SOFTWARE FOR COMPOSITIONAL
MODELING IN EPIDEMIOLOGY

John Baez
ACT 2023
2023 August 2

What should applied category theorists do?

In my opinion:
> We should develop beautiful mathematics,
> use it to solve practical problems, and
» help the world.

The first part is not very hard after you know category theory.
The second part seems to require an interdisciplinary team.

The hardest part is the third part.

In “System Dynamics”, dynamical systems are modeled using
“stock-flow diagrams”:

Per Contact Likelihood Total Population
of Infection

B

Contacts per Unit
Time ¢ Fractional
Prevalence
Mean Duration of

Force of Infection Infectiousness

Susceptible -
_L/'[nfecﬁan

f 3

Recovered

Recovery

Rate of Waning
Immunity

Al
Waning of

These diagrams are now widely used in economics, population
biology, epidemiology, etc.

https://en.wikipedia.org/wiki/System_dynamics

A stock-flow diagram consists of finite sets and functions like this:

u

Flows Stocks

N

Links

together with, for each f € Flows, a flow function ¢;: REV) — R
where L(f) is the set of links whose target is f.

o
s L[& E 6 RIS SR

h ¢ R SR

@ ¢ R SR

Each stock-flow diagram gives a system of ordinary differential
equations with one variable for each stock, saying how the stocks
change with time:

f\f/\/\g B = —g(S, 1)
S >]

> R
) L= §p(S, 1) — po(I) — pn(D)
h
! G = 0D
D
D = (I
brbg, n

There is a category StockFlow, a category of systems of differential
equations Dynam, and a functor

V. StockFlow — Dynam

Modelers like stock-flow diagrams with extra features:

rabbits #DO

rabhit birth rabbit
rate mortality rate
rabbit fertility net birth
rate rabbits
rabhits killed
per fox
fox
mortality
fox #{%
fo birth fox mortality
rate rate
fox fertility
net birth
rate fox

Our software handles these, but I won’t say much about them!

Instead of stock-flow diagrams, why not just use differential
equations?

» Diagrams make it easier to compose models.

» We can do more with stock-flow diagrams than just convert them
into differential equations. If we separate syntax from semantics,
we gain flexibility.

> For most people, diagrams are easier to understand than
differential equations!

In “community based modeling”, diagrams let community
members work with experts to help build models.

https://www.clasp.org/sites/default/files/introductiontocommunitybasedsystemsdynamics.pdf

Sociologists would say the power of stock-flow diagrams — and other
diagrams — is that they’re “boundary objects”:

A boundary object is any object that is part of multiple social
worlds and facilitates communication between them; it has
a different identity in each social world that it inhabits.

Our goal is to make diagrams even more powerful by:
» formalizing them using category theory

> creating software to work with them.

Some epidemiologists use stock-flow diagrams to model the spread of
disease. This includes my collaborators Nathaniel Osgood and
Xiaoyan Li, who are computer scientists specializing in public health.

https://www.cs.usask.ca/faculty/osgood/
https://scholar.google.ca/citations?user=55dzbRgAAAAJ&hl=en

Most stock-flow modeling is done using software called AnyLogic.
It’s powerful, but it has some big problems:

» It has no support for composing models: taking several smaller
models and putting them together to form a larger model.

» It has no support for separating syntax from semantics:
interpreting the same model in multiple ways.

» It has no support for stratifying models: taking a model and
splitting one stock into several stocks (e.g. age groups).

» It has no support for collaboratively building models.

» It is not free and not open-source!

Our work aims to fix all these problems.

https://www.anylogic.com/

The ability to compose models is crucial because realistic models are
complicated and built out of many smaller parts. Here is Osgood and
Li’s COVID model used by the government of Canada:

To compose stock-flow models we can use structured cospans. Given
any functor
L:A-X

a structured cospan is a diagram in X of this form:
X
PN
L(a) L(b)

If X has pushouts, we can compose structured cospans by taking
pushouts:
YHLw) Y

x/ \y
N N
L(a) L(b) L(c)

We get a (double) category with objects of A as objects and structured
cospans as morphisms.

An open stock-flow diagram looks like this:

It’s a structured cospan built using the functor L: A — X with
» A = FinSet,
» X = StockFlow,

» [sends any finite set to the stock-flow diagram with that set of
stocks, and no links or flows.

So, open stock-flow diagrams are morphisms in a category, say
Open(StockFlow).

However, besides composing structured cospans end-to-end, we can
also compose them in more complex ways, like this:

Model A

The reason is that if A and X are categories with finite colimits and
L: A — Xis a left adjoint, the corresponding structured cospan
category is a “hypergraph category”.

In a hypergraph category, we can compose operations in patterns
described by the “operad of undirected wiring diagrams”:

category monoidal traced monoidal hypergraph
category category category

» Brendan Fong and David Spivak, Hypergraph categories.

» JB and Kenny Courser, Structured cospans, Thm. 3.12.

https://arxiv.org/abs/1806.08304
https://arxiv.org/abs/1911.04630

To “stratify” stock-flow models — refine them by breaking a single

stock into several stocks — we must use pullbacks in the category
StockFlow, e.g. products:

o]

ARV
sy =2 1y == gy

AVER Ve

so =2 10 E2=| ro

Together with Evan Patterson and Sophie Libkind we created
software for working with stock-flow diagrams.

/
/I

“‘ ‘ 4 '3 / 1
1 9

i\ |

> John Baez, Xiaoyan Li, Sophie Libkind, Nathaniel D. Osgood

and Evan Patterson, Compositional modeling with stock and
flow diagrams.

https://www.epatters.org/
https://slibkind.github.io/
https://arxiv.org/abs/2205.08373
https://arxiv.org/abs/2205.08373

We used AlgebraicJulia: a framework for high-performance scientific
computing using categories. This was developed by James Fairbanks,
Evan, Sophie, and many others.

" ap Y ’ﬁo-ﬂj A

Composing structured cospans using undirected wiring diagrams had
already been implemented in AlgebraicJulia:

» Sophie Libkind, Andrew Baas, Evan Patterson and James
Fairbanks, Operadic modeling of dynamical systems:
mathematics and computation.

https://www.algebraicjulia.org/
https://www.cise.ufl.edu/fairbanks-james/
https://arxiv.org/abs/2105.12282
https://arxiv.org/abs/2105.12282

Using AlgebraicJulia we created a software package called
StockFlow, now available on GitHub. This lets you:

» build stock-flow diagrams

vV v.v Yy

v

draw them
make them “open”
compose them using the operad of undirected wiring diagrams

apply various functors to interpret stock-flow diagrams,
e.g. as systems of differential equations but also other things

numerically solve the resulting differential equations

> stratify stock-flow diagrams using pullbacks

https://github.com/AlgebraicJulia/StockFlow.jl

What are the “various functors” that StockFlow can use to interpret
stock-flow diagrams?

Besides
V. StockFlow — Dynam

another is
A: StockFlow — SystemStructure

This converts stock-flow diagrams to another style of diagram.

A system structure diagram is a diagram of this shape in the
category of finite sets:

Flows Stocks
d

Links

So, SystemStructure = FinSet® for this diagram D.

A stock-flow diagram is a system structure diagram equipped with
flow functions. The functor

A: StockFlow — SystemStructure

simply forgets these flow functions:

f% LRI SR
s I {E‘ ¢ -

"hb $e: RY SR

én: RV S R

A stock-flow diagram is a system structure diagram equipped with
flow functions. The functor

A: StockFlow — SystemStructure

simply forgets these flow functions:

Ay iy,

System Dynamics also uses a third style of diagram, “causal loop
diagrams". We have implemented a hierarchy of forgetful functors in
our software:

StockFlow

|

SystemStructure

|

CausalLoop

People design systems “from the bottom up”, starting simple and
adding detail to go up the hierarchy!

Forgetful functors let you check that you’re on the right track — or
throw out some details and start again.

Functorial semantics also lets you build big models out of smaller
pieces described using several different choices of syntax — as long
as they all map to some common semantics (or syntax):

StockFlow Petri

Dynam

Indeed, V’ has also been implemented in AlgebraicJulia:

> Andrew Baas, James Fairbanks, Micah Halter, Sophie Libkind
and Evan Patterson, An algebraic framework for structured
epidemic modeling.

https://arxiv.org/abs/2203.16345
https://arxiv.org/abs/2203.16345

With Eric Redekopp we made a graphical user interface for
StockFlow, called ModelCollab — also available on GitHub.

» John C. Baez, Xiaoyan Li, Sophie Libkind, Nathaniel D.
Osgood, Long Pham and Eric Redekopp, A categorical
framework for modeling with stock and flow diagrams.

https://github.com/UofS-CEPHIL/modelcollab
http://math.ucr.edu/home/baez/MFPHbookchapter.pdf
http://math.ucr.edu/home/baez/MFPHbookchapter.pdf

ModelCollab runs in your browser, so teams can collaborate to build
stock-flow diagrams.

B ModelCollab X 4

< > C O @& modelcollabweb.app

& Move <
L
Delete

Identify

Flow

Connect

Stock

Cloud

B 00N & > m

Param

Dynamic Variable

M ©

Sum Variable

And the great thing about ModelCollab is that you don’t need to know
anything about category theory or AlgebraicJulia to use it!

The fancy stuff is black-boxed.

Hypothesis: to become widely successful, applied category theory
should make itself invisible.

Three basic principles:

1. Compositionality: stock-flow diagrams are morphisms in the
hypergraph category Open(StockFlow), so we can compose
them using undirected wiring diagrams.

2. Functorial semantics: to interpret stock-flow diagrams we need
to choose a hypergraph functor F: Open(StockFlow) — C, and
there is more than one interesting choice.

3. Stratification via pullbacks: we can build more complicated

stock-flow diagrams from simpler ones by taking pullbacks in
StockFlow.

StockFlow implements all three; ModelCollab just 1¥2 so far. But
we’re not done.

There is a lot of room for growth here!

