisfy

cos α =
x + b

2a√
b2−4ac

4a2

. (6)
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Then by the Pythagorean Theorem,

csc α =

√
b2−4ac

4a2

√
ax2 + bx + c

.

By differentiating (6), then substituting the above, we obtain

dα = − csc α

√
4a2

b2 − 4ac
dx =

−dx√
ax2 + bx + c

.

Therefore,

α + C =
∫

dα =
∫

−dx√
ax2 + bx + c

and thus ∫
−dx√

ax2 + bx + c
= C + arccos

x + b
2a√

b2−4ac
4a2

.

Backtracking to θ-ville, from equation (5), we have

θ(r) = θ0 ± arccos
j

mr −
k
j√

2E
m + k2

j2

.

7. By rearranging letters in our formula for θ, we get

θ(r) = θ0 ± arccos
j2

mrk − 1√
1 + 2Ej2

mk2

.

Now if we set

p = j2/km, e =

√
1 +

2Ej2

mk2
,

we have

θ(r) = θ0 ± arccos
(

p/r − 1
e

)
.

This equation can be solved for r in terms of θ as:

r(θ) =
p

1 + e cos(θ − θ0)
. (7)

Note that when θ = θ0 the denominator is maximized, so r is minimized. We call this point the
perihelion of the orbit, since in Newton’s original application to the earth going around this sun,
this is the point on the earth’s orbit where its distance to the sun is minimized.

8. Now set w(t) = eiθ0q(t) and say w(t) has coordinates (x(t), y(t)). Then equation (7) becomes

r + ex = p

from which we can square both sides and get

(1− e2)x2 + 2epx + y2 = p2. (8)

Now if e = 0, then (8) becomes
x2 + y2 = p2,
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thus w(t), and hence q(t) is on the circle of radius p.

If 0 < e < 1, then 1− e2 > 0 so that (8) can be written as(
x + pe

1−e2

)2

(
p

1−e2

)2 +
y2(
p√

1−e2

)2 = 1,

thus w(t), and hence q(t) is on an ellipse with foci at (0, 0) and ( −pe
1−e2 , 0).

If e = 1, solving for x in (8) gives

x = −y2

2p
+

p

2
,

thus q(t) is on a parabola.

If e > 1, then e2 − 1 > 0 so that (8) can be written as(
x + pe

1−e2

)2

(
p

1−e2

)2 − y2(
p√

e2−1

)2 = 1,

and hence q(t) is on an hyperbola with foci at (0, 0) and ( −pe
1−e2 , 0).

9. So when e = 0 we have an orbit of a circle, solving for the total energy we see

E =
−mk2

2j2

which is the minimum value of the effective potential as expected. When 0 < e < 1 we’re on an
ellipse, and this occurs when −mk2/2j2 < E < 0. When E = 0, e = 1 and we’re on a parabola.
And when E > 0, e > 1 so we’re on a hyperpola.
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