
The Kepler Problem Revisited:
The Laplace–Runge–Lenz Vector
Classical Mechanics Homework

March 17, 2∞8

John Baez homework by C.Pro

Whenever we have two particles interacting by a central force in 3d Euclidean space, we have
conservation of energy, momentum, and angular momentum. However, when the force is gravity —
or more precisely, whenever the force goes like 1/r2 — there is an extra conserved quantity. This is
often called the Runge–Lenz vector, but it was originally discovered by Laplace. Its existence can
be seeen in the fact that in the gravitational 2-body problem, each particle orbits the center of mass
in an ellipse (or parabola, or hyperbola) whose perihelion does not change with time. The Runge–
Lenz vector points in the direction of the perihelion! If the force went like 1/r2.1, or something like
that, the orbit could still be roughly elliptical, but the perihelion would ‘precess’ — that is, move
around in circles.

Indeed, the first piece of experimental evidence that Newtonian gravity was not quite correct was
the precession of the perihelion of Mercury. Most of this precession is due to the pull of other planets
and other effects, but about 43 arcseconds per century remained unexplained until Einstein invented
general relativity.

In fact, we can use the Runge–Lenz vector to simplify the proof that gravitational 2-body problem
gives motion in ellipses, hyperbolas or parabolas. Here’s how it goes. As before, let’s work with the
relative position vector

q(t) = q1(t)− q2(t)

where q1,q2: R → R3 are the positions of the two bodies as a function of time. In what follows we
will use q to stand for the magnitude of the vector q, and q̂ to stand for a normalized vector that
points in the direction of q:

q = |q|, q̂ =
q
q
.

In a previous homework we saw that q(t) satisfies

mq̈ = f(q)q̂

where f is the force as a function of distance, and m is the so-called ‘reduced mass’. Since the force
of gravity goes like 1/r2, we have

f(q) = −k/q2

where k is the same constant as in the previous homework. We thus have

mq̈ = −kq̂/q2 (1)

and this will be our starting-point for all that follows.

1. Define the angular momentum vector J in the usual way:

J = mq× q̇

We know from our previous work that angular momentum is conserved:

J̇ = 0.

Take the cross product of both sides of equation (1) with the vector J. Simplify the right-hand side
and show that

q̈× J = k ˙̂q (2)
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Solution: First we compute the time derivative of q̂. Let qi/q be the ith component of q̂ and
write q =

√
q · q. Then use the quotient rule to obtain

d

dt

qi

q
=

q̇iq − qi

(
q·q̇
q

)
q2

=
q̇i(q · q)− (q · q̇) · qi

q3

and so,
˙̂q =

q̇(q · q)− (q · q̇) · q
q3

Now, using the identity
a× (b× c) = (a · c)b− (a · b)c,

we have

mq̈× J = −mkq̂/q2 × (mq× q̇)

=
mk

q3
((q · q)q̇− (q · q̇)q)

= mk ˙̂q,

and dividing both sides by m we obtain the result.

2. Use parts 1 to show that
d

dt
(q̇× J) = k ˙̂q.

Solution :

d

dt
(q̇× J) = q̈× J + q× J̇

= k ˙̂q + q× 0
= k ˙̂q.

3. Use part 2 to show that
q̇× J = kq̂ + x

for some vector x ∈ R3 that is independent of time.
Solution: Note 2 says

d

dt
((q̇× J)− kq̂) = 0

and so the two functions must only differ by some constant vector, say x.

It will be handy to divide this vector by k, obtaining the Runge–Lenz vector:

A =
x
k

which clearly is also independent of time. In other words, the Runge–Lenz vector

A =
q̇× J

k
− q̂ (3)
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is a conserved quantity for the Kepler problem:

Ȧ = 0.

4. Use equation (3) to show that

A · q =
J · J
km

− q. (4)

Solution: Using the identity (a× b) · c = (c× a) · b we have

A · q =
q̇× J

k
·
(mq

m

)
− q̂ · q

=
(mq× q̇) · J

mk
− q2

q

=
J · J
mk

− q

as desired.

5. Now write
A · q = Aq cos θ

where A = |A| is the magnitude of the Runge–Lenz vector and θ is the angle between q and A.
Using equation (4), show that

q =
J · J
km

1
1 + A cos θ

.

Solution: From equation (4)

A · q + q =
J · J
km

so
q(A cos θ + 1) =

J · J
km

and therefore
q =

J · J
km

1
1 + A cos θ

.

Now, let me explain what you have achieved!

The above equation looks almost like this equation in our previous homework about the Kepler
problem:

r =
p

1 + e cos(θ − θ0)
.

And indeed, they are really just different ways of writing the same equation, except that now we
have rotated our polar coordinate system so that θ0 = 0. Another way of saying this is that in these
coordinates, θ is zero at the perihelion of the orbit.

So, you’ve just given a new proof that the orbit in the Kepler problem must be an ellipse, parabola
or hyperbola! Moreover, comparing the two equations above we see that

e = A,

so the magnitude of the Runge–Lenz vector is the eccentricity of the orbit. We also see that the
Runge–Lenz vector points in the direction of the orbit’s perihelion. Thus the conservation of the
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Runge–Lenz vector is just a way of saying the eccentricity and perihelion don’t change with time!
Finally, we see that

p =
J · J
km

which we already saw last time.

The story of the Runge–Lenz vector goes much deeper than this, and I encourage you to look at my
webpage about it, and also the excellent Wikipedia article:

• John Baez, The mysteries of the gravitational 2-body problem,
http://math.ucr.edu/home/baez/gravitational.html

• Wikipedia, Laplace–Runge–Lenz vector,
http://en.wikipedia.org/wiki/Laplace-Runge-Lenz vector

Here’s the story in a nutshell. First, the Runge–Lenz vector is conserved not only in the classical,
but also in the quantum-mechanical theory of two particles attracted by an inverse square force law.
The main example is the hydrogen atom. The surprising degeneracy of energy levels for the hydrogen
atom, also important for the periodic table of elements, is special to an inverse square force law and
due to the conservation of the Runge–Lenz vector.

Mathematically, conservation of angular momentum is due to rotation symmetry: symmetry under
the group SO(3). Any central force has this symmetry. But the inverse square force law actually has
symmetry under a bigger group, SO(4) or SO(3, 1). SO(4) is the rotational group in 4 dimensions,
while SO(3, 1) is the Lorentz group. These are both 6-dimensional groups, so they give 6 conserved
quantities: the 3 components of J and the three components of K, which is a rescaled version of the
Runge–Lenz vector:

K = k

√
m

2|H|
A

where H is the Hamiltonian. This new vector K is conserved because A and H are.

To see this in detail, one can calculate that

{J1, J2} = J3 and cyclic permutations

{J1,K2} = K3 and cyclic permutations

and, oddly,
{K1,K2} = ±K3 and cyclic permutations

where the sign is always + if the energy is negative, and − if the energy is positive. (Here by
‘and cyclic permutations’, I mean we can cyclically permute the indices 1, 2, 3 and get other true
equations.)

This means that if we restrict to

X− = {(q, p) ∈ R3 × R3:H(q, p) < 0}

we get the above equations with the plus sign, and these are precisely the formulas for the Lie
bracket in so(4). If we restrict to

X+ = {(q, p) ∈ R3 × R3:H(q, p) < 0}

we get the above equations with the minus sign, which are the formulas for the Lie bracket in so(3, 1).
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The spaces X− and X+ are Poisson manifolds in their own right. X− is the phase space for particles
in elliptical orbits, while X+ is the phase space for particles in hyperbolic orbits. With some work,
one can show that SO(4) acts on X− and SO(3, 1) acts on X+. Both actions are Hamiltonian, and
the corresponding observables are conserved quantities: just J and K.

In short: the problem of a particle in an elliptical orbit in gravity has SO(4) symmetry! But why?
What does gravity have to do with 4d rotations? An explanation was given by the Russian physicist
Fock in 1935.

Fock showed that X− is isomorphic, as a Poisson manifold, to T ∗S3 — the phase space for a particle
on the sphere S3 ⊆ R4. Even better, the whole problem of a particle in an elliptical orbit in an
inverse-square force law is isomorphic to the problem of a free particle on S3! The latter problem
has an obvious symmetry under SO(4).

Of course, all this is puzzling in its own right. It goes to show that even the most classic of classical
mechanics problems still holds mysteries! Here is a good book on the subject:

• Victor Guillemin and Shlomo Sternberg, Variations on a Theme by Kepler, American Mathe-
matical Society, Providence, Rhode Island, 1990.
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